model_vision.go 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. package gemma3
  2. import (
  3. "math"
  4. "slices"
  5. "github.com/ollama/ollama/ml"
  6. "github.com/ollama/ollama/ml/nn"
  7. )
  8. var batchSize int = 1
  9. type VisionSelfAttention struct {
  10. Query *nn.Linear `gguf:"attn_q"`
  11. Key *nn.Linear `gguf:"attn_k"`
  12. Value *nn.Linear `gguf:"attn_v"`
  13. Output *nn.Linear `gguf:"attn_output"`
  14. }
  15. func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
  16. headDim := opts.hiddenSize / opts.numHeads
  17. query := sa.Query.Forward(ctx, hiddenState)
  18. key := sa.Key.Forward(ctx, hiddenState)
  19. value := sa.Value.Forward(ctx, hiddenState)
  20. query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
  21. key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
  22. value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
  23. attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), nil)
  24. attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
  25. hiddenState = sa.Output.Forward(ctx, attention)
  26. return hiddenState
  27. }
  28. type VisionMLP struct {
  29. FC1 *nn.Linear `gguf:"fc1"`
  30. FC2 *nn.Linear `gguf:"fc2"`
  31. }
  32. func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
  33. hiddenState = mlp.FC1.Forward(ctx, hiddenState).GELU(ctx)
  34. hiddenState = mlp.FC2.Forward(ctx, hiddenState)
  35. return hiddenState
  36. }
  37. type VisionEncoderLayer struct {
  38. LayerNorm1 *nn.LayerNorm `gguf:"layer_norm1"`
  39. SelfAttention *VisionSelfAttention
  40. LayerNorm2 *nn.LayerNorm `gguf:"layer_norm2"`
  41. MLP *VisionMLP `gguf:"mlp"`
  42. }
  43. func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
  44. residual := hiddenState
  45. // self attention
  46. hiddenState = e.LayerNorm1.Forward(ctx, hiddenState, opts.eps)
  47. hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
  48. hiddenState = hiddenState.Add(ctx, residual)
  49. residual = hiddenState
  50. // feed forward
  51. hiddenState = e.LayerNorm2.Forward(ctx, hiddenState, opts.eps)
  52. hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
  53. return hiddenState.Add(ctx, residual)
  54. }
  55. type VisionEncoder struct {
  56. Layers []VisionEncoderLayer
  57. }
  58. func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
  59. var intermediateHiddenStates []ml.Tensor
  60. for i, layer := range e.Layers {
  61. if slices.Contains(intermediateLayersIndices, uint32(i)) {
  62. intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int{1}, hiddenState.Shape()...)...))
  63. }
  64. hiddenState = layer.Forward(ctx, hiddenState, opts)
  65. }
  66. return hiddenState, intermediateHiddenStates
  67. }
  68. type PrecomputedAspectRatioEmbedding struct {
  69. Embedding *nn.Embedding
  70. Gate ml.Tensor `gguf:"gate"`
  71. }
  72. func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
  73. embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
  74. embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
  75. if e.Gate != nil {
  76. embeddings = embeddings.Mul(ctx, e.Gate)
  77. }
  78. return hiddenState.Add(ctx, embeddings)
  79. }
  80. type PrecomputedPositionEmbedding struct {
  81. PositionEmbedding *nn.Embedding `gguf:"position_embd"`
  82. PositionEmbeddingGate ml.Tensor `gguf:"position_embd.gate"`
  83. }
  84. func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, numPositions int, opts *VisionModelOptions) ml.Tensor {
  85. positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
  86. if e.PositionEmbeddingGate != nil {
  87. positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
  88. }
  89. return hiddenState.Add(ctx, positionEmbedding)
  90. }
  91. type VisionModelOptions struct {
  92. hiddenSize, numHeads, numTiles int
  93. imageSize, patchSize int
  94. eps float32
  95. }
  96. type VisionModel struct {
  97. PatchEmbedding *nn.Conv2D `gguf:"patch_embedding"`
  98. PositionEmbedding *nn.Embedding `gguf:"position_embedding"`
  99. PostLayerNorm *nn.LayerNorm `gguf:"post_layernorm"`
  100. Encoder *VisionEncoder `gguf:"blk"`
  101. *VisionModelOptions
  102. }
  103. func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs ml.Tensor) ml.Tensor {
  104. numPatches := (m.imageSize / m.patchSize) * (m.imageSize / m.patchSize)
  105. hiddenState := m.PatchEmbedding.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
  106. hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize)
  107. hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
  108. positions := m.PositionEmbedding.Forward(ctx, positionIDs)
  109. hiddenState = hiddenState.Add(ctx, positions)
  110. for _, layer := range m.Encoder.Layers {
  111. hiddenState = layer.Forward(ctx, hiddenState, m.VisionModelOptions)
  112. }
  113. hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
  114. return hiddenState
  115. }
  116. func newVisionModel(c ml.Config) *VisionModel {
  117. return &VisionModel{
  118. Encoder: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
  119. VisionModelOptions: &VisionModelOptions{
  120. hiddenSize: int(c.Uint("vision.embedding_length")),
  121. numHeads: int(c.Uint("vision.attention.head_count")),
  122. imageSize: int(c.Uint("vision.image_size")),
  123. patchSize: int(c.Uint("vision.patch_size")),
  124. eps: c.Float("vision.attention.layer_norm_epsilon"),
  125. },
  126. }
  127. }