123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- package mllama
- import (
- "math"
- "slices"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- )
- var batchSize int64 = 1
- type VisionSelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- Key *nn.Linear `gguf:"attn_k"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_out"`
- Gate ml.Tensor `gguf:"attn_gate"`
- }
- func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
- headDim := opts.hiddenSize / opts.numHeads
- query := sa.Query.Forward(ctx, hiddenState)
- query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
- query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- key := sa.Key.Forward(ctx, hiddenState)
- key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
- key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- value := sa.Value.Forward(ctx, hiddenState)
- value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
- value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
- scores := key.Mulmat(ctx, query)
- scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
- scores = scores.Softmax(ctx)
- attention := value.Mulmat(ctx, scores)
- attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
- attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
- hiddenState = sa.Output.Forward(ctx, attention)
- if sa.Gate != nil {
- hiddenState = hiddenState.Mul(ctx, sa.Gate)
- }
- return hiddenState
- }
- type VisionMLP struct {
- Down *nn.Linear `gguf:"ffn_down"`
- Up *nn.Linear `gguf:"ffn_up"`
- Gate ml.Tensor `gguf:"ffn_gate"`
- }
- func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
- hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
- hiddenState = mlp.Up.Forward(ctx, hiddenState)
- if mlp.Gate != nil {
- hiddenState = hiddenState.Mul(ctx, mlp.Gate)
- }
- return hiddenState
- }
- type VisionEncoderLayer struct {
- AttentionNorm *nn.LayerNorm `gguf:"ln1"`
- SelfAttention *VisionSelfAttention
- MLPNorm *nn.LayerNorm `gguf:"ln2"`
- MLP *VisionMLP
- }
- func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
- residual := hiddenState
- // self attention
- hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- // feed forward
- hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
- return hiddenState.Add(ctx, residual)
- }
- type VisionEncoder struct {
- Layers []VisionEncoderLayer
- }
- func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
- var intermediateHiddenStates []ml.Tensor
- for i, layer := range e.Layers {
- if slices.Contains(intermediateLayersIndices, uint32(i)) {
- intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
- }
- hiddenState = layer.Forward(ctx, hiddenState, opts)
- }
- return hiddenState, intermediateHiddenStates
- }
- type PrecomputedAspectRatioEmbedding struct {
- Embedding *nn.Embedding
- Gate ml.Tensor `gguf:"gate"`
- }
- func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
- embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
- embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
- if e.Gate != nil {
- embeddings = embeddings.Mul(ctx, e.Gate)
- }
- return hiddenState.Add(ctx, embeddings)
- }
- type PrecomputedPositionEmbedding struct {
- PositionEmbedding *nn.Embedding `gguf:"position_embd"`
- PositionEmbeddingGate ml.Tensor `gguf:"position_embd.gate"`
- TilePositionEmbedding *nn.Embedding `gguf:"tile_position_embd"`
- TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
- }
- func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
- positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
- if e.PositionEmbeddingGate != nil {
- positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
- }
- hiddenState = hiddenState.Add(ctx, positionEmbedding)
- tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
- tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
- if e.TilePositionEmbeddingGate != nil {
- tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
- }
- return hiddenState.Add(ctx, tilePositionEmbedding)
- }
- type VisionModelOptions struct {
- hiddenSize, numHeads, numTiles int64
- imageSize, patchSize int
- eps float32
- intermediateLayersIndices []uint32
- }
- type VisionModel struct {
- PatchEmbeddings *nn.Conv2D `gguf:"patch_embd"`
- PreTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"pre_tile_position_embd"`
- PostTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"post_tile_position_embd"`
- PositionEmbedding *PrecomputedPositionEmbedding
- PreLayerNorm *nn.LayerNorm `gguf:"pre_ln"`
- PostLayerNorm *nn.LayerNorm `gguf:"post_ln"`
- ClassEmbedding ml.Tensor `gguf:"class_embd"`
- Transformer *VisionEncoder `gguf:"blk"`
- GlobalTransformer *VisionEncoder `gguf:"global.blk"`
- *VisionModelOptions
- }
- func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
- numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
- numPositions := numPatches
- if m.ClassEmbedding != nil {
- numPositions++
- }
- hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
- hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
- hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
- hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
- hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)
- hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
- hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
- numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
- hiddenState = hiddenState.Pad(ctx, 0, numPaddingPatches, 0, 0)
- hiddenState = hiddenState.Reshape(ctx, hiddenState.Dim(0), hiddenState.Dim(1)*hiddenState.Dim(2), batchSize)
- hiddenState, intermediateHiddenStates := m.Transformer.Forward(ctx, hiddenState, m.intermediateLayersIndices, m.VisionModelOptions)
- hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
- hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
- hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
- hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
- hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
- hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
- hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
- hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
- hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
- hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
- return hiddenState.Concat(ctx, hiddenStates, 0)
- }
- func newVisionModel(c ml.Config) *VisionModel {
- return &VisionModel{
- Transformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
- GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
- VisionModelOptions: &VisionModelOptions{
- hiddenSize: int64(c.Uint("vision.embedding_length")),
- numHeads: int64(c.Uint("vision.attention.head_count")),
- numTiles: int64(c.Uint("vision.max_num_tiles")),
- imageSize: int(c.Uint("vision.image_size")),
- patchSize: int(c.Uint("vision.patch_size")),
- eps: c.Float("vision.attention.layer_norm_epsilon"),
- intermediateLayersIndices: c.Uints("vision.intermediate_layers_indices"),
- },
- }
- }
|