ggml.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "bytes"
  11. "encoding/binary"
  12. "fmt"
  13. "io"
  14. "log/slog"
  15. "os"
  16. "sync"
  17. "unsafe"
  18. "github.com/ollama/ollama/format"
  19. fs "github.com/ollama/ollama/fs/ggml"
  20. "github.com/ollama/ollama/ml"
  21. "golang.org/x/sync/errgroup"
  22. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  23. )
  24. type device struct {
  25. d *C.struct_ggml_backend_device
  26. }
  27. func (d device) LogValue() slog.Value {
  28. var free, total uint64
  29. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  30. kind := "unknown"
  31. switch C.ggml_backend_dev_type(d.d) {
  32. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  33. kind = "cpu"
  34. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  35. kind = "gpu"
  36. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  37. kind = "accel"
  38. }
  39. return slog.GroupValue(
  40. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  41. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  42. slog.String("kind", kind),
  43. slog.String("free", format.HumanBytes2(free)),
  44. slog.String("total", format.HumanBytes2(total)),
  45. )
  46. }
  47. var devices = sync.OnceValue(func() []device {
  48. ggml.OnceLoad()
  49. s := make([]device, C.ggml_backend_dev_count())
  50. for i := range s {
  51. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  52. }
  53. return s
  54. })
  55. type Backend struct {
  56. meta *fs.GGML
  57. cpus, gpus []Context
  58. tensors map[string]*Context
  59. }
  60. func New(r *os.File) (ml.Backend, error) {
  61. meta, n, err := fs.Decode(r, -1)
  62. if err != nil {
  63. return nil, err
  64. }
  65. slog.Info(
  66. "",
  67. "architecture", meta.KV().Architecture(),
  68. "file_type", meta.KV().FileType(),
  69. "name", meta.KV().String("general.name"),
  70. "description", meta.KV().String("general.description"),
  71. "num_tensors", len(meta.Tensors().Items()),
  72. "num_key_values", len(meta.KV()),
  73. )
  74. var cpus, gpus []Context
  75. for _, d := range devices() {
  76. switch C.ggml_backend_dev_type(d.d) {
  77. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  78. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  79. slog.Info("cpu", "device", d)
  80. cpus = append(cpus, Context{
  81. ctx: C.ggml_init(C.struct_ggml_init_params{
  82. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  83. no_alloc: true,
  84. }),
  85. backend: C.ggml_backend_dev_init(d.d, nil),
  86. })
  87. C.ggml_backend_cpu_set_n_threads(cpus[len(cpus)-1].backend, C.int(1))
  88. // case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  89. // slog.Info("gpu", "device", d)
  90. // gpus = append(gpus, Context{
  91. // ctx: C.ggml_init(C.struct_ggml_init_params{
  92. // mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  93. // no_alloc: true,
  94. // }),
  95. // backend: C.ggml_backend_dev_init(d.d, nil),
  96. // })
  97. }
  98. }
  99. ctxFunc := func(s []Context) (*Context, error) {
  100. for _, e := range s {
  101. return &e, nil
  102. }
  103. return nil, fmt.Errorf("no devices available")
  104. }
  105. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  106. for _, t := range meta.Tensors().Items() {
  107. c, err := ctxFunc(append(gpus, cpus...))
  108. if err != nil {
  109. return nil, err
  110. }
  111. func() {
  112. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  113. cname := C.CString(t.Name)
  114. defer C.free(unsafe.Pointer(cname))
  115. C.ggml_set_name(tt, cname)
  116. tensors[t] = c
  117. }()
  118. }
  119. for _, b := range append(gpus, cpus...) {
  120. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  121. }
  122. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  123. var g errgroup.Group
  124. for t, c := range tensors {
  125. g.Go(func() error {
  126. bts := make([]byte, t.Size())
  127. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  128. if err != nil {
  129. return err
  130. }
  131. if n != int(t.Size()) {
  132. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  133. }
  134. cname := C.CString(t.Name)
  135. defer C.free(unsafe.Pointer(cname))
  136. C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
  137. return nil
  138. })
  139. }
  140. if err := g.Wait(); err != nil {
  141. return nil, err
  142. }
  143. return &Backend{
  144. meta: meta,
  145. cpus: cpus,
  146. gpus: gpus,
  147. }, nil
  148. }
  149. func init() {
  150. ml.RegisterBackend("ggml", New)
  151. }
  152. func (b *Backend) Config() ml.Config {
  153. return b.meta.KV()
  154. }
  155. func (b *Backend) Get(name string) ml.Tensor {
  156. cname := C.CString(name)
  157. defer C.free(unsafe.Pointer(cname))
  158. for _, c := range append(b.gpus, b.cpus...) {
  159. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  160. return &Tensor{t: t}
  161. }
  162. }
  163. return nil
  164. }
  165. func (b *Backend) NewContext() ml.Context {
  166. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  167. bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
  168. c := C.ggml_init(C.struct_ggml_init_params{
  169. mem_buffer: unsafe.Pointer(&bts[0]),
  170. mem_size: C.size_t(len(bts)),
  171. no_alloc: true,
  172. })
  173. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  174. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  175. for i, c := range append(b.gpus, b.cpus...) {
  176. backends[i] = c.backend
  177. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  178. }
  179. return &Context{
  180. ctx: c,
  181. backend: backends[0],
  182. nodes: nodes,
  183. sched: C.ggml_backend_sched_new(
  184. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  185. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  186. C.int(len(backends)),
  187. C.size_t(nodes),
  188. true,
  189. ),
  190. }
  191. }
  192. type Context struct {
  193. ctx *C.struct_ggml_context
  194. backend *C.struct_ggml_backend
  195. sched *C.struct_ggml_backend_sched
  196. graph *C.struct_ggml_cgraph
  197. nodes int
  198. }
  199. func (c *Context) Forward(t ml.Tensor) {
  200. if c.graph == nil {
  201. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  202. }
  203. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  204. }
  205. func (c *Context) Compute(t ml.Tensor) ml.Tensor {
  206. c.Forward(t)
  207. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  208. backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
  209. t.(*Tensor).bytes = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
  210. C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).bytes[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
  211. return t
  212. }
  213. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  214. if len(shape) < 1 || len(shape) > 4 {
  215. panic("unsupported number of dimensions")
  216. }
  217. for _, dim := range shape {
  218. if dim < 1 {
  219. panic("invalid shape")
  220. }
  221. }
  222. var t *C.struct_ggml_tensor
  223. switch dtype {
  224. case ml.DTypeF32:
  225. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  226. case ml.DTypeI32:
  227. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  228. default:
  229. panic("unsupported dtype")
  230. }
  231. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  232. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  233. C.ggml_set_zero(t)
  234. return &Tensor{t: t}
  235. }
  236. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  237. n := len(s)
  238. for _, v := range shape {
  239. n /= v
  240. }
  241. if n != 1 {
  242. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  243. }
  244. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  245. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  246. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  247. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  248. return &Tensor{t: t}, nil
  249. }
  250. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  251. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  252. }
  253. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  254. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  255. }
  256. func (c *Context) Close() error {
  257. C.ggml_backend_sched_free(c.sched)
  258. C.ggml_free(c.ctx)
  259. return nil
  260. }
  261. type Tensor struct {
  262. t *C.struct_ggml_tensor
  263. bytes []byte
  264. }
  265. func (t *Tensor) LogValue() slog.Value {
  266. return slog.GroupValue(
  267. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  268. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  269. slog.Any("shape", t.Shape()),
  270. )
  271. }
  272. func (t *Tensor) Dim(n int) int64 {
  273. return int64(t.t.ne[n])
  274. }
  275. func (t *Tensor) Stride(n int) int64 {
  276. return int64(t.t.nb[n])
  277. }
  278. func (t *Tensor) Shape() []int64 {
  279. shape := make([]int64, C.ggml_n_dims(t.t))
  280. for i := range shape {
  281. shape[i] = t.Dim(i)
  282. }
  283. return shape
  284. }
  285. func (t *Tensor) Bytes() []byte {
  286. if t.bytes == nil {
  287. cbytes := C.ggml_get_data(t.t)
  288. t.bytes = C.GoBytes(unsafe.Pointer(cbytes), C.int(C.ggml_nbytes(t.t)))
  289. }
  290. return t.bytes
  291. }
  292. func (t *Tensor) Floats() (f32s []float32) {
  293. if t.bytes != nil {
  294. f32s = make([]float32, C.ggml_nelements(t.t))
  295. _ = binary.Read(bytes.NewReader(t.bytes), binary.LittleEndian, f32s)
  296. }
  297. return
  298. }
  299. func (t *Tensor) DType() ml.DType {
  300. switch t.t._type {
  301. case C.GGML_TYPE_F32:
  302. return ml.DTypeF32
  303. case C.GGML_TYPE_I32:
  304. return ml.DTypeI32
  305. default:
  306. return ml.DTypeOther
  307. }
  308. }
  309. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  310. return &Tensor{
  311. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  312. }
  313. }
  314. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  315. if len(s) > 0 {
  316. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  317. }
  318. return t
  319. }
  320. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  321. return &Tensor{
  322. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  323. }
  324. }
  325. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  326. return &Tensor{
  327. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  328. }
  329. }
  330. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  331. return &Tensor{
  332. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  333. }
  334. }
  335. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  336. return &Tensor{
  337. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  338. }
  339. }
  340. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  341. tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  342. if b != nil {
  343. tt = tt.Add(ctx, b)
  344. }
  345. return tt
  346. }
  347. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  348. return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  349. }
  350. func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
  351. if len(shape) != 4 {
  352. panic("expected 4 dimensions")
  353. }
  354. return &Tensor{
  355. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  356. }
  357. }
  358. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  359. if len(shape) != 4 {
  360. panic("expected 4 dimensions")
  361. }
  362. return &Tensor{
  363. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  364. }
  365. }
  366. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  367. return &Tensor{
  368. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  369. }
  370. }
  371. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  372. return &Tensor{
  373. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  374. }
  375. }
  376. func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
  377. switch len(shape) {
  378. case 1:
  379. return &Tensor{
  380. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  381. }
  382. case 2:
  383. return &Tensor{
  384. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  385. }
  386. case 3:
  387. return &Tensor{
  388. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  389. }
  390. case 4:
  391. return &Tensor{
  392. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  393. }
  394. default:
  395. panic("unsupported number of dimensions")
  396. }
  397. }
  398. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  399. return &Tensor{
  400. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  401. }
  402. }
  403. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  404. return &Tensor{
  405. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  406. }
  407. }
  408. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  409. return &Tensor{
  410. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  411. }
  412. }
  413. func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
  414. if len(shape) != 4 {
  415. panic("expected 4 dimensions")
  416. }
  417. return &Tensor{
  418. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  419. }
  420. }
  421. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  422. switch len(shape) {
  423. case 1:
  424. return &Tensor{
  425. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  426. }
  427. case 3:
  428. return &Tensor{
  429. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  430. C.int64_t(shape[0]), C.int64_t(shape[2]),
  431. C.size_t(shape[1]),
  432. C.size_t(offset)),
  433. }
  434. case 5:
  435. return &Tensor{
  436. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  437. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  438. C.size_t(shape[1]), C.size_t(shape[3]),
  439. C.size_t(offset)),
  440. }
  441. case 7:
  442. return &Tensor{
  443. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  444. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  445. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  446. C.size_t(offset)),
  447. }
  448. default:
  449. panic("unsupported number of dimensions")
  450. }
  451. }
  452. const (
  453. ropeTypeNorm C.int = iota
  454. )
  455. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  456. if ropeFactors == nil {
  457. ropeFactors = &Tensor{}
  458. }
  459. return &Tensor{
  460. t: C.ggml_rope_ext(
  461. ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  462. C.int(ropeDim),
  463. 131072, // YaRN n_ctx_train
  464. ropeTypeNorm, // ROPE_TYPE_NORM
  465. C.float(ropeBase),
  466. C.float(ropeScale),
  467. 0., // YaRN ext_factor
  468. 1., // YaRN attn_factor
  469. 32., // YaRN beta_fast
  470. 1., // YaRN beta_slow
  471. ),
  472. }
  473. }
  474. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  475. return &Tensor{
  476. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  477. }
  478. }
  479. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  480. return &Tensor{
  481. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  482. }
  483. }
  484. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  485. return &Tensor{
  486. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  487. }
  488. }