ggml-backend.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. #define ggml_assert_aligned(ptr) \
  66. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  67. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  68. if (buffer == NULL) {
  69. return;
  70. }
  71. if (buffer->iface.free_buffer != NULL) {
  72. buffer->iface.free_buffer(buffer);
  73. }
  74. // TODO: this needs to be freed in cuda and hipblas backends because
  75. // the cuda backend implementation compiled with msvc
  76. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  77. free(buffer);
  78. #endif
  79. }
  80. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  81. return buffer->size;
  82. }
  83. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  84. void * base = buffer->iface.get_base(buffer);
  85. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  86. return base;
  87. }
  88. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  89. // init_tensor is optional
  90. if (buffer->iface.init_tensor) {
  91. buffer->iface.init_tensor(buffer, tensor);
  92. }
  93. }
  94. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  95. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  96. }
  97. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  98. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  99. }
  100. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  101. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  102. }
  103. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  104. buffer->iface.clear(buffer, value);
  105. }
  106. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  107. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  108. }
  109. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  110. buffer->usage = usage;
  111. // FIXME: add a generic callback to the buffer interface
  112. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  113. ggml_backend_multi_buffer_set_usage(buffer, usage);
  114. }
  115. }
  116. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  117. return buffer->buft;
  118. }
  119. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  120. if (buffer->iface.reset) {
  121. buffer->iface.reset(buffer);
  122. }
  123. }
  124. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  125. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  126. if (dst_buf->iface.cpy_tensor) {
  127. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  128. }
  129. return false;
  130. }
  131. // backend
  132. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return NULL;
  135. }
  136. return backend->guid;
  137. }
  138. const char * ggml_backend_name(ggml_backend_t backend) {
  139. if (backend == NULL) {
  140. return "NULL";
  141. }
  142. return backend->iface.get_name(backend);
  143. }
  144. void ggml_backend_free(ggml_backend_t backend) {
  145. if (backend == NULL) {
  146. return;
  147. }
  148. backend->iface.free(backend);
  149. }
  150. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  151. return backend->iface.get_default_buffer_type(backend);
  152. }
  153. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  154. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  155. }
  156. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  157. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  158. }
  159. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  160. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  161. }
  162. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  163. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  164. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  165. if (backend->iface.set_tensor_async == NULL) {
  166. ggml_backend_tensor_set(tensor, data, offset, size);
  167. } else {
  168. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  169. }
  170. }
  171. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  172. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  173. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  174. if (backend->iface.get_tensor_async == NULL) {
  175. ggml_backend_tensor_get(tensor, data, offset, size);
  176. } else {
  177. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  178. }
  179. }
  180. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  181. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  182. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  183. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  184. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  185. if (!size) {
  186. return;
  187. }
  188. buf->iface.set_tensor(buf, tensor, data, offset, size);
  189. }
  190. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  191. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  192. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  193. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  194. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  195. if (!size) {
  196. return;
  197. }
  198. buf->iface.get_tensor(buf, tensor, data, offset, size);
  199. }
  200. void ggml_backend_synchronize(ggml_backend_t backend) {
  201. if (backend->iface.synchronize == NULL) {
  202. return;
  203. }
  204. backend->iface.synchronize(backend);
  205. }
  206. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  207. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  208. return backend->iface.graph_plan_create(backend, cgraph);
  209. }
  210. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  211. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  212. backend->iface.graph_plan_free(backend, plan);
  213. }
  214. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  215. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  216. return backend->iface.graph_plan_compute(backend, plan);
  217. }
  218. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  219. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  220. ggml_backend_synchronize(backend);
  221. return err;
  222. }
  223. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  224. return backend->iface.graph_compute(backend, cgraph);
  225. }
  226. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  227. return backend->iface.supports_op(backend, op);
  228. }
  229. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  230. if (backend->iface.offload_op != NULL) {
  231. return backend->iface.offload_op(backend, op);
  232. }
  233. return false;
  234. }
  235. // backend copy
  236. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  237. if (a->type != b->type) {
  238. return false;
  239. }
  240. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  241. if (a->ne[i] != b->ne[i]) {
  242. return false;
  243. }
  244. if (a->nb[i] != b->nb[i]) {
  245. return false;
  246. }
  247. }
  248. return true;
  249. }
  250. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  251. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  252. if (src == dst) {
  253. return;
  254. }
  255. if (ggml_backend_buffer_is_host(src->buffer)) {
  256. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  257. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  258. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  259. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  260. #ifndef NDEBUG
  261. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  262. #endif
  263. size_t nbytes = ggml_nbytes(src);
  264. void * data = malloc(nbytes);
  265. ggml_backend_tensor_get(src, data, 0, nbytes);
  266. ggml_backend_tensor_set(dst, data, 0, nbytes);
  267. free(data);
  268. }
  269. }
  270. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  271. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  272. if (src == dst) {
  273. return;
  274. }
  275. if (backend_dst->iface.cpy_tensor_async != NULL) {
  276. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  277. return;
  278. }
  279. }
  280. // an async copy would normally happen after all the queued operations on both backends are completed
  281. // sync src, set_async dst
  282. if (ggml_backend_buffer_is_host(src->buffer)) {
  283. ggml_backend_synchronize(backend_src);
  284. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  285. } else {
  286. ggml_backend_synchronize(backend_src);
  287. ggml_backend_tensor_copy(src, dst);
  288. ggml_backend_synchronize(backend_dst);
  289. }
  290. }
  291. // events
  292. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  293. if (backend->iface.event_new == NULL) {
  294. return NULL;
  295. }
  296. return backend->iface.event_new(backend);
  297. }
  298. void ggml_backend_event_free(ggml_backend_event_t event) {
  299. if (event == NULL) {
  300. return;
  301. }
  302. event->backend->iface.event_free(event);
  303. }
  304. void ggml_backend_event_record(ggml_backend_event_t event) {
  305. GGML_ASSERT(event->backend->iface.event_record != NULL);
  306. event->backend->iface.event_record(event);
  307. }
  308. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  309. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  310. event->backend->iface.event_synchronize(event);
  311. }
  312. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  313. GGML_ASSERT(backend->iface.event_wait != NULL);
  314. backend->iface.event_wait(backend, event);
  315. }
  316. // backend registry
  317. #define GGML_REG_MAX_BACKENDS 16
  318. struct ggml_backend_reg {
  319. char name[128];
  320. ggml_backend_init_fn init_fn;
  321. ggml_backend_buffer_type_t default_buffer_type;
  322. void * user_data;
  323. };
  324. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  325. static size_t ggml_backend_registry_count = 0;
  326. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  327. GGML_CALL static void ggml_backend_registry_init(void) {
  328. static bool initialized = false;
  329. if (initialized) {
  330. return;
  331. }
  332. initialized = true;
  333. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  334. // add forward decls here to avoid including the backend headers
  335. #ifdef GGML_USE_CUDA
  336. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  337. ggml_backend_cuda_reg_devices();
  338. #endif
  339. #ifdef GGML_USE_SYCL
  340. extern void ggml_backend_sycl_reg_devices(void);
  341. ggml_backend_sycl_reg_devices();
  342. #endif
  343. #ifdef GGML_USE_METAL
  344. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  345. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  346. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  347. #endif
  348. #ifdef GGML_USE_VULKAN
  349. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  350. ggml_backend_vk_reg_devices();
  351. #endif
  352. #ifdef GGML_USE_KOMPUTE
  353. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  354. ggml_backend_kompute_reg_devices();
  355. #endif
  356. }
  357. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  358. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  359. size_t id = ggml_backend_registry_count;
  360. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  361. /* .name = */ {0},
  362. /* .fn = */ init_fn,
  363. /* .default_buffer_type = */ default_buffer_type,
  364. /* .user_data = */ user_data,
  365. };
  366. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  367. #ifndef NDEBUG
  368. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  369. #endif
  370. ggml_backend_registry_count++;
  371. }
  372. size_t ggml_backend_reg_get_count(void) {
  373. ggml_backend_registry_init();
  374. return ggml_backend_registry_count;
  375. }
  376. size_t ggml_backend_reg_find_by_name(const char * name) {
  377. ggml_backend_registry_init();
  378. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  379. // TODO: case insensitive in a portable way
  380. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  381. return i;
  382. }
  383. }
  384. // not found
  385. return SIZE_MAX;
  386. }
  387. // init from backend:params string
  388. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  389. ggml_backend_registry_init();
  390. const char * params = strchr(backend_str, ':');
  391. char backend_name[128];
  392. if (params == NULL) {
  393. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  394. params = "";
  395. } else {
  396. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  397. params++;
  398. }
  399. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  400. if (backend_i == SIZE_MAX) {
  401. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  402. return NULL;
  403. }
  404. return ggml_backend_reg_init_backend(backend_i, params);
  405. }
  406. const char * ggml_backend_reg_get_name(size_t i) {
  407. ggml_backend_registry_init();
  408. GGML_ASSERT(i < ggml_backend_registry_count);
  409. return ggml_backend_registry[i].name;
  410. }
  411. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  412. ggml_backend_registry_init();
  413. GGML_ASSERT(i < ggml_backend_registry_count);
  414. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  415. }
  416. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  417. ggml_backend_registry_init();
  418. GGML_ASSERT(i < ggml_backend_registry_count);
  419. return ggml_backend_registry[i].default_buffer_type;
  420. }
  421. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  422. ggml_backend_registry_init();
  423. GGML_ASSERT(i < ggml_backend_registry_count);
  424. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  425. }
  426. // backend CPU
  427. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  428. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  429. return "CPU";
  430. GGML_UNUSED(buffer);
  431. }
  432. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  433. uintptr_t data = (uintptr_t)buffer->context;
  434. // align the buffer
  435. if (data % TENSOR_ALIGNMENT != 0) {
  436. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  437. }
  438. return (void *)data;
  439. }
  440. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  441. free(buffer->context);
  442. }
  443. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  444. memcpy((char *)tensor->data + offset, data, size);
  445. GGML_UNUSED(buffer);
  446. }
  447. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  448. memcpy(data, (const char *)tensor->data + offset, size);
  449. GGML_UNUSED(buffer);
  450. }
  451. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  452. if (ggml_backend_buffer_is_host(src->buffer)) {
  453. memcpy(dst->data, src->data, ggml_nbytes(src));
  454. return true;
  455. }
  456. return false;
  457. GGML_UNUSED(buffer);
  458. }
  459. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  460. memset(buffer->context, value, buffer->size);
  461. }
  462. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  463. /* .get_name = */ ggml_backend_cpu_buffer_name,
  464. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  465. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  466. /* .init_tensor = */ NULL, // no initialization required
  467. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  468. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  469. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  470. /* .clear = */ ggml_backend_cpu_buffer_clear,
  471. /* .reset = */ NULL,
  472. };
  473. // for buffers from ptr, free is not called
  474. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  475. /* .get_name = */ ggml_backend_cpu_buffer_name,
  476. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  477. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  478. /* .init_tensor = */ NULL, // no initialization required
  479. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  480. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  481. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  482. /* .clear = */ ggml_backend_cpu_buffer_clear,
  483. /* .reset = */ NULL,
  484. };
  485. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  486. return "CPU";
  487. GGML_UNUSED(buft);
  488. }
  489. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  490. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  491. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  492. if (data == NULL) {
  493. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  494. return NULL;
  495. }
  496. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  497. }
  498. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  499. return TENSOR_ALIGNMENT;
  500. GGML_UNUSED(buft);
  501. }
  502. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  503. return ggml_backend_is_cpu(backend);
  504. GGML_UNUSED(buft);
  505. }
  506. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  507. return true;
  508. GGML_UNUSED(buft);
  509. }
  510. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  511. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  512. /* .iface = */ {
  513. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  514. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  515. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  516. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  517. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  518. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  519. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  520. },
  521. /* .context = */ NULL,
  522. };
  523. return &ggml_backend_cpu_buffer_type;
  524. }
  525. #ifdef GGML_USE_CPU_HBM
  526. // buffer type HBM
  527. #include <hbwmalloc.h>
  528. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  529. return "CPU_HBM";
  530. GGML_UNUSED(buft);
  531. }
  532. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  533. return "CPU_HBM";
  534. GGML_UNUSED(buf);
  535. }
  536. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  537. hbw_free(buffer->context);
  538. }
  539. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  540. //void * ptr = hbw_malloc(size);
  541. void * ptr;
  542. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  543. if (result != 0) {
  544. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  545. return NULL;
  546. }
  547. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  548. buffer->buft = buft;
  549. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  550. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  551. return buffer;
  552. }
  553. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  554. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  555. /* .iface = */ {
  556. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  557. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  558. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  559. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  560. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  561. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  562. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  563. },
  564. /* .context = */ NULL,
  565. };
  566. return &ggml_backend_cpu_buffer_type_hbm;
  567. }
  568. #endif
  569. struct ggml_backend_cpu_context {
  570. int n_threads;
  571. void * work_data;
  572. size_t work_size;
  573. ggml_abort_callback abort_callback;
  574. void * abort_callback_data;
  575. };
  576. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  577. return "CPU";
  578. GGML_UNUSED(backend);
  579. }
  580. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  581. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  582. free(cpu_ctx->work_data);
  583. free(cpu_ctx);
  584. free(backend);
  585. }
  586. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  587. return ggml_backend_cpu_buffer_type();
  588. GGML_UNUSED(backend);
  589. }
  590. struct ggml_backend_plan_cpu {
  591. struct ggml_cplan cplan;
  592. struct ggml_cgraph cgraph;
  593. };
  594. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  595. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  596. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  597. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  598. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  599. if (cpu_plan->cplan.work_size > 0) {
  600. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  601. if (cpu_plan->cplan.work_data == NULL) {
  602. free(cpu_plan);
  603. return NULL;
  604. }
  605. }
  606. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  607. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  608. return cpu_plan;
  609. }
  610. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  611. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  612. free(cpu_plan->cplan.work_data);
  613. free(cpu_plan);
  614. GGML_UNUSED(backend);
  615. }
  616. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  617. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  618. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  619. GGML_UNUSED(backend);
  620. }
  621. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  622. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  623. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  624. if (cpu_ctx->work_size < cplan.work_size) {
  625. free(cpu_ctx->work_data);
  626. cpu_ctx->work_data = malloc(cplan.work_size);
  627. if (cpu_ctx->work_data == NULL) {
  628. cpu_ctx->work_size = 0;
  629. return GGML_STATUS_ALLOC_FAILED;
  630. }
  631. cpu_ctx->work_size = cplan.work_size;
  632. }
  633. cplan.work_data = cpu_ctx->work_data;
  634. cplan.abort_callback = cpu_ctx->abort_callback;
  635. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  636. return ggml_graph_compute(cgraph, &cplan);
  637. }
  638. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  639. switch (op->op) {
  640. case GGML_OP_CPY:
  641. return
  642. op->type != GGML_TYPE_IQ2_XXS &&
  643. op->type != GGML_TYPE_IQ2_XS &&
  644. op->type != GGML_TYPE_IQ1_S &&
  645. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  646. case GGML_OP_MUL_MAT:
  647. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  648. default:
  649. return true;
  650. }
  651. GGML_UNUSED(backend);
  652. }
  653. static struct ggml_backend_i cpu_backend_i = {
  654. /* .get_name = */ ggml_backend_cpu_name,
  655. /* .free = */ ggml_backend_cpu_free,
  656. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  657. /* .set_tensor_async = */ NULL,
  658. /* .get_tensor_async = */ NULL,
  659. /* .cpy_tensor_async = */ NULL,
  660. /* .synchronize = */ NULL,
  661. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  662. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  663. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  664. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  665. /* .supports_op = */ ggml_backend_cpu_supports_op,
  666. /* .offload_op = */ NULL,
  667. /* .event_new = */ NULL,
  668. /* .event_free = */ NULL,
  669. /* .event_record = */ NULL,
  670. /* .event_wait = */ NULL,
  671. /* .event_synchronize = */ NULL,
  672. };
  673. static ggml_guid_t ggml_backend_cpu_guid(void) {
  674. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  675. return &guid;
  676. }
  677. ggml_backend_t ggml_backend_cpu_init(void) {
  678. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  679. if (ctx == NULL) {
  680. return NULL;
  681. }
  682. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  683. ctx->work_data = NULL;
  684. ctx->work_size = 0;
  685. ctx->abort_callback = NULL;
  686. ctx->abort_callback_data = NULL;
  687. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  688. if (cpu_backend == NULL) {
  689. free(ctx);
  690. return NULL;
  691. }
  692. *cpu_backend = (struct ggml_backend) {
  693. /* .guid = */ ggml_backend_cpu_guid(),
  694. /* .interface = */ cpu_backend_i,
  695. /* .context = */ ctx
  696. };
  697. return cpu_backend;
  698. }
  699. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  700. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  701. }
  702. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  703. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  704. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  705. ctx->n_threads = n_threads;
  706. }
  707. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  708. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  709. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  710. ctx->abort_callback = abort_callback;
  711. ctx->abort_callback_data = abort_callback_data;
  712. }
  713. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  714. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  715. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  716. }
  717. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  718. return ggml_backend_cpu_init();
  719. GGML_UNUSED(params);
  720. GGML_UNUSED(user_data);
  721. }
  722. // multi-buffer buffer
  723. struct ggml_backend_multi_buffer_context {
  724. ggml_backend_buffer_t * buffers;
  725. size_t n_buffers;
  726. };
  727. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  728. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  729. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  730. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  731. }
  732. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  733. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  734. for (size_t i = 0; i < ctx->n_buffers; i++) {
  735. ggml_backend_buffer_free(ctx->buffers[i]);
  736. }
  737. free(ctx->buffers);
  738. free(ctx);
  739. }
  740. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  741. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  742. for (size_t i = 0; i < ctx->n_buffers; i++) {
  743. ggml_backend_buffer_clear(ctx->buffers[i], value);
  744. }
  745. }
  746. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  747. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  748. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  749. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  750. /* .get_base = */ NULL,
  751. /* .init_tensor = */ NULL,
  752. /* .set_tensor = */ NULL,
  753. /* .get_tensor = */ NULL,
  754. /* .cpy_tensor = */ NULL,
  755. /* .clear = */ ggml_backend_multi_buffer_clear,
  756. /* .reset = */ NULL,
  757. };
  758. return multi_backend_buffer_i;
  759. }
  760. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  761. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  762. ctx->n_buffers = n_buffers;
  763. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  764. GGML_ASSERT(ctx->buffers != NULL);
  765. size_t total_size = 0;
  766. for (size_t i = 0; i < n_buffers; i++) {
  767. ctx->buffers[i] = buffers[i];
  768. total_size += ggml_backend_buffer_get_size(buffers[i]);
  769. }
  770. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  771. }
  772. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  773. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  774. }
  775. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  776. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  777. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  778. for (size_t i = 0; i < ctx->n_buffers; i++) {
  779. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  780. }
  781. }
  782. // creates a copy of the tensor with the same memory layout
  783. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  784. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  785. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  786. dup->nb[i] = tensor->nb[i];
  787. }
  788. return dup;
  789. }
  790. static bool ggml_is_view_op(enum ggml_op op) {
  791. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  792. }
  793. // scheduler
  794. #ifndef GGML_SCHED_MAX_BACKENDS
  795. #define GGML_SCHED_MAX_BACKENDS 16
  796. #endif
  797. #ifndef GGML_SCHED_MAX_SPLITS
  798. #define GGML_SCHED_MAX_SPLITS 2048
  799. #endif
  800. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  801. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  802. #endif
  803. #ifndef GGML_SCHED_MAX_COPIES
  804. #define GGML_SCHED_MAX_COPIES 4
  805. #endif
  806. struct ggml_backend_sched_split {
  807. int backend_id;
  808. int i_start;
  809. int i_end;
  810. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  811. int n_inputs;
  812. // graph view of this split
  813. struct ggml_cgraph graph;
  814. };
  815. struct ggml_backend_sched {
  816. bool is_reset; // true if the scheduler has been reset since the last graph split
  817. bool is_alloc;
  818. int n_backends;
  819. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  820. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  821. ggml_gallocr_t galloc;
  822. // hash keys of the nodes in the graph
  823. struct ggml_hash_set hash_set;
  824. // hash values
  825. int * tensor_backend_id;
  826. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  827. int * node_backend_ids; // [graph_size]
  828. int * leaf_backend_ids; // [graph_size]
  829. // copy of the graph with modified inputs
  830. struct ggml_cgraph * graph;
  831. // graph splits
  832. struct ggml_backend_sched_split * splits;
  833. int n_splits;
  834. int splits_capacity;
  835. // pipeline parallelism support
  836. int n_copies;
  837. int cur_copy;
  838. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  839. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  840. int n_graph_inputs;
  841. struct ggml_context * ctx;
  842. ggml_backend_sched_eval_callback callback_eval;
  843. void * callback_eval_user_data;
  844. // align context_buffer to GGML_MEM_ALIGN
  845. #ifdef _MSC_VER
  846. __declspec(align(GGML_MEM_ALIGN))
  847. #else
  848. __attribute__((aligned(GGML_MEM_ALIGN)))
  849. #endif
  850. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  851. };
  852. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  853. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  854. // returns the priority of the backend, lower id is higher priority
  855. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  856. for (int i = 0; i < sched->n_backends; i++) {
  857. if (sched->backends[i] == backend) {
  858. return i;
  859. }
  860. }
  861. return -1;
  862. }
  863. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  864. ggml_backend_buffer_t buffer = tensor->buffer;
  865. if (buffer == NULL) {
  866. return -1;
  867. }
  868. // find highest prio backend that supports the buffer type
  869. for (int i = 0; i < sched->n_backends; i++) {
  870. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  871. return i;
  872. }
  873. }
  874. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  875. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  876. GGML_ASSERT(false);
  877. return -1;
  878. }
  879. #if 0
  880. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  881. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  882. #define GET_CAUSE(node) causes[hash_id(node)]
  883. #else
  884. #define SET_CAUSE(node, ...)
  885. #define GET_CAUSE(node) ""
  886. #endif
  887. // returns the backend that should be used for the node based on the current locations
  888. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  889. // TODO: use supports_op to check if the backend supports the op
  890. // assign pre-allocated nodes to their backend
  891. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  892. if (cur_backend_id != -1) {
  893. SET_CAUSE(tensor, "1.dst");
  894. return cur_backend_id;
  895. }
  896. // view_src
  897. if (tensor->view_src != NULL) {
  898. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  899. if (cur_backend_id != -1) {
  900. SET_CAUSE(tensor, "1.vsrc");
  901. return cur_backend_id;
  902. }
  903. }
  904. // graph input
  905. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  906. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  907. SET_CAUSE(tensor, "1.inp");
  908. return cur_backend_id;
  909. }
  910. // assign nodes that use weights to the backend of the weights
  911. // operations with weights are preferably run on the same backend as the weights
  912. for (int i = 0; i < GGML_MAX_SRC; i++) {
  913. const struct ggml_tensor * src = tensor->src[i];
  914. if (src == NULL) {
  915. continue;
  916. }
  917. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  918. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  919. // check if a backend with higher prio wants to offload the op
  920. if (src_backend_id == sched->n_backends - 1) {
  921. for (int b = 0; b < src_backend_id; b++) {
  922. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  923. SET_CAUSE(tensor, "1.off");
  924. return b;
  925. }
  926. }
  927. }
  928. SET_CAUSE(tensor, "1.wgt%d", i);
  929. return src_backend_id;
  930. }
  931. }
  932. return -1;
  933. }
  934. static char * fmt_size(size_t size) {
  935. static char buffer[128];
  936. if (size >= 1024*1024) {
  937. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  938. } else {
  939. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  940. }
  941. return buffer;
  942. }
  943. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  944. int cur_split = 0;
  945. for (int i = 0; i < graph->n_nodes; i++) {
  946. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  947. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  948. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  949. sched->splits[cur_split].n_inputs);
  950. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  951. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  952. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  953. }
  954. fprintf(stderr, "\n");
  955. cur_split++;
  956. }
  957. struct ggml_tensor * node = graph->nodes[i];
  958. if (ggml_is_view_op(node->op)) {
  959. continue;
  960. }
  961. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  962. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  963. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  964. for (int j = 0; j < GGML_MAX_SRC; j++) {
  965. struct ggml_tensor * src = node->src[j];
  966. if (src == NULL) {
  967. continue;
  968. }
  969. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  970. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  971. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  972. }
  973. fprintf(stderr, "\n");
  974. }
  975. }
  976. //#define DEBUG_PASS1
  977. //#define DEBUG_PASS2
  978. //#define DEBUG_PASS3
  979. //#define DEBUG_PASS4
  980. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  981. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  982. // reset splits
  983. sched->n_splits = 0;
  984. sched->n_graph_inputs = 0;
  985. sched->is_reset = false;
  986. struct ggml_init_params params = {
  987. /* .mem_size = */ sizeof(sched->context_buffer),
  988. /* .mem_buffer = */ sched->context_buffer,
  989. /* .no_alloc = */ true
  990. };
  991. ggml_free(sched->ctx);
  992. sched->ctx = ggml_init(params);
  993. if (sched->ctx == NULL) {
  994. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  995. GGML_ASSERT(false);
  996. }
  997. // pass 1: assign backends to ops with pre-allocated inputs
  998. for (int i = 0; i < graph->n_leafs; i++) {
  999. struct ggml_tensor * leaf = graph->leafs[i];
  1000. int * leaf_backend_id = &tensor_backend_id(leaf);
  1001. if (*leaf_backend_id != -1) {
  1002. // do not overwrite user assignments
  1003. continue;
  1004. }
  1005. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1006. }
  1007. for (int i = 0; i < graph->n_nodes; i++) {
  1008. struct ggml_tensor * node = graph->nodes[i];
  1009. int * node_backend_id = &tensor_backend_id(node);
  1010. if (*node_backend_id != -1) {
  1011. // do not overwrite user assignments
  1012. continue;
  1013. }
  1014. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1015. // src
  1016. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1017. struct ggml_tensor * src = node->src[j];
  1018. if (src == NULL) {
  1019. continue;
  1020. }
  1021. int * src_backend_id = &tensor_backend_id(src);
  1022. if (*src_backend_id == -1) {
  1023. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1024. }
  1025. }
  1026. }
  1027. #ifdef DEBUG_PASS1
  1028. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1029. #endif
  1030. // pass 2: expand current backend assignments
  1031. // assign the same backend to adjacent nodes
  1032. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1033. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1034. // pass 2.2 expand gpu down
  1035. {
  1036. int cur_backend_id = -1;
  1037. for (int i = 0; i < graph->n_nodes; i++) {
  1038. struct ggml_tensor * node = graph->nodes[i];
  1039. if (ggml_is_view_op(node->op)) {
  1040. continue;
  1041. }
  1042. int * node_backend_id = &tensor_backend_id(node);
  1043. if (*node_backend_id != -1) {
  1044. if (*node_backend_id == sched->n_backends - 1) {
  1045. // skip cpu (lowest prio backend)
  1046. cur_backend_id = -1;
  1047. } else {
  1048. cur_backend_id = *node_backend_id;
  1049. }
  1050. } else {
  1051. *node_backend_id = cur_backend_id;
  1052. SET_CAUSE(node, "2.2");
  1053. }
  1054. }
  1055. }
  1056. // pass 2.1 expand gpu up
  1057. {
  1058. int cur_backend_id = -1;
  1059. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1060. struct ggml_tensor * node = graph->nodes[i];
  1061. if (ggml_is_view_op(node->op)) {
  1062. continue;
  1063. }
  1064. int * node_backend_id = &tensor_backend_id(node);
  1065. if (*node_backend_id != -1) {
  1066. if (*node_backend_id == sched->n_backends - 1) {
  1067. // skip cpu (lowest prio backend)
  1068. cur_backend_id = -1;
  1069. } else {
  1070. cur_backend_id = *node_backend_id;
  1071. }
  1072. } else {
  1073. *node_backend_id = cur_backend_id;
  1074. SET_CAUSE(node, "2.1");
  1075. }
  1076. }
  1077. }
  1078. // pass 2.4 expand rest down
  1079. {
  1080. int cur_backend_id = -1;
  1081. for (int i = 0; i < graph->n_nodes; i++) {
  1082. struct ggml_tensor * node = graph->nodes[i];
  1083. if (ggml_is_view_op(node->op)) {
  1084. continue;
  1085. }
  1086. int * node_backend_id = &tensor_backend_id(node);
  1087. if (*node_backend_id != -1) {
  1088. cur_backend_id = *node_backend_id;
  1089. } else {
  1090. *node_backend_id = cur_backend_id;
  1091. SET_CAUSE(node, "2.4");
  1092. }
  1093. }
  1094. }
  1095. // pass 2.3 expand rest up
  1096. {
  1097. int cur_backend_id = -1;
  1098. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1099. struct ggml_tensor * node = graph->nodes[i];
  1100. if (ggml_is_view_op(node->op)) {
  1101. continue;
  1102. }
  1103. int * node_backend_id = &tensor_backend_id(node);
  1104. if (*node_backend_id != -1) {
  1105. cur_backend_id = *node_backend_id;
  1106. } else {
  1107. *node_backend_id = cur_backend_id;
  1108. SET_CAUSE(node, "2.3");
  1109. }
  1110. }
  1111. }
  1112. #ifdef DEBUG_PASS2
  1113. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1114. #endif
  1115. // pass 3: assign backends to remaining src from dst and view_src
  1116. for (int i = 0; i < graph->n_nodes; i++) {
  1117. struct ggml_tensor * node = graph->nodes[i];
  1118. int * cur_backend_id = &tensor_backend_id(node);
  1119. if (node->view_src != NULL && *cur_backend_id == -1) {
  1120. *cur_backend_id = tensor_backend_id(node->view_src);
  1121. SET_CAUSE(node, "3.vsrc");
  1122. }
  1123. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1124. struct ggml_tensor * src = node->src[j];
  1125. if (src == NULL) {
  1126. continue;
  1127. }
  1128. int * src_backend_id = &tensor_backend_id(src);
  1129. if (*src_backend_id == -1) {
  1130. if (src->view_src != NULL) {
  1131. // views are always on the same backend as the source
  1132. *src_backend_id = tensor_backend_id(src->view_src);
  1133. SET_CAUSE(src, "3.vsrc");
  1134. } else {
  1135. *src_backend_id = *cur_backend_id;
  1136. SET_CAUSE(src, "3.cur");
  1137. }
  1138. }
  1139. }
  1140. }
  1141. #ifdef DEBUG_PASS3
  1142. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1143. #endif
  1144. // pass 4: split graph, find tensors that need to be copied
  1145. {
  1146. int i_split = 0;
  1147. struct ggml_backend_sched_split * split = &sched->splits[0];
  1148. // find the backend of the first split, skipping view ops
  1149. for (int i = 0; i < graph->n_nodes; i++) {
  1150. struct ggml_tensor * node = graph->nodes[i];
  1151. if (!ggml_is_view_op(node->op)) {
  1152. split->backend_id = tensor_backend_id(node);
  1153. break;
  1154. }
  1155. }
  1156. split->i_start = 0;
  1157. split->n_inputs = 0;
  1158. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1159. int cur_backend_id = split->backend_id;
  1160. for (int i = 0; i < graph->n_nodes; i++) {
  1161. struct ggml_tensor * node = graph->nodes[i];
  1162. if (ggml_is_view_op(node->op)) {
  1163. continue;
  1164. }
  1165. const int node_backend_id = tensor_backend_id(node);
  1166. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1167. // check if we should start a new split based on the sources of the current node
  1168. bool need_new_split = false;
  1169. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1170. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1171. struct ggml_tensor * src = node->src[j];
  1172. if (src == NULL) {
  1173. continue;
  1174. }
  1175. // check if a weight is on a different backend
  1176. // by starting a new split, the memory of the previously offloaded weights can be reused
  1177. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1178. int src_backend_id = tensor_backend_id(src);
  1179. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1180. need_new_split = true;
  1181. break;
  1182. }
  1183. }
  1184. // check if the split has too many inputs
  1185. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1186. const size_t id = hash_id(src);
  1187. int src_backend_id = sched->tensor_backend_id[id];
  1188. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1189. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1190. need_new_split = true;
  1191. break;
  1192. }
  1193. }
  1194. }
  1195. }
  1196. if (node_backend_id != cur_backend_id || need_new_split) {
  1197. split->i_end = i;
  1198. i_split++;
  1199. if (i_split >= sched->splits_capacity) {
  1200. sched->splits_capacity *= 2;
  1201. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1202. GGML_ASSERT(sched->splits != NULL);
  1203. }
  1204. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1205. split = &sched->splits[i_split];
  1206. split->backend_id = node_backend_id;
  1207. split->i_start = i;
  1208. split->n_inputs = 0;
  1209. cur_backend_id = node_backend_id;
  1210. }
  1211. // find inputs that are not on the same backend
  1212. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1213. struct ggml_tensor * src = node->src[j];
  1214. if (src == NULL) {
  1215. continue;
  1216. }
  1217. const int src_backend_id = tensor_backend_id(src);
  1218. assert(src_backend_id != -1); // all inputs should be assigned by now
  1219. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1220. size_t id = hash_id(src);
  1221. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1222. ggml_backend_t backend = sched->backends[src_backend_id];
  1223. for (int c = 0; c < sched->n_copies; c++) {
  1224. struct ggml_tensor * tensor_copy;
  1225. if (c == sched->cur_copy) {
  1226. tensor_copy = src; // use the original tensor as the current copy
  1227. } else {
  1228. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1229. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1230. }
  1231. if (sched->n_copies > 1) {
  1232. ggml_set_input(tensor_copy);
  1233. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1234. }
  1235. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1236. SET_CAUSE(tensor_copy, "4.cpy");
  1237. }
  1238. int n_graph_inputs = sched->n_graph_inputs++;
  1239. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1240. sched->graph_inputs[n_graph_inputs] = src;
  1241. }
  1242. }
  1243. if (src_backend_id != node_backend_id) {
  1244. // create a copy of the input in the split's backend
  1245. const size_t id = hash_id(src);
  1246. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1247. ggml_backend_t backend = sched->backends[cur_backend_id];
  1248. for (int c = 0; c < sched->n_copies; c++) {
  1249. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1250. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1251. if (sched->n_copies > 1) {
  1252. ggml_set_input(tensor_copy);
  1253. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1254. }
  1255. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1256. SET_CAUSE(tensor_copy, "4.cpy");
  1257. }
  1258. int n_inputs = split->n_inputs++;
  1259. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1260. split->inputs[n_inputs] = src;
  1261. }
  1262. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1263. }
  1264. }
  1265. }
  1266. split->i_end = graph->n_nodes;
  1267. sched->n_splits = i_split + 1;
  1268. }
  1269. #ifdef DEBUG_PASS4
  1270. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1271. #endif
  1272. // create copies of the graph for each split
  1273. // TODO: avoid this copy
  1274. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1275. for (int i = 0; i < sched->n_splits; i++) {
  1276. struct ggml_backend_sched_split * split = &sched->splits[i];
  1277. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1278. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1279. for (int j = 0; j < split->n_inputs; j++) {
  1280. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1281. struct ggml_tensor * input = split->inputs[j];
  1282. const size_t input_id = hash_id(input);
  1283. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1284. // add a dependency to the input source so that it is not freed before the copy is done
  1285. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1286. input_dep->src[0] = input;
  1287. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1288. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1289. // add a dependency to the input copy so that it is allocated at the start of the split
  1290. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1291. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1292. }
  1293. for (int j = split->i_start; j < split->i_end; j++) {
  1294. assert(graph_copy->size > graph_copy->n_nodes);
  1295. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1296. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1297. }
  1298. }
  1299. if (sched->n_copies > 1) {
  1300. // add input copies as leafs so that they are allocated first
  1301. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1302. struct ggml_tensor * input = sched->graph_inputs[i];
  1303. size_t id = hash_id(input);
  1304. int backend_id = tensor_backend_id(input);
  1305. for (int c = 0; c < sched->n_copies; c++) {
  1306. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1307. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1308. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1309. }
  1310. }
  1311. for (int i = 0; i < sched->n_splits; i++) {
  1312. struct ggml_backend_sched_split * split = &sched->splits[i];
  1313. int backend_id = split->backend_id;
  1314. for (int j = 0; j < split->n_inputs; j++) {
  1315. struct ggml_tensor * input = split->inputs[j];
  1316. size_t id = hash_id(input);
  1317. for (int c = 0; c < sched->n_copies; c++) {
  1318. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1319. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1320. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1321. }
  1322. }
  1323. }
  1324. }
  1325. // add leafs from the original graph
  1326. for (int i = 0; i < graph->n_leafs; i++) {
  1327. struct ggml_tensor * leaf = graph->leafs[i];
  1328. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1329. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1330. }
  1331. sched->graph = graph_copy;
  1332. }
  1333. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1334. // allocate graph
  1335. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1336. // the re-allocation may cause the split inputs to be moved to a different address
  1337. ggml_backend_sched_synchronize(sched);
  1338. #ifndef NDEBUG
  1339. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1340. #endif
  1341. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1342. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1343. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1344. return false;
  1345. }
  1346. }
  1347. return true;
  1348. }
  1349. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1350. struct ggml_backend_sched_split * splits = sched->splits;
  1351. for (int i = 0; i < sched->n_splits; i++) {
  1352. struct ggml_backend_sched_split * split = &splits[i];
  1353. int split_backend_id = split->backend_id;
  1354. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1355. // copy the input tensors to the split backend
  1356. for (int j = 0; j < split->n_inputs; j++) {
  1357. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1358. struct ggml_tensor * input = split->inputs[j];
  1359. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1360. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1361. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1362. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1363. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1364. } else {
  1365. ggml_backend_synchronize(split_backend);
  1366. }
  1367. ggml_backend_tensor_copy(input, input_cpy);
  1368. } else {
  1369. // wait for the split backend to finish using the input before overwriting it
  1370. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1371. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1372. } else {
  1373. ggml_backend_synchronize(split_backend);
  1374. }
  1375. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1376. }
  1377. }
  1378. if (!sched->callback_eval) {
  1379. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1380. if (ec != GGML_STATUS_SUCCESS) {
  1381. return ec;
  1382. }
  1383. } else {
  1384. // similar to ggml_backend_compare_graph_backend
  1385. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1386. struct ggml_tensor * t = split->graph.nodes[j0];
  1387. // check if the user needs data from this node
  1388. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1389. int j1 = j0;
  1390. // determine the range [j0, j1] of nodes that can be computed together
  1391. while (!need && j1 < split->graph.n_nodes - 1) {
  1392. t = split->graph.nodes[++j1];
  1393. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1394. }
  1395. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1396. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1397. if (ec != GGML_STATUS_SUCCESS) {
  1398. return ec;
  1399. }
  1400. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1401. ggml_backend_synchronize(split_backend);
  1402. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1403. break;
  1404. }
  1405. j0 = j1;
  1406. }
  1407. }
  1408. // record the event of this copy
  1409. if (split->n_inputs > 0) {
  1410. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1411. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1412. }
  1413. }
  1414. }
  1415. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1416. return GGML_STATUS_SUCCESS;
  1417. }
  1418. ggml_backend_sched_t ggml_backend_sched_new(
  1419. ggml_backend_t * backends,
  1420. ggml_backend_buffer_type_t * bufts,
  1421. int n_backends,
  1422. size_t graph_size,
  1423. bool parallel) {
  1424. GGML_ASSERT(n_backends > 0);
  1425. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1426. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1427. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1428. // initialize hash table
  1429. sched->hash_set = ggml_hash_set_new(graph_size);
  1430. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1431. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1432. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1433. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1434. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1435. sched->n_backends = n_backends;
  1436. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1437. const int initial_splits_capacity = 16;
  1438. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1439. sched->splits_capacity = initial_splits_capacity;
  1440. for (int b = 0; b < n_backends; b++) {
  1441. sched->backends[b] = backends[b];
  1442. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1443. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1444. if (sched->n_copies > 1) {
  1445. for (int c = 0; c < sched->n_copies; c++) {
  1446. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1447. }
  1448. }
  1449. }
  1450. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1451. ggml_backend_sched_reset(sched);
  1452. return sched;
  1453. }
  1454. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1455. if (sched == NULL) {
  1456. return;
  1457. }
  1458. for (int b = 0; b < sched->n_backends; b++) {
  1459. for (int c = 0; c < sched->n_copies; c++) {
  1460. ggml_backend_event_free(sched->events[b][c]);
  1461. }
  1462. }
  1463. ggml_gallocr_free(sched->galloc);
  1464. ggml_free(sched->ctx);
  1465. free(sched->splits);
  1466. free(sched->hash_set.keys);
  1467. free(sched->tensor_backend_id);
  1468. free(sched->tensor_copies);
  1469. free(sched->node_backend_ids);
  1470. free(sched->leaf_backend_ids);
  1471. free(sched);
  1472. }
  1473. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1474. // reset state for the next run
  1475. if (!sched->is_reset) {
  1476. size_t hash_size = sched->hash_set.size;
  1477. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1478. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1479. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1480. sched->is_reset = true;
  1481. }
  1482. sched->is_alloc = false;
  1483. }
  1484. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1485. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1486. ggml_backend_sched_split_graph(sched, measure_graph);
  1487. // TODO: extract this to a separate function
  1488. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1489. return false;
  1490. }
  1491. ggml_backend_sched_reset(sched);
  1492. ggml_backend_sched_synchronize(sched);
  1493. return true;
  1494. }
  1495. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1496. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1497. ggml_backend_sched_split_graph(sched, graph);
  1498. if (!ggml_backend_sched_alloc_splits(sched)) {
  1499. return false;
  1500. }
  1501. sched->is_alloc = true;
  1502. return true;
  1503. }
  1504. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1505. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1506. ggml_backend_sched_synchronize(sched);
  1507. return err;
  1508. }
  1509. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1510. if (!sched->is_reset && !sched->is_alloc) {
  1511. ggml_backend_sched_reset(sched);
  1512. }
  1513. if (!sched->is_alloc) {
  1514. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1515. return GGML_STATUS_ALLOC_FAILED;
  1516. }
  1517. }
  1518. return ggml_backend_sched_compute_splits(sched);
  1519. }
  1520. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1521. for (int i = 0; i < sched->n_backends; i++) {
  1522. ggml_backend_synchronize(sched->backends[i]);
  1523. }
  1524. }
  1525. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1526. sched->callback_eval = callback;
  1527. sched->callback_eval_user_data = user_data;
  1528. }
  1529. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1530. return sched->n_splits;
  1531. }
  1532. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1533. return sched->n_copies;
  1534. }
  1535. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1536. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1537. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1538. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1539. }
  1540. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1541. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1542. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1543. tensor_backend_id(node) = backend_index;
  1544. }
  1545. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1546. int backend_index = tensor_backend_id(node);
  1547. if (backend_index == -1) {
  1548. return NULL;
  1549. }
  1550. return sched->backends[backend_index];
  1551. }
  1552. // utils
  1553. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1554. GGML_ASSERT(tensor->buffer == NULL);
  1555. GGML_ASSERT(tensor->view_src != NULL);
  1556. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1557. GGML_ASSERT(tensor->view_src->data != NULL);
  1558. tensor->buffer = buffer;
  1559. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1560. ggml_backend_buffer_init_tensor(buffer, tensor);
  1561. }
  1562. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1563. GGML_ASSERT(tensor->buffer == NULL);
  1564. GGML_ASSERT(tensor->data == NULL);
  1565. GGML_ASSERT(tensor->view_src == NULL);
  1566. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1567. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1568. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1569. tensor->buffer = buffer;
  1570. tensor->data = addr;
  1571. ggml_backend_buffer_init_tensor(buffer, tensor);
  1572. }
  1573. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1574. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1575. GGML_ASSERT(src != NULL);
  1576. GGML_ASSERT(src->data && "graph must be allocated");
  1577. size_t id = ggml_hash_insert(hash_set, src);
  1578. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1579. return node_copies[ggml_hash_find(hash_set, src)];
  1580. }
  1581. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1582. if (src->view_src != NULL) {
  1583. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1584. dst->view_offs = src->view_offs;
  1585. }
  1586. dst->op = src->op;
  1587. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1588. ggml_set_name(dst, src->name);
  1589. // copy src
  1590. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1591. struct ggml_tensor * s = src->src[i];
  1592. if (s == NULL) {
  1593. continue;
  1594. }
  1595. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1596. }
  1597. node_copies[id] = dst;
  1598. return dst;
  1599. }
  1600. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1601. size_t id = ggml_hash_find(hash_set, src);
  1602. if (node_init[id]) {
  1603. return;
  1604. }
  1605. node_init[id] = true;
  1606. struct ggml_tensor * dst = node_copies[id];
  1607. if (dst->view_src != NULL) {
  1608. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1609. ggml_backend_view_init(dst->view_src->buffer, dst);
  1610. }
  1611. else {
  1612. ggml_backend_tensor_copy(src, dst);
  1613. }
  1614. // init src
  1615. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1616. struct ggml_tensor * s = src->src[i];
  1617. if (s == NULL) {
  1618. continue;
  1619. }
  1620. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1621. }
  1622. }
  1623. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1624. struct ggml_hash_set hash_set = {
  1625. /* .size = */ graph->visited_hash_table.size,
  1626. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1627. };
  1628. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1629. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1630. struct ggml_init_params params = {
  1631. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1632. /* .mem_buffer = */ NULL,
  1633. /* .no_alloc = */ true
  1634. };
  1635. struct ggml_context * ctx_allocated = ggml_init(params);
  1636. struct ggml_context * ctx_unallocated = ggml_init(params);
  1637. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1638. fprintf(stderr, "failed to allocate context for graph copy\n");
  1639. free(hash_set.keys);
  1640. free(node_copies);
  1641. free(node_init);
  1642. ggml_free(ctx_allocated);
  1643. ggml_free(ctx_unallocated);
  1644. return (struct ggml_backend_graph_copy) {
  1645. /* .buffer = */ NULL,
  1646. /* .ctx_allocated = */ NULL,
  1647. /* .ctx_unallocated = */ NULL,
  1648. /* .graph = */ NULL,
  1649. };
  1650. }
  1651. // dup nodes
  1652. for (int i = 0; i < graph->n_nodes; i++) {
  1653. struct ggml_tensor * node = graph->nodes[i];
  1654. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1655. }
  1656. // allocate nodes
  1657. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1658. if (buffer == NULL) {
  1659. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1660. free(hash_set.keys);
  1661. free(node_copies);
  1662. free(node_init);
  1663. ggml_free(ctx_allocated);
  1664. ggml_free(ctx_unallocated);
  1665. return (struct ggml_backend_graph_copy) {
  1666. /* .buffer = */ NULL,
  1667. /* .ctx_allocated = */ NULL,
  1668. /* .ctx_unallocated = */ NULL,
  1669. /* .graph = */ NULL,
  1670. };
  1671. }
  1672. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1673. // copy data and init views
  1674. for (int i = 0; i < graph->n_nodes; i++) {
  1675. struct ggml_tensor * node = graph->nodes[i];
  1676. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1677. }
  1678. // build graph copy
  1679. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1680. for (int i = 0; i < graph->n_nodes; i++) {
  1681. struct ggml_tensor * node = graph->nodes[i];
  1682. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1683. graph_copy->nodes[i] = node_copy;
  1684. }
  1685. graph_copy->n_nodes = graph->n_nodes;
  1686. free(hash_set.keys);
  1687. free(node_copies);
  1688. free(node_init);
  1689. return (struct ggml_backend_graph_copy) {
  1690. /* .buffer = */ buffer,
  1691. /* .ctx_allocated = */ ctx_allocated,
  1692. /* .ctx_unallocated = */ ctx_unallocated,
  1693. /* .graph = */ graph_copy,
  1694. };
  1695. }
  1696. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1697. ggml_backend_buffer_free(copy.buffer);
  1698. ggml_free(copy.ctx_allocated);
  1699. ggml_free(copy.ctx_unallocated);
  1700. }
  1701. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1702. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1703. if (copy.buffer == NULL) {
  1704. return false;
  1705. }
  1706. struct ggml_cgraph * g1 = graph;
  1707. struct ggml_cgraph * g2 = copy.graph;
  1708. assert(g1->n_nodes == g2->n_nodes);
  1709. for (int i = 0; i < g1->n_nodes; i++) {
  1710. //printf("eval %d/%d\n", i, g1->n_nodes);
  1711. struct ggml_tensor * t1 = g1->nodes[i];
  1712. struct ggml_tensor * t2 = g2->nodes[i];
  1713. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1714. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1715. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1716. ggml_backend_graph_compute(backend1, &g1v);
  1717. ggml_backend_graph_compute(backend2, &g2v);
  1718. if (ggml_is_view_op(t1->op)) {
  1719. continue;
  1720. }
  1721. // compare results, calculate rms etc
  1722. if (!callback(i, t1, t2, user_data)) {
  1723. break;
  1724. }
  1725. }
  1726. ggml_backend_graph_copy_free(copy);
  1727. return true;
  1728. }