123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282 |
- /**
- * llama.cpp - commit 1e6f6554aa11fa10160a5fda689e736c3c34169f - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #if defined(_MSC_VER)
- #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
- #endif
- #include "common.h"
- // Change JSON_ASSERT from assert() to GGML_ASSERT:
- #define JSON_ASSERT GGML_ASSERT
- #include "json.hpp"
- #include "json-schema-to-grammar.h"
- #include "llama.h"
- #include <algorithm>
- #include <cinttypes>
- #include <cmath>
- #include <codecvt>
- #include <cstdarg>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iostream>
- #include <iterator>
- #include <regex>
- #include <sstream>
- #include <string>
- #include <unordered_map>
- #include <unordered_set>
- #include <vector>
- #if defined(__APPLE__) && defined(__MACH__)
- #include <sys/types.h>
- #include <sys/sysctl.h>
- #endif
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- # define NOMINMAX
- #endif
- #include <locale>
- #include <windows.h>
- #include <fcntl.h>
- #include <io.h>
- #else
- #include <sys/ioctl.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- #if defined(LLAMA_USE_CURL)
- #include <curl/curl.h>
- #include <curl/easy.h>
- #include <thread>
- #include <future>
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
- #define GGML_USE_CUDA_SYCL
- #endif
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
- #define GGML_USE_CUDA_SYCL_VULKAN
- #endif
- #if defined(LLAMA_USE_CURL)
- #ifdef __linux__
- #include <linux/limits.h>
- #elif defined(_WIN32)
- #define PATH_MAX MAX_PATH
- #else
- #include <sys/syslimits.h>
- #endif
- #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
- #endif // LLAMA_USE_CURL
- using json = nlohmann::ordered_json;
- //
- // CPU utils
- //
- int32_t cpu_get_num_physical_cores() {
- #ifdef __linux__
- // enumerate the set of thread siblings, num entries is num cores
- std::unordered_set<std::string> siblings;
- for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
- std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
- + std::to_string(cpu) + "/topology/thread_siblings");
- if (!thread_siblings.is_open()) {
- break; // no more cpus
- }
- std::string line;
- if (std::getline(thread_siblings, line)) {
- siblings.insert(line);
- }
- }
- if (!siblings.empty()) {
- return static_cast<int32_t>(siblings.size());
- }
- #elif defined(__APPLE__) && defined(__MACH__)
- int32_t num_physical_cores;
- size_t len = sizeof(num_physical_cores);
- int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
- if (result == 0) {
- return num_physical_cores;
- }
- #elif defined(_WIN32)
- //TODO: Implement
- #endif
- unsigned int n_threads = std::thread::hardware_concurrency();
- return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
- }
- #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
- #include <pthread.h>
- static void cpuid(unsigned leaf, unsigned subleaf,
- unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
- __asm__("movq\t%%rbx,%%rsi\n\t"
- "cpuid\n\t"
- "xchgq\t%%rbx,%%rsi"
- : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
- : "0"(leaf), "2"(subleaf));
- }
- static int pin_cpu(int cpu) {
- cpu_set_t mask;
- CPU_ZERO(&mask);
- CPU_SET(cpu, &mask);
- return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
- }
- static bool is_hybrid_cpu(void) {
- unsigned eax, ebx, ecx, edx;
- cpuid(7, 0, &eax, &ebx, &ecx, &edx);
- return !!(edx & (1u << 15));
- }
- static bool is_running_on_efficiency_core(void) {
- unsigned eax, ebx, ecx, edx;
- cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
- int intel_atom = 0x20;
- int core_type = (eax & 0xff000000u) >> 24;
- return core_type == intel_atom;
- }
- static int cpu_count_math_cpus(int n_cpu) {
- int result = 0;
- for (int cpu = 0; cpu < n_cpu; ++cpu) {
- if (pin_cpu(cpu)) {
- return -1;
- }
- if (is_running_on_efficiency_core()) {
- continue; // efficiency cores harm lockstep threading
- }
- ++cpu; // hyperthreading isn't useful for linear algebra
- ++result;
- }
- return result;
- }
- #endif // __x86_64__ && __linux__
- /**
- * Returns number of CPUs on system that are useful for math.
- */
- int32_t cpu_get_num_math() {
- #if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
- int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
- if (n_cpu < 1) {
- return cpu_get_num_physical_cores();
- }
- if (is_hybrid_cpu()) {
- cpu_set_t affinity;
- if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
- int result = cpu_count_math_cpus(n_cpu);
- pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
- if (result > 0) {
- return result;
- }
- }
- }
- #endif
- return cpu_get_num_physical_cores();
- }
- //
- // CLI argument parsing
- //
- void gpt_params_handle_hf_token(gpt_params & params) {
- if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
- params.hf_token = std::getenv("HF_TOKEN");
- }
- }
- void gpt_params_handle_model_default(gpt_params & params) {
- if (!params.hf_repo.empty()) {
- // short-hand to avoid specifying --hf-file -> default it to --model
- if (params.hf_file.empty()) {
- if (params.model.empty()) {
- throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
- }
- params.hf_file = params.model;
- } else if (params.model.empty()) {
- params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
- }
- } else if (!params.model_url.empty()) {
- if (params.model.empty()) {
- auto f = string_split(params.model_url, '#').front();
- f = string_split(f, '?').front();
- params.model = fs_get_cache_file(string_split(f, '/').back());
- }
- } else if (params.model.empty()) {
- params.model = DEFAULT_MODEL_PATH;
- }
- }
- bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
- bool invalid_param = false;
- std::string arg;
- const std::string arg_prefix = "--";
- llama_sampling_params & sparams = params.sparams;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
- throw std::invalid_argument("error: unknown argument: " + arg);
- }
- if (invalid_param) {
- throw std::invalid_argument("error: invalid parameter for argument: " + arg);
- }
- }
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
- }
- gpt_params_handle_model_default(params);
- gpt_params_handle_hf_token(params);
- if (params.escape) {
- string_process_escapes(params.prompt);
- string_process_escapes(params.input_prefix);
- string_process_escapes(params.input_suffix);
- string_process_escapes(sparams.cfg_negative_prompt);
- for (auto & antiprompt : params.antiprompt) {
- string_process_escapes(antiprompt);
- }
- }
- if (!params.kv_overrides.empty()) {
- params.kv_overrides.emplace_back();
- params.kv_overrides.back().key[0] = 0;
- }
- return true;
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
- const auto params_org = params; // the example can modify the default params
- try {
- if (!gpt_params_parse_ex(argc, argv, params) || params.usage) {
- params = params_org;
- params.usage = true;
- return false;
- }
- } catch (const std::invalid_argument & ex) {
- fprintf(stderr, "%s\n", ex.what());
- params = params_org;
- return false;
- }
- return true;
- }
- #define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; }
- bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
- const char split_delim = ',';
- llama_sampling_params & sparams = params.sparams;
- if (arg == "-s" || arg == "--seed") {
- CHECK_ARG
- // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
- params.seed = std::stoul(argv[i]);
- sparams.seed = std::stoul(argv[i]);
- return true;
- }
- if (arg == "-t" || arg == "--threads") {
- CHECK_ARG
- params.n_threads = std::stoi(argv[i]);
- if (params.n_threads <= 0) {
- params.n_threads = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-tb" || arg == "--threads-batch") {
- CHECK_ARG
- params.n_threads_batch = std::stoi(argv[i]);
- if (params.n_threads_batch <= 0) {
- params.n_threads_batch = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-td" || arg == "--threads-draft") {
- CHECK_ARG
- params.n_threads_draft = std::stoi(argv[i]);
- if (params.n_threads_draft <= 0) {
- params.n_threads_draft = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-tbd" || arg == "--threads-batch-draft") {
- CHECK_ARG
- params.n_threads_batch_draft = std::stoi(argv[i]);
- if (params.n_threads_batch_draft <= 0) {
- params.n_threads_batch_draft = std::thread::hardware_concurrency();
- }
- return true;
- }
- if (arg == "-p" || arg == "--prompt") {
- CHECK_ARG
- params.prompt = argv[i];
- return true;
- }
- if (arg == "-e" || arg == "--escape") {
- params.escape = true;
- return true;
- }
- if (arg == "--no-escape") {
- params.escape = false;
- return true;
- }
- if (arg == "--prompt-cache") {
- CHECK_ARG
- params.path_prompt_cache = argv[i];
- return true;
- }
- if (arg == "--prompt-cache-all") {
- params.prompt_cache_all = true;
- return true;
- }
- if (arg == "--prompt-cache-ro") {
- params.prompt_cache_ro = true;
- return true;
- }
- if (arg == "-bf" || arg == "--binary-file") {
- CHECK_ARG
- std::ifstream file(argv[i], std::ios::binary);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- // store the external file name in params
- params.prompt_file = argv[i];
- std::ostringstream ss;
- ss << file.rdbuf();
- params.prompt = ss.str();
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
- return true;
- }
- if (arg == "-f" || arg == "--file") {
- CHECK_ARG
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- // store the external file name in params
- params.prompt_file = argv[i];
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- return true;
- }
- if (arg == "--in-file") {
- CHECK_ARG
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- params.in_files.push_back(argv[i]);
- return true;
- }
- if (arg == "-n" || arg == "--predict" || arg == "--n-predict") {
- CHECK_ARG
- params.n_predict = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--top-k") {
- CHECK_ARG
- sparams.top_k = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-c" || arg == "--ctx-size") {
- CHECK_ARG
- params.n_ctx = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--grp-attn-n" || arg == "-gan") {
- CHECK_ARG
- params.grp_attn_n = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--grp-attn-w" || arg == "-gaw") {
- CHECK_ARG
- params.grp_attn_w = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--rope-freq-base") {
- CHECK_ARG
- params.rope_freq_base = std::stof(argv[i]);
- return true;
- }
- if (arg == "--rope-freq-scale") {
- CHECK_ARG
- params.rope_freq_scale = std::stof(argv[i]);
- return true;
- }
- if (arg == "--rope-scaling") {
- CHECK_ARG
- std::string value(argv[i]);
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--rope-scale") {
- CHECK_ARG
- params.rope_freq_scale = 1.0f / std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-orig-ctx") {
- CHECK_ARG
- params.yarn_orig_ctx = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--yarn-ext-factor") {
- CHECK_ARG
- params.yarn_ext_factor = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-attn-factor") {
- CHECK_ARG
- params.yarn_attn_factor = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-beta-fast") {
- CHECK_ARG
- params.yarn_beta_fast = std::stof(argv[i]);
- return true;
- }
- if (arg == "--yarn-beta-slow") {
- CHECK_ARG
- params.yarn_beta_slow = std::stof(argv[i]);
- return true;
- }
- if (arg == "--pooling") {
- CHECK_ARG
- std::string value(argv[i]);
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--attention") {
- CHECK_ARG
- std::string value(argv[i]);
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--defrag-thold" || arg == "-dt") {
- CHECK_ARG
- params.defrag_thold = std::stof(argv[i]);
- return true;
- }
- if (arg == "--samplers") {
- CHECK_ARG
- const auto sampler_names = string_split(argv[i], ';');
- sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
- return true;
- }
- if (arg == "--sampling-seq") {
- CHECK_ARG
- sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
- return true;
- }
- if (arg == "--top-p") {
- CHECK_ARG
- sparams.top_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--min-p") {
- CHECK_ARG
- sparams.min_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--temp") {
- CHECK_ARG
- sparams.temp = std::stof(argv[i]);
- sparams.temp = std::max(sparams.temp, 0.0f);
- return true;
- }
- if (arg == "--tfs") {
- CHECK_ARG
- sparams.tfs_z = std::stof(argv[i]);
- return true;
- }
- if (arg == "--typical") {
- CHECK_ARG
- sparams.typical_p = std::stof(argv[i]);
- return true;
- }
- if (arg == "--repeat-last-n") {
- CHECK_ARG
- sparams.penalty_last_n = std::stoi(argv[i]);
- sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
- return true;
- }
- if (arg == "--repeat-penalty") {
- CHECK_ARG
- sparams.penalty_repeat = std::stof(argv[i]);
- return true;
- }
- if (arg == "--frequency-penalty") {
- CHECK_ARG
- sparams.penalty_freq = std::stof(argv[i]);
- return true;
- }
- if (arg == "--presence-penalty") {
- CHECK_ARG
- sparams.penalty_present = std::stof(argv[i]);
- return true;
- }
- if (arg == "--dynatemp-range") {
- CHECK_ARG
- sparams.dynatemp_range = std::stof(argv[i]);
- return true;
- }
- if (arg == "--dynatemp-exp") {
- CHECK_ARG
- sparams.dynatemp_exponent = std::stof(argv[i]);
- return true;
- }
- if (arg == "--mirostat") {
- CHECK_ARG
- sparams.mirostat = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--mirostat-lr") {
- CHECK_ARG
- sparams.mirostat_eta = std::stof(argv[i]);
- return true;
- }
- if (arg == "--mirostat-ent") {
- CHECK_ARG
- sparams.mirostat_tau = std::stof(argv[i]);
- return true;
- }
- if (arg == "--cfg-negative-prompt") {
- CHECK_ARG
- sparams.cfg_negative_prompt = argv[i];
- return true;
- }
- if (arg == "--cfg-negative-prompt-file") {
- CHECK_ARG
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
- if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
- sparams.cfg_negative_prompt.pop_back();
- }
- return true;
- }
- if (arg == "--cfg-scale") {
- CHECK_ARG
- sparams.cfg_scale = std::stof(argv[i]);
- return true;
- }
- if (arg == "-b" || arg == "--batch-size") {
- CHECK_ARG
- params.n_batch = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ub" || arg == "--ubatch-size") {
- CHECK_ARG
- params.n_ubatch = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--keep") {
- CHECK_ARG
- params.n_keep = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--draft") {
- CHECK_ARG
- params.n_draft = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--chunks") {
- CHECK_ARG
- params.n_chunks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-np" || arg == "--parallel") {
- CHECK_ARG
- params.n_parallel = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ns" || arg == "--sequences") {
- CHECK_ARG
- params.n_sequences = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--p-split" || arg == "-ps") {
- CHECK_ARG
- params.p_split = std::stof(argv[i]);
- return true;
- }
- if (arg == "-m" || arg == "--model") {
- CHECK_ARG
- params.model = argv[i];
- return true;
- }
- if (arg == "-md" || arg == "--model-draft") {
- CHECK_ARG
- params.model_draft = argv[i];
- return true;
- }
- if (arg == "-a" || arg == "--alias") {
- CHECK_ARG
- params.model_alias = argv[i];
- return true;
- }
- if (arg == "-mu" || arg == "--model-url") {
- CHECK_ARG
- params.model_url = argv[i];
- return true;
- }
- if (arg == "-hft" || arg == "--hf-token") {
- if (++i >= argc) {
- invalid_param = true;
- return true;
- }
- params.hf_token = argv[i];
- return true;
- }
- if (arg == "-hfr" || arg == "--hf-repo") {
- CHECK_ARG
- params.hf_repo = argv[i];
- return true;
- }
- if (arg == "-hff" || arg == "--hf-file") {
- CHECK_ARG
- params.hf_file = argv[i];
- return true;
- }
- if (arg == "--lora") {
- CHECK_ARG
- params.lora_adapters.push_back({
- std::string(argv[i]),
- 1.0,
- });
- return true;
- }
- if (arg == "--lora-scaled") {
- CHECK_ARG
- std::string lora_adapter = argv[i];
- CHECK_ARG
- params.lora_adapters.push_back({
- lora_adapter,
- std::stof(argv[i]),
- });
- return true;
- }
- if (arg == "--lora-init-without-apply") {
- params.lora_init_without_apply = true;
- return true;
- }
- if (arg == "--control-vector") {
- CHECK_ARG
- params.control_vectors.push_back({ 1.0f, argv[i], });
- return true;
- }
- if (arg == "--control-vector-scaled") {
- CHECK_ARG
- const char* fname = argv[i];
- CHECK_ARG
- params.control_vectors.push_back({ std::stof(argv[i]), fname, });
- return true;
- }
- if (arg == "--control-vector-layer-range") {
- CHECK_ARG
- params.control_vector_layer_start = std::stoi(argv[i]);
- CHECK_ARG
- params.control_vector_layer_end = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--mmproj") {
- CHECK_ARG
- params.mmproj = argv[i];
- return true;
- }
- if (arg == "--image") {
- CHECK_ARG
- params.image.emplace_back(argv[i]);
- return true;
- }
- if (arg == "-i" || arg == "--interactive") {
- params.interactive = true;
- return true;
- }
- if (arg == "-sp" || arg == "--special") {
- params.special = true;
- return true;
- }
- if (arg == "--embedding" || arg == "--embeddings") {
- params.embedding = true;
- return true;
- }
- if (arg == "--embd-normalize") {
- CHECK_ARG
- params.embd_normalize = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--embd-output-format") {
- CHECK_ARG
- params.embd_out = argv[i];
- return true;
- }
- if (arg == "--embd-separator") {
- CHECK_ARG
- params.embd_sep = argv[i];
- return true;
- }
- if (arg == "-if" || arg == "--interactive-first") {
- params.interactive_first = true;
- return true;
- }
- if (arg == "-cnv" || arg == "--conversation") {
- params.conversation = true;
- return true;
- }
- if (arg == "--infill") {
- params.infill = true;
- return true;
- }
- if (arg == "-dkvc" || arg == "--dump-kv-cache") {
- params.dump_kv_cache = true;
- return true;
- }
- if (arg == "-nkvo" || arg == "--no-kv-offload") {
- params.no_kv_offload = true;
- return true;
- }
- if (arg == "-ctk" || arg == "--cache-type-k") {
- params.cache_type_k = argv[++i];
- return true;
- }
- if (arg == "-ctv" || arg == "--cache-type-v") {
- params.cache_type_v = argv[++i];
- return true;
- }
- if (arg == "-mli" || arg == "--multiline-input") {
- params.multiline_input = true;
- return true;
- }
- if (arg == "--simple-io") {
- params.simple_io = true;
- return true;
- }
- if (arg == "-cb" || arg == "--cont-batching") {
- params.cont_batching = true;
- return true;
- }
- if (arg == "-nocb" || arg == "--no-cont-batching") {
- params.cont_batching = false;
- return true;
- }
- if (arg == "-fa" || arg == "--flash-attn") {
- params.flash_attn = true;
- return true;
- }
- if (arg == "-co" || arg == "--color") {
- params.use_color = true;
- return true;
- }
- if (arg == "--mlock") {
- params.use_mlock = true;
- return true;
- }
- if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
- CHECK_ARG
- params.n_gpu_layers = std::stoi(argv[i]);
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- return true;
- }
- if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
- CHECK_ARG
- params.n_gpu_layers_draft = std::stoi(argv[i]);
- if (!llama_supports_gpu_offload()) {
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
- }
- return true;
- }
- if (arg == "--main-gpu" || arg == "-mg") {
- CHECK_ARG
- params.main_gpu = std::stoi(argv[i]);
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- return true;
- }
- if (arg == "--split-mode" || arg == "-sm") {
- CHECK_ARG
- std::string arg_next = argv[i];
- if (arg_next == "none") {
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
- }
- else if (arg_next == "layer") {
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
- }
- else if (arg_next == "row") {
- #ifdef GGML_USE_SYCL
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
- exit(1);
- #endif // GGML_USE_SYCL
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
- }
- else {
- invalid_param = true;
- return true;
- }
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- return true;
- }
- if (arg == "--tensor-split" || arg == "-ts") {
- CHECK_ARG
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- if (split_arg.size() >= llama_max_devices()) {
- invalid_param = true;
- return true;
- }
- for (size_t i = 0; i < llama_max_devices(); ++i) {
- if (i < split_arg.size()) {
- params.tensor_split[i] = std::stof(split_arg[i]);
- }
- else {
- params.tensor_split[i] = 0.0f;
- }
- }
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
- #endif // GGML_USE_CUDA_SYCL_VULKAN
- return true;
- }
- if (arg == "--rpc") {
- CHECK_ARG
- params.rpc_servers = argv[i];
- return true;
- }
- if (arg == "--no-mmap") {
- params.use_mmap = false;
- return true;
- }
- if (arg == "--numa") {
- CHECK_ARG
- std::string value(argv[i]);
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "-v" || arg == "--verbose") {
- params.verbosity = 1;
- return true;
- }
- if (arg == "--verbosity") {
- CHECK_ARG
- params.verbosity = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--verbose-prompt") {
- params.verbose_prompt = true;
- return true;
- }
- if (arg == "--no-display-prompt") {
- params.display_prompt = false;
- return true;
- }
- if (arg == "-r" || arg == "--reverse-prompt") {
- CHECK_ARG
- params.antiprompt.emplace_back(argv[i]);
- return true;
- }
- if (arg == "-ld" || arg == "--logdir") {
- CHECK_ARG
- params.logdir = argv[i];
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
- params.logdir += DIRECTORY_SEPARATOR;
- }
- return true;
- }
- if (arg == "-lcs" || arg == "--lookup-cache-static") {
- CHECK_ARG
- params.lookup_cache_static = argv[i];
- return true;
- }
- if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
- CHECK_ARG
- params.lookup_cache_dynamic = argv[i];
- return true;
- }
- if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
- CHECK_ARG
- params.logits_file = argv[i];
- return true;
- }
- if (arg == "--perplexity" || arg == "--all-logits") {
- params.logits_all = true;
- return true;
- }
- if (arg == "--ppl-stride") {
- CHECK_ARG
- params.ppl_stride = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--ppl-output-type") {
- CHECK_ARG
- params.ppl_output_type = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-ptc" || arg == "--print-token-count") {
- CHECK_ARG
- params.n_print = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--check-tensors") {
- params.check_tensors = true;
- return true;
- }
- if (arg == "--hellaswag") {
- params.hellaswag = true;
- return true;
- }
- if (arg == "--hellaswag-tasks") {
- CHECK_ARG
- params.hellaswag_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--winogrande") {
- params.winogrande = true;
- return true;
- }
- if (arg == "--winogrande-tasks") {
- CHECK_ARG
- params.winogrande_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--multiple-choice") {
- params.multiple_choice = true;
- return true;
- }
- if (arg == "--multiple-choice-tasks") {
- CHECK_ARG
- params.multiple_choice_tasks = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--kl-divergence") {
- params.kl_divergence = true;
- return true;
- }
- if (arg == "--ignore-eos") {
- params.ignore_eos = true;
- return true;
- }
- if (arg == "--penalize-nl") {
- sparams.penalize_nl = true;
- return true;
- }
- if (arg == "-l" || arg == "--logit-bias") {
- CHECK_ARG
- std::stringstream ss(argv[i]);
- llama_token key;
- char sign;
- std::string value_str;
- try {
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
- sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
- }
- else {
- throw std::exception();
- }
- }
- catch (const std::exception&) {
- invalid_param = true;
- return true;
- }
- return true;
- }
- if (arg == "-h" || arg == "--help" || arg == "--usage" ) {
- params.usage = true;
- return true;
- }
- if (arg == "--version") {
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
- exit(0);
- }
- if (arg == "--in-prefix-bos") {
- params.input_prefix_bos = true;
- params.enable_chat_template = false;
- return true;
- }
- if (arg == "--in-prefix") {
- CHECK_ARG
- params.input_prefix = argv[i];
- params.enable_chat_template = false;
- return true;
- }
- if (arg == "--in-suffix") {
- CHECK_ARG
- params.input_suffix = argv[i];
- params.enable_chat_template = false;
- return true;
- }
- if (arg == "--spm-infill") {
- params.spm_infill = true;
- return true;
- }
- if (arg == "--grammar") {
- CHECK_ARG
- sparams.grammar = argv[i];
- return true;
- }
- if (arg == "--grammar-file") {
- CHECK_ARG
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(sparams.grammar)
- );
- return true;
- }
- if (arg == "-j" || arg == "--json-schema") {
- CHECK_ARG
- sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
- return true;
- }
- if (arg == "--override-kv") {
- CHECK_ARG
- if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
- invalid_param = true;
- return true;
- }
- return true;
- }
- if (arg == "--host") {
- CHECK_ARG
- params.hostname = argv[i];
- return true;
- }
- if (arg == "--port") {
- CHECK_ARG
- params.port = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--path") {
- CHECK_ARG
- params.public_path = argv[i];
- return true;
- }
- if (arg == "--api-key") {
- CHECK_ARG
- params.api_keys.push_back(argv[i]);
- return true;
- }
- if (arg == "--api-key-file") {
- CHECK_ARG
- std::ifstream key_file(argv[i]);
- if (!key_file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::string key;
- while (std::getline(key_file, key)) {
- if (!key.empty()) {
- params.api_keys.push_back(key);
- }
- }
- key_file.close();
- return true;
- }
- if (arg == "--ssl-key-file") {
- CHECK_ARG
- params.ssl_file_key = argv[i];
- return true;
- }
- if (arg == "--ssl-cert-file") {
- CHECK_ARG
- params.ssl_file_cert = argv[i];
- return true;
- }
- if (arg == "--timeout" || arg == "-to") {
- CHECK_ARG
- params.timeout_read = std::stoi(argv[i]);
- params.timeout_write = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--threads-http") {
- CHECK_ARG
- params.n_threads_http = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-spf" || arg == "--system-prompt-file") {
- CHECK_ARG
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- std::string system_prompt;
- std::copy(
- std::istreambuf_iterator<char>(file),
- std::istreambuf_iterator<char>(),
- std::back_inserter(system_prompt)
- );
- params.system_prompt = system_prompt;
- return true;
- }
- if (arg == "--log-format") {
- CHECK_ARG
- if (std::strcmp(argv[i], "json") == 0) {
- params.log_json = true;
- } else if (std::strcmp(argv[i], "text") == 0) {
- params.log_json = false;
- } else {
- invalid_param = true;
- return true;
- }
- return true;
- }
- if (arg == "--no-slots") {
- params.endpoint_slots = false;
- return true;
- }
- if (arg == "--metrics") {
- params.endpoint_metrics = true;
- return true;
- }
- if (arg == "--slot-save-path") {
- CHECK_ARG
- params.slot_save_path = argv[i];
- // if doesn't end with DIRECTORY_SEPARATOR, add it
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
- params.slot_save_path += DIRECTORY_SEPARATOR;
- }
- return true;
- }
- if (arg == "--chat-template") {
- CHECK_ARG
- if (!llama_chat_verify_template(argv[i])) {
- fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
- fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
- invalid_param = true;
- return true;
- }
- params.chat_template = argv[i];
- return true;
- }
- if (arg == "--slot-prompt-similarity" || arg == "-sps") {
- CHECK_ARG
- params.slot_prompt_similarity = std::stof(argv[i]);
- return true;
- }
- if (arg == "-pps") {
- params.is_pp_shared = true;
- return true;
- }
- if (arg == "-npp") {
- CHECK_ARG
- auto p = string_split<int>(argv[i], split_delim);
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
- return true;
- }
- if (arg == "-ntg") {
- CHECK_ARG
- auto p = string_split<int>(argv[i], split_delim);
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
- return true;
- }
- if (arg == "-npl") {
- CHECK_ARG
- auto p = string_split<int>(argv[i], split_delim);
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
- return true;
- }
- if (arg == "--context-file") {
- CHECK_ARG
- std::ifstream file(argv[i], std::ios::binary);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- invalid_param = true;
- return true;
- }
- params.context_files.push_back(argv[i]);
- return true;
- }
- if (arg == "--chunk-size") {
- CHECK_ARG
- params.chunk_size = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--chunk-separator") {
- CHECK_ARG
- params.chunk_separator = argv[i];
- return true;
- }
- if (arg == "--junk") {
- CHECK_ARG
- params.n_junk = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--pos") {
- CHECK_ARG
- params.i_pos = std::stoi(argv[i]);
- return true;
- }
- if (arg == "-o" || arg == "--output" || arg == "--output-file") {
- CHECK_ARG
- params.out_file = argv[i];
- params.cvector_outfile = argv[i];
- params.lora_outfile = argv[i];
- return true;
- }
- if (arg == "-ofreq" || arg == "--output-frequency") {
- CHECK_ARG
- params.n_out_freq = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--save-frequency") {
- CHECK_ARG
- params.n_save_freq = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--process-output") {
- params.process_output = true;
- return true;
- }
- if (arg == "--no-ppl") {
- params.compute_ppl = false;
- return true;
- }
- if (arg == "--chunk" || arg == "--from-chunk") {
- CHECK_ARG
- params.i_chunk = std::stoi(argv[i]);
- return true;
- }
- // cvector params
- if (arg == "--positive-file") {
- CHECK_ARG
- params.cvector_positive_file = argv[i];
- return true;
- }
- if (arg == "--negative-file") {
- CHECK_ARG
- params.cvector_negative_file = argv[i];
- return true;
- }
- if (arg == "--pca-batch") {
- CHECK_ARG
- params.n_pca_batch = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--pca-iter") {
- CHECK_ARG
- params.n_pca_iterations = std::stoi(argv[i]);
- return true;
- }
- if (arg == "--method") {
- CHECK_ARG
- std::string value(argv[i]);
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
- else { invalid_param = true; }
- return true;
- }
- if (arg == "--no-warmup") {
- params.warmup = false;
- return true;
- }
- #ifndef LOG_DISABLE_LOGS
- // Parse args for logging parameters
- if (log_param_single_parse(argv[i])) {
- // Do nothing, log_param_single_parse automatically does it's thing
- // and returns if a match was found and parsed.
- return true;
- }
- if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
- // We have a matching known parameter requiring an argument,
- // now we need to check if there is anything after this argv
- // and flag invalid_param or parse it.
- CHECK_ARG
- if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
- invalid_param = true;
- return true;
- }
- return true;
- }
- // End of Parse args for logging parameters
- #endif // LOG_DISABLE_LOGS
- return false;
- }
- #ifdef __GNUC__
- #ifdef __MINGW32__
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #else
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
- #endif
- void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
- const llama_sampling_params & sparams = params.sparams;
- std::string sampler_type_chars;
- std::string sampler_type_names;
- for (const auto sampler_type : sparams.samplers_sequence) {
- sampler_type_chars += static_cast<char>(sampler_type);
- sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
- }
- sampler_type_names.pop_back();
- struct option_info {
- LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5)
- option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) {
- va_list args_list;
- va_start(args_list, desc);
- char buffer[1024];
- vsnprintf(buffer, sizeof(buffer), desc, args_list);
- va_end(args_list);
- this->desc = buffer;
- }
- option_info(const std::string & grp) : grp(grp) {}
- std::string tags;
- std::string args;
- std::string desc;
- std::string grp;
- };
- std::vector<option_info> options;
- // TODO: filter by tags
- options.push_back({ "general" });
- options.push_back({ "*", "-h, --help, --usage", "print usage and exit" });
- options.push_back({ "*", " --version", "show version and build info" });
- options.push_back({ "*", "-v, --verbose", "print verbose information" });
- options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity });
- options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
- options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
- options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
- options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
- options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
- options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
- options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
- options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
- options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
- options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
- options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
- "path to static lookup cache to use for lookup decoding (not updated by generation)" });
- options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME",
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
- options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
- options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
- options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
- options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
- options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
- options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
- options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
- options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with\n"
- "in conversation mode, this will be used as system prompt\n"
- "(default: '%s')", params.prompt.c_str() });
- options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
- options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" });
- options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
- options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" });
- options.push_back({ "*", " --no-escape", "do not process escape sequences" });
- options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print });
- options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" });
- options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n"
- "not supported with --interactive or other interactive options" });
- options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" });
- options.push_back({ "main", "-r, --reverse-prompt PROMPT",
- "halt generation at PROMPT, return control in interactive mode\n"
- "can be specified more than once for multiple prompts" });
- options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" });
- options.push_back({ "main", "-cnv, --conversation", "run in conversation mode, does not print special tokens and suffix/prefix\n"
- "if suffix/prefix are not specified, default chat template will be used\n"
- "(default: %s)", params.conversation ? "true" : "false" });
- options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" });
- options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" });
- options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" });
- options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
- options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
- options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
- options.push_back({ "main", " --no-warmup", "skip warming up the model with an empty run" });
- options.push_back({ "server infill",
- " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
- options.push_back({ "sampling" });
- options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
- "(default: %s)", sampler_type_names.c_str() });
- options.push_back({ "*", " --sampling-seq SEQUENCE",
- "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
- options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
- options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
- options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
- options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
- options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
- options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
- options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
- options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
- options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
- options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
- options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
- options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq });
- options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range });
- options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent });
- options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n"
- "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
- options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
- options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
- options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
- options.push_back({ "main", " --cfg-negative-prompt PROMPT",
- "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
- options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
- "negative prompt file to use for guidance" });
- options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
- options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "if suffix/prefix are specified, template will be disabled\n"
- "only commonly used templates are accepted:\n"
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
- options.push_back({ "grammar" });
- options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
- options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
- options.push_back({ "*", "-j, --json-schema SCHEMA",
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
- "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
- options.push_back({ "embedding" });
- options.push_back({ "embedding", " --pooling {none,mean,cls,last}",
- "pooling type for embeddings, use model default if unspecified" });
- options.push_back({ "embedding", " --attention {causal,non-causal}",
- "attention type for embeddings, use model default if unspecified" });
- options.push_back({ "context hacking" });
- options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
- "RoPE frequency scaling method, defaults to linear unless specified by the model" });
- options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" });
- options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" });
- options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" });
- options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx });
- options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor });
- options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor });
- options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow });
- options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast });
- options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n });
- options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w });
- options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" });
- options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
- options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
- options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
- options.push_back({ "perplexity" });
- options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
- options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
- options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks });
- options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" });
- options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks });
- options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" });
- options.push_back({ "perplexity", " --multiple-choice-tasks N",
- "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks });
- options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" });
- options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride });
- options.push_back({ "perplexity", " --ppl-output-type {0,1}",
- "output type for perplexity calculation (default: %d)", params.ppl_output_type });
- options.push_back({ "parallel" });
- options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
- options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
- options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
- options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
- options.push_back({ "*", "-nocb, --no-cont-batching", "disable continuous batching" });
- options.push_back({ "multi-modality" });
- options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
- options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
- options.push_back({ "backend" });
- options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
- if (llama_supports_mlock()) {
- options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
- }
- if (llama_supports_mmap()) {
- options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" });
- }
- options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n"
- " - distribute: spread execution evenly over all nodes\n"
- " - isolate: only spawn threads on CPUs on the node that execution started on\n"
- " - numactl: use the CPU map provided by numactl\n"
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
- "see https://github.com/ggerganov/llama.cpp/issues/1437" });
- if (llama_supports_gpu_offload()) {
- options.push_back({ "*", "-ngl, --gpu-layers N",
- "number of layers to store in VRAM" });
- options.push_back({ "*", "-ngld, --gpu-layers-draft N",
- "number of layers to store in VRAM for the draft model" });
- options.push_back({ "*", "-sm, --split-mode SPLIT_MODE",
- "how to split the model across multiple GPUs, one of:\n"
- " - none: use one GPU only\n"
- " - layer (default): split layers and KV across GPUs\n"
- " - row: split rows across GPUs" });
- options.push_back({ "*", "-ts, --tensor-split SPLIT",
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" });
- options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n"
- "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu });
- }
- options.push_back({ "model" });
- options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" });
- options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
- "advanced option to override model metadata by key. may be specified multiple times.\n"
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
- options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (can be repeated to use multiple adapters)" });
- options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
- options.push_back({ "*", " --control-vector FNAME", "add a control vector\n"
- "note: this argument can be repeated to add multiple control vectors" });
- options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
- "add a control vector with user defined scaling SCALE\n"
- "note: this argument can be repeated to add multiple scaled control vectors" });
- options.push_back({ "*", " --control-vector-layer-range START END",
- "layer range to apply the control vector(s) to, start and end inclusive" });
- options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n"
- "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH });
- options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" });
- options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" });
- options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
- options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
- options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" });
- options.push_back({ "retrieval" });
- options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
- options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size });
- options.push_back({ "retrieval", " --chunk-separator STRING",
- "separator between chunks (default: '%s')", params.chunk_separator.c_str() });
- options.push_back({ "passkey" });
- options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk });
- options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos });
- options.push_back({ "imatrix" });
- options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() });
- options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq });
- options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq });
- options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" });
- options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" });
- options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk });
- options.push_back({ "bench" });
- options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" });
- options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" });
- options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" });
- options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" });
- options.push_back({ "embedding" });
- options.push_back({ "embedding", " --embd-normalize", "normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize });
- options.push_back({ "embedding", " --embd-output-format", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix" });
- options.push_back({ "embedding", " --embd-separator", "separator of embendings (default \\n) for example \"<#sep#>\"" });
- options.push_back({ "server" });
- options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
- options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
- options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
- options.push_back({ "server", " --embedding(s)", "restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled" });
- options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
- options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
- options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
- options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" });
- options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read });
- options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http });
- options.push_back({ "server", " --system-prompt-file FNAME",
- "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" });
- options.push_back({ "server", " --log-format {text,json}",
- "log output format: json or text (default: json)" });
- options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" });
- options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" });
- options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" });
- options.push_back({ "server", " --chat-template JINJA_TEMPLATE",
- "set custom jinja chat template (default: template taken from model's metadata)\n"
- "only commonly used templates are accepted:\n"
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
- options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY",
- "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity });
- options.push_back({ "server", " --lora-init-without-apply", "load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"});
- #ifndef LOG_DISABLE_LOGS
- options.push_back({ "logging" });
- options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" });
- options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" });
- options.push_back({ "logging", " --log-test", "Run simple logging test" });
- options.push_back({ "logging", " --log-disable", "Disable trace logs" });
- options.push_back({ "logging", " --log-enable", "Enable trace logs" });
- options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" });
- options.push_back({ "logging", " --log-new", "Create a separate new log file on start. "
- "Each log file will have unique name: \"<name>.<ID>.log\"" });
- options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
- #endif // LOG_DISABLE_LOGS
- options.push_back({ "cvector" });
- options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
- options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
- options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
- options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
- options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
- options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" });
- options.push_back({ "export-lora" });
- options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() });
- options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" });
- options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
- options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads });
- options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() });
- printf("usage: %s [options]\n", argv[0]);
- for (const auto & o : options) {
- if (!o.grp.empty()) {
- printf("\n%s:\n\n", o.grp.c_str());
- continue;
- }
- printf(" %-32s", o.args.c_str());
- if (o.args.length() > 30) {
- printf("\n%34s", "");
- }
- const auto desc = o.desc;
- size_t start = 0;
- size_t end = desc.find('\n');
- while (end != std::string::npos) {
- printf("%s\n%34s", desc.substr(start, end - start).c_str(), "");
- start = end + 1;
- end = desc.find('\n', start);
- }
- printf("%s\n", desc.substr(start).c_str());
- }
- printf("\n");
- }
- std::string gpt_params_get_system_info(const gpt_params & params) {
- std::ostringstream os;
- os << "system_info: n_threads = " << params.n_threads;
- if (params.n_threads_batch != -1) {
- os << " (n_threads_batch = " << params.n_threads_batch << ")";
- }
- os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
- return os.str();
- }
- //
- // String utils
- //
- std::vector<std::string> string_split(std::string input, char separator) {
- std::vector<std::string> parts;
- size_t separator_pos = input.find(separator);
- while (separator_pos != std::string::npos) {
- std::string part = input.substr(0, separator_pos);
- parts.emplace_back(part);
- input = input.substr(separator_pos + 1);
- separator_pos = input.find(separator);
- }
- parts.emplace_back(input);
- return parts;
- }
- std::string string_strip(const std::string & str) {
- size_t start = 0;
- size_t end = str.size();
- while (start < end && std::isspace(str[start])) {
- start++;
- }
- while (end > start && std::isspace(str[end - 1])) {
- end--;
- }
- return str.substr(start, end - start);
- }
- std::string string_get_sortable_timestamp() {
- using clock = std::chrono::system_clock;
- const clock::time_point current_time = clock::now();
- const time_t as_time_t = clock::to_time_t(current_time);
- char timestamp_no_ns[100];
- std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
- const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
- current_time.time_since_epoch() % 1000000000).count();
- char timestamp_ns[11];
- snprintf(timestamp_ns, 11, "%09" PRId64, ns);
- return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
- }
- void string_process_escapes(std::string & input) {
- std::size_t input_len = input.length();
- std::size_t output_idx = 0;
- for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
- if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
- switch (input[++input_idx]) {
- case 'n': input[output_idx++] = '\n'; break;
- case 'r': input[output_idx++] = '\r'; break;
- case 't': input[output_idx++] = '\t'; break;
- case '\'': input[output_idx++] = '\''; break;
- case '\"': input[output_idx++] = '\"'; break;
- case '\\': input[output_idx++] = '\\'; break;
- case 'x':
- // Handle \x12, etc
- if (input_idx + 2 < input_len) {
- const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
- char *err_p = nullptr;
- const long val = std::strtol(x, &err_p, 16);
- if (err_p == x + 2) {
- input_idx += 2;
- input[output_idx++] = char(val);
- break;
- }
- }
- // fall through
- default: input[output_idx++] = '\\';
- input[output_idx++] = input[input_idx]; break;
- }
- } else {
- input[output_idx++] = input[input_idx];
- }
- }
- input.resize(output_idx);
- }
- bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
- const char * sep = strchr(data, '=');
- if (sep == nullptr || sep - data >= 128) {
- fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
- return false;
- }
- llama_model_kv_override kvo;
- std::strncpy(kvo.key, data, sep - data);
- kvo.key[sep - data] = 0;
- sep++;
- if (strncmp(sep, "int:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
- kvo.val_i64 = std::atol(sep);
- } else if (strncmp(sep, "float:", 6) == 0) {
- sep += 6;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
- kvo.val_f64 = std::atof(sep);
- } else if (strncmp(sep, "bool:", 5) == 0) {
- sep += 5;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
- if (std::strcmp(sep, "true") == 0) {
- kvo.val_bool = true;
- } else if (std::strcmp(sep, "false") == 0) {
- kvo.val_bool = false;
- } else {
- fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
- return false;
- }
- } else if (strncmp(sep, "str:", 4) == 0) {
- sep += 4;
- kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
- if (strlen(sep) > 127) {
- fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
- return false;
- }
- strncpy(kvo.val_str, sep, 127);
- kvo.val_str[127] = '\0';
- } else {
- fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
- return false;
- }
- overrides.emplace_back(std::move(kvo));
- return true;
- }
- //
- // Filesystem utils
- //
- // Validate if a filename is safe to use
- // To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
- bool fs_validate_filename(const std::string & filename) {
- if (!filename.length()) {
- // Empty filename invalid
- return false;
- }
- if (filename.length() > 255) {
- // Limit at common largest possible filename on Linux filesystems
- // to avoid unnecessary further validation
- // (On systems with smaller limits it will be caught by the OS)
- return false;
- }
- std::u32string filename_utf32;
- try {
- std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
- filename_utf32 = converter.from_bytes(filename);
- // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
- // or invalid encodings were encountered. Reject such attempts
- std::string filename_reencoded = converter.to_bytes(filename_utf32);
- if (filename_reencoded != filename) {
- return false;
- }
- } catch (const std::exception &) {
- return false;
- }
- // Check for forbidden codepoints:
- // - Control characters
- // - Unicode equivalents of illegal characters
- // - UTF-16 surrogate pairs
- // - UTF-8 replacement character
- // - Byte order mark (BOM)
- // - Illegal characters: / \ : * ? " < > |
- for (char32_t c : filename_utf32) {
- if (c <= 0x1F // Control characters (C0)
- || c == 0x7F // Control characters (DEL)
- || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
- || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
- || c == 0x2215 // Division Slash (forward slash equivalent)
- || c == 0x2216 // Set Minus (backslash equivalent)
- || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
- || c == 0xFFFD // Replacement Character (UTF-8)
- || c == 0xFEFF // Byte Order Mark (BOM)
- || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
- || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
- return false;
- }
- }
- // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
- // Unicode and other whitespace is not affected, only 0x20 space
- if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
- return false;
- }
- // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
- if (filename.find("..") != std::string::npos) {
- return false;
- }
- // Reject "."
- if (filename == ".") {
- return false;
- }
- return true;
- }
- // returns true if successful, false otherwise
- bool fs_create_directory_with_parents(const std::string & path) {
- #ifdef _WIN32
- std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
- std::wstring wpath = converter.from_bytes(path);
- // if the path already exists, check whether it's a directory
- const DWORD attributes = GetFileAttributesW(wpath.c_str());
- if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return true;
- }
- size_t pos_slash = 0;
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
- const std::wstring subpath = wpath.substr(0, pos_slash);
- const wchar_t * test = subpath.c_str();
- const bool success = CreateDirectoryW(test, NULL);
- if (!success) {
- const DWORD error = GetLastError();
- // if the path already exists, ensure that it's a directory
- if (error == ERROR_ALREADY_EXISTS) {
- const DWORD attributes = GetFileAttributesW(subpath.c_str());
- if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
- return false;
- }
- } else {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #else
- // if the path already exists, check whether it's a directory
- struct stat info;
- if (stat(path.c_str(), &info) == 0) {
- return S_ISDIR(info.st_mode);
- }
- size_t pos_slash = 1; // skip leading slashes for directory creation
- // process path from front to back, procedurally creating directories
- while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
- const std::string subpath = path.substr(0, pos_slash);
- struct stat info;
- // if the path already exists, ensure that it's a directory
- if (stat(subpath.c_str(), &info) == 0) {
- if (!S_ISDIR(info.st_mode)) {
- return false;
- }
- } else {
- // create parent directories
- const int ret = mkdir(subpath.c_str(), 0755);
- if (ret != 0) {
- return false;
- }
- }
- pos_slash += 1;
- }
- return true;
- #endif // _WIN32
- }
- std::string fs_get_cache_directory() {
- std::string cache_directory = "";
- auto ensure_trailing_slash = [](std::string p) {
- // Make sure to add trailing slash
- if (p.back() != DIRECTORY_SEPARATOR) {
- p += DIRECTORY_SEPARATOR;
- }
- return p;
- };
- if (getenv("LLAMA_CACHE")) {
- cache_directory = std::getenv("LLAMA_CACHE");
- } else {
- #ifdef __linux__
- if (std::getenv("XDG_CACHE_HOME")) {
- cache_directory = std::getenv("XDG_CACHE_HOME");
- } else {
- cache_directory = std::getenv("HOME") + std::string("/.cache/");
- }
- #elif defined(__APPLE__)
- cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
- #elif defined(_WIN32)
- cache_directory = std::getenv("LOCALAPPDATA");
- #endif // __linux__
- cache_directory = ensure_trailing_slash(cache_directory);
- cache_directory += "llama.cpp";
- }
- return ensure_trailing_slash(cache_directory);
- }
- std::string fs_get_cache_file(const std::string & filename) {
- GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
- std::string cache_directory = fs_get_cache_directory();
- const bool success = fs_create_directory_with_parents(cache_directory);
- if (!success) {
- throw std::runtime_error("failed to create cache directory: " + cache_directory);
- }
- return cache_directory + filename;
- }
- //
- // Model utils
- //
- struct llama_init_result llama_init_from_gpt_params(gpt_params & params) {
- llama_init_result iparams;
- auto mparams = llama_model_params_from_gpt_params(params);
- llama_model * model = nullptr;
- if (!params.hf_repo.empty() && !params.hf_file.empty()) {
- model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
- } else if (!params.model_url.empty()) {
- model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
- } else {
- model = llama_load_model_from_file(params.model.c_str(), mparams);
- }
- if (model == NULL) {
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
- return iparams;
- }
- auto cparams = llama_context_params_from_gpt_params(params);
- llama_context * lctx = llama_new_context_with_model(model, cparams);
- if (lctx == NULL) {
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
- llama_free_model(model);
- return iparams;
- }
- if (!params.control_vectors.empty()) {
- if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
- if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
- const auto cvec = llama_control_vector_load(params.control_vectors);
- if (cvec.n_embd == -1) {
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- int err = llama_control_vector_apply(lctx,
- cvec.data.data(),
- cvec.data.size(),
- cvec.n_embd,
- params.control_vector_layer_start,
- params.control_vector_layer_end);
- if (err) {
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- }
- // load and optionally apply lora adapters
- for (auto & la : params.lora_adapters) {
- llama_lora_adapter_container loaded_la;
- loaded_la.path = la.path;
- loaded_la.scale = la.scale;
- loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
- if (loaded_la.adapter == nullptr) {
- fprintf(stderr, "%s: error: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
- llama_free(lctx);
- llama_free_model(model);
- return iparams;
- }
- iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
- }
- if (!params.lora_init_without_apply) {
- llama_lora_adapters_apply(lctx, iparams.lora_adapters);
- }
- if (params.ignore_eos) {
- params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
- }
- if (params.warmup) {
- LOG("warming up the model with an empty run\n");
- std::vector<llama_token> tmp;
- llama_token bos = llama_token_bos(model);
- llama_token eos = llama_token_eos(model);
- // some models (e.g. T5) don't have a BOS token
- if (bos != -1) {
- tmp.push_back(bos);
- }
- tmp.push_back(eos);
- if (llama_model_has_encoder(model)) {
- llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
- llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
- if (decoder_start_token_id == -1) {
- decoder_start_token_id = bos;
- }
- tmp.clear();
- tmp.push_back(decoder_start_token_id);
- }
- llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
- llama_kv_cache_clear(lctx);
- llama_synchronize(lctx);
- llama_reset_timings(lctx);
- }
- iparams.model = model;
- iparams.context = lctx;
- return iparams;
- }
- void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters) {
- llama_lora_adapter_clear(ctx);
- for (auto & la : lora_adapters) {
- if (la.scale != 0.0f) {
- llama_lora_adapter_set(ctx, la.adapter, la.scale);
- }
- }
- }
- struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
- auto mparams = llama_model_default_params();
- if (params.n_gpu_layers != -1) {
- mparams.n_gpu_layers = params.n_gpu_layers;
- }
- mparams.rpc_servers = params.rpc_servers.c_str();
- mparams.main_gpu = params.main_gpu;
- mparams.split_mode = params.split_mode;
- mparams.tensor_split = params.tensor_split;
- mparams.use_mmap = params.use_mmap;
- mparams.use_mlock = params.use_mlock;
- mparams.check_tensors = params.check_tensors;
- if (params.kv_overrides.empty()) {
- mparams.kv_overrides = NULL;
- } else {
- GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
- mparams.kv_overrides = params.kv_overrides.data();
- }
- return mparams;
- }
- static ggml_type kv_cache_type_from_str(const std::string & s) {
- if (s == "f32") {
- return GGML_TYPE_F32;
- }
- if (s == "f16") {
- return GGML_TYPE_F16;
- }
- if (s == "q8_0") {
- return GGML_TYPE_Q8_0;
- }
- if (s == "q4_0") {
- return GGML_TYPE_Q4_0;
- }
- if (s == "q4_1") {
- return GGML_TYPE_Q4_1;
- }
- if (s == "iq4_nl") {
- return GGML_TYPE_IQ4_NL;
- }
- if (s == "q5_0") {
- return GGML_TYPE_Q5_0;
- }
- if (s == "q5_1") {
- return GGML_TYPE_Q5_1;
- }
- throw std::runtime_error("Invalid cache type: " + s);
- }
- struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
- auto cparams = llama_context_default_params();
- cparams.n_ctx = params.n_ctx;
- cparams.n_seq_max = params.n_parallel;
- cparams.n_batch = params.n_batch;
- cparams.n_ubatch = params.n_ubatch;
- cparams.n_threads = params.n_threads;
- cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
- cparams.seed = params.seed;
- cparams.logits_all = params.logits_all;
- cparams.embeddings = params.embedding;
- cparams.rope_scaling_type = params.rope_scaling_type;
- cparams.rope_freq_base = params.rope_freq_base;
- cparams.rope_freq_scale = params.rope_freq_scale;
- cparams.yarn_ext_factor = params.yarn_ext_factor;
- cparams.yarn_attn_factor = params.yarn_attn_factor;
- cparams.yarn_beta_fast = params.yarn_beta_fast;
- cparams.yarn_beta_slow = params.yarn_beta_slow;
- cparams.yarn_orig_ctx = params.yarn_orig_ctx;
- cparams.pooling_type = params.pooling_type;
- cparams.attention_type = params.attention_type;
- cparams.defrag_thold = params.defrag_thold;
- cparams.cb_eval = params.cb_eval;
- cparams.cb_eval_user_data = params.cb_eval_user_data;
- cparams.offload_kqv = !params.no_kv_offload;
- cparams.flash_attn = params.flash_attn;
- cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
- cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
- return cparams;
- }
- #ifdef LLAMA_USE_CURL
- static bool starts_with(const std::string & str, const std::string & prefix) {
- // While we wait for C++20's std::string::starts_with...
- return str.rfind(prefix, 0) == 0;
- }
- static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
- // Initialize libcurl
- std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
- if (!curl) {
- fprintf(stderr, "%s: error initializing libcurl\n", __func__);
- return false;
- }
- bool force_download = false;
- // Set the URL, allow to follow http redirection
- curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
- curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
- // Check if hf-token or bearer-token was specified
- if (!hf_token.empty()) {
- std::string auth_header = "Authorization: Bearer ";
- auth_header += hf_token.c_str();
- struct curl_slist *http_headers = NULL;
- http_headers = curl_slist_append(http_headers, auth_header.c_str());
- curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers);
- }
- #if defined(_WIN32)
- // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
- // operating system. Currently implemented under MS-Windows.
- curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
- #endif
- // Check if the file already exists locally
- struct stat model_file_info;
- auto file_exists = (stat(path.c_str(), &model_file_info) == 0);
- // If the file exists, check its JSON metadata companion file.
- std::string metadata_path = path + ".json";
- nlohmann::json metadata;
- std::string etag;
- std::string last_modified;
- if (file_exists) {
- // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
- std::ifstream metadata_in(metadata_path);
- if (metadata_in.good()) {
- try {
- metadata_in >> metadata;
- fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
- if (metadata.contains("url") && metadata.at("url").is_string()) {
- auto previous_url = metadata.at("url").get<std::string>();
- if (previous_url != url) {
- fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
- return false;
- }
- }
- if (metadata.contains("etag") && metadata.at("etag").is_string()) {
- etag = metadata.at("etag");
- }
- if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
- last_modified = metadata.at("lastModified");
- }
- } catch (const nlohmann::json::exception & e) {
- fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
- return false;
- }
- }
- } else {
- fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
- }
- // Send a HEAD request to retrieve the etag and last-modified headers
- struct llama_load_model_from_url_headers {
- std::string etag;
- std::string last_modified;
- };
- llama_load_model_from_url_headers headers;
- {
- typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
- auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
- llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
- static std::regex header_regex("([^:]+): (.*)\r\n");
- static std::regex etag_regex("ETag", std::regex_constants::icase);
- static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
- std::string header(buffer, n_items);
- std::smatch match;
- if (std::regex_match(header, match, header_regex)) {
- const std::string & key = match[1];
- const std::string & value = match[2];
- if (std::regex_match(key, match, etag_regex)) {
- headers->etag = value;
- } else if (std::regex_match(key, match, last_modified_regex)) {
- headers->last_modified = value;
- }
- }
- return n_items;
- };
- curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
- curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
- curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
- curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
- CURLcode res = curl_easy_perform(curl.get());
- if (res != CURLE_OK) {
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return false;
- }
- long http_code = 0;
- curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code != 200) {
- // HEAD not supported, we don't know if the file has changed
- // force trigger downloading
- force_download = true;
- fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
- }
- }
- bool should_download = !file_exists || force_download;
- if (!should_download) {
- if (!etag.empty() && etag != headers.etag) {
- fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
- should_download = true;
- } else if (!last_modified.empty() && last_modified != headers.last_modified) {
- fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
- should_download = true;
- }
- }
- if (should_download) {
- std::string path_temporary = path + ".downloadInProgress";
- if (file_exists) {
- fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
- if (remove(path.c_str()) != 0) {
- fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
- return false;
- }
- }
- // Set the output file
- struct FILE_deleter {
- void operator()(FILE * f) const {
- fclose(f);
- }
- };
- std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
- if (!outfile) {
- fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
- return false;
- }
- typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
- auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
- return fwrite(data, size, nmemb, (FILE *)fd);
- };
- curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
- curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
- curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
- // display download progress
- curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
- // helper function to hide password in URL
- auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
- std::size_t protocol_pos = url.find("://");
- if (protocol_pos == std::string::npos) {
- return url; // Malformed URL
- }
- std::size_t at_pos = url.find('@', protocol_pos + 3);
- if (at_pos == std::string::npos) {
- return url; // No password in URL
- }
- return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
- };
- // start the download
- fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
- llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
- auto res = curl_easy_perform(curl.get());
- if (res != CURLE_OK) {
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
- return false;
- }
- long http_code = 0;
- curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
- if (http_code < 200 || http_code >= 400) {
- fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
- return false;
- }
- // Causes file to be closed explicitly here before we rename it.
- outfile.reset();
- // Write the updated JSON metadata file.
- metadata.update({
- {"url", url},
- {"etag", headers.etag},
- {"lastModified", headers.last_modified}
- });
- std::ofstream(metadata_path) << metadata.dump(4);
- fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
- if (rename(path_temporary.c_str(), path.c_str()) != 0) {
- fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
- return false;
- }
- }
- return true;
- }
- struct llama_model * llama_load_model_from_url(
- const char * model_url,
- const char * path_model,
- const char * hf_token,
- const struct llama_model_params & params) {
- // Basic validation of the model_url
- if (!model_url || strlen(model_url) == 0) {
- fprintf(stderr, "%s: invalid model_url\n", __func__);
- return NULL;
- }
- if (!llama_download_file(model_url, path_model, hf_token)) {
- return NULL;
- }
- // check for additional GGUFs split to download
- int n_split = 0;
- {
- struct gguf_init_params gguf_params = {
- /*.no_alloc = */ true,
- /*.ctx = */ NULL,
- };
- auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
- if (!ctx_gguf) {
- fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
- return NULL;
- }
- auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
- if (key_n_split >= 0) {
- n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
- }
- gguf_free(ctx_gguf);
- }
- if (n_split > 1) {
- char split_prefix[PATH_MAX] = {0};
- char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
- // Verify the first split file format
- // and extract split URL and PATH prefixes
- {
- if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
- fprintf(stderr, "\n%s: unexpected model file name: %s"
- " n_split=%d\n", __func__, path_model, n_split);
- return NULL;
- }
- if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
- fprintf(stderr, "\n%s: unexpected model url: %s"
- " n_split=%d\n", __func__, model_url, n_split);
- return NULL;
- }
- }
- // Prepare download in parallel
- std::vector<std::future<bool>> futures_download;
- for (int idx = 1; idx < n_split; idx++) {
- futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
- char split_path[PATH_MAX] = {0};
- llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
- char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
- llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
- return llama_download_file(split_url, split_path, hf_token);
- }, idx));
- }
- // Wait for all downloads to complete
- for (auto & f : futures_download) {
- if (!f.get()) {
- return NULL;
- }
- }
- }
- return llama_load_model_from_file(path_model, params);
- }
- struct llama_model * llama_load_model_from_hf(
- const char * repo,
- const char * model,
- const char * path_model,
- const char * hf_token,
- const struct llama_model_params & params) {
- // construct hugging face model url:
- //
- // --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
- // https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
- //
- // --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
- // https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
- //
- std::string model_url = "https://huggingface.co/";
- model_url += repo;
- model_url += "/resolve/main/";
- model_url += model;
- return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
- }
- #else
- struct llama_model * llama_load_model_from_url(
- const char * /*model_url*/,
- const char * /*path_model*/,
- const char * /*hf_token*/,
- const struct llama_model_params & /*params*/) {
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
- return nullptr;
- }
- struct llama_model * llama_load_model_from_hf(
- const char * /*repo*/,
- const char * /*model*/,
- const char * /*path_model*/,
- const char * /*hf_token*/,
- const struct llama_model_params & /*params*/) {
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
- return nullptr;
- }
- #endif // LLAMA_USE_CURL
- //
- // Batch utils
- //
- void llama_batch_clear(struct llama_batch & batch) {
- batch.n_tokens = 0;
- }
- void llama_batch_add(
- struct llama_batch & batch,
- llama_token id,
- llama_pos pos,
- const std::vector<llama_seq_id> & seq_ids,
- bool logits) {
- batch.token [batch.n_tokens] = id;
- batch.pos [batch.n_tokens] = pos;
- batch.n_seq_id[batch.n_tokens] = seq_ids.size();
- for (size_t i = 0; i < seq_ids.size(); ++i) {
- batch.seq_id[batch.n_tokens][i] = seq_ids[i];
- }
- batch.logits [batch.n_tokens] = logits;
- batch.n_tokens++;
- }
- //
- // Vocab utils
- //
- std::vector<llama_token> llama_tokenize(
- const struct llama_context * ctx,
- const std::string & text,
- bool add_special,
- bool parse_special) {
- return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
- }
- std::vector<llama_token> llama_tokenize(
- const struct llama_model * model,
- const std::string & text,
- bool add_special,
- bool parse_special) {
- // upper limit for the number of tokens
- int n_tokens = text.length() + 2 * add_special;
- std::vector<llama_token> result(n_tokens);
- n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return result;
- }
- std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
- std::string piece;
- piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
- const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
- if (n_chars < 0) {
- piece.resize(-n_chars);
- int check = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
- GGML_ASSERT(check == -n_chars);
- }
- else {
- piece.resize(n_chars);
- }
- return piece;
- }
- std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
- std::string text;
- text.resize(std::max(text.capacity(), tokens.size()));
- int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
- if (n_chars < 0) {
- text.resize(-n_chars);
- n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
- GGML_ASSERT(n_chars <= (int32_t)text.size()); // whitespace trimming is performed after per-token detokenization
- }
- text.resize(n_chars);
- // NOTE: the original tokenizer decodes bytes after collecting the pieces.
- return text;
- }
- bool llama_should_add_bos_token(const llama_model * model) {
- const int add_bos = llama_add_bos_token(model);
- return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
- }
- //
- // Chat template utils
- //
- bool llama_chat_verify_template(const std::string & tmpl) {
- llama_chat_message chat[] = {{"user", "test"}};
- int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
- return res >= 0;
- }
- std::string llama_chat_apply_template(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<llama_chat_msg> & msgs,
- bool add_ass) {
- int alloc_size = 0;
- bool fallback = false; // indicate if we must fallback to default chatml
- std::vector<llama_chat_message> chat;
- for (auto & msg : msgs) {
- chat.push_back({msg.role.c_str(), msg.content.c_str()});
- alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
- }
- const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
- std::vector<char> buf(alloc_size);
- // run the first time to get the total output length
- int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- // error: chat template is not supported
- if (res < 0) {
- if (ptr_tmpl != nullptr) {
- // if the custom "tmpl" is not supported, we throw an error
- // this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
- throw std::runtime_error("this custom template is not supported");
- } else {
- // If the built-in template is not supported, we default to chatml
- res = llama_chat_apply_template(nullptr, "chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- fallback = true;
- }
- }
- // if it turns out that our buffer is too small, we resize it
- if ((size_t) res > buf.size()) {
- buf.resize(res);
- res = llama_chat_apply_template(
- fallback ? nullptr : model,
- fallback ? "chatml" : ptr_tmpl,
- chat.data(), chat.size(), add_ass, buf.data(), buf.size());
- }
- std::string formatted_chat(buf.data(), res);
- return formatted_chat;
- }
- std::string llama_chat_format_single(const struct llama_model * model,
- const std::string & tmpl,
- const std::vector<llama_chat_msg> & past_msg,
- const llama_chat_msg & new_msg,
- bool add_ass) {
- std::ostringstream ss;
- auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
- std::vector<llama_chat_msg> chat_new(past_msg);
- // if the past_msg ends with a newline, we must preserve it in the formatted version
- if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
- ss << "\n";
- };
- // format chat with new_msg
- chat_new.push_back(new_msg);
- auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
- // get the diff part
- ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
- return ss.str();
- }
- std::string llama_chat_format_example(const struct llama_model * model,
- const std::string & tmpl) {
- std::vector<llama_chat_msg> msgs = {
- {"system", "You are a helpful assistant"},
- {"user", "Hello"},
- {"assistant", "Hi there"},
- {"user", "How are you?"},
- };
- return llama_chat_apply_template(model, tmpl, msgs, true);
- }
- //
- // KV cache utils
- //
- void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- int seq_count = 0;
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) { seq_count++; }
- }
- putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
- }
- printf("\n=== Done dumping\n");
- }
- void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
- static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
- printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
- view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
- std::unordered_map<llama_seq_id, size_t> seqs;
- llama_kv_cache_view_cell * c_curr = view.cells;
- llama_seq_id * cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] < 0) { continue; }
- if (seqs.find(cs_curr[j]) == seqs.end()) {
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- const size_t sz = seqs.size();
- seqs[cs_curr[j]] = sz;
- }
- }
- if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
- }
- printf("=== Sequence legend: ");
- for (const auto & it : seqs) {
- printf("%zu=%d, ", it.second, it.first);
- }
- printf("'+'=other sequence ids");
- c_curr = view.cells;
- cs_curr = view.cells_sequences;
- for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
- if (i % row_size == 0) {
- printf("\n%5d: ", i);
- }
- for (int j = 0; j < view.n_seq_max; j++) {
- if (cs_curr[j] >= 0) {
- const auto & it = seqs.find(cs_curr[j]);
- putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
- } else {
- putchar('.');
- }
- }
- putchar(' ');
- }
- printf("\n=== Done dumping\n");
- }
- //
- // Embedding utils
- //
- void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
- double sum = 0.0;
- switch (embd_norm) {
- case -1: // no normalisation
- sum = 1.0;
- break;
- case 0: // max absolute
- for (int i = 0; i < n; i++) {
- if (sum < std::abs(inp[i])) sum = std::abs(inp[i]);
- }
- sum /= 32760.0; // make an int16 range
- break;
- case 2: // euclidean
- for (int i = 0; i < n; i++) {
- sum += inp[i] * inp[i];
- }
- sum = std::sqrt(sum);
- break;
- default: // p-norm (euclidean is p-norm p=2)
- for (int i = 0; i < n; i++) {
- sum += std::pow(std::abs(inp[i]), embd_norm);
- }
- sum = std::pow(sum, 1.0 / embd_norm);
- break;
- }
- const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;
- for (int i = 0; i < n; i++) {
- out[i] = inp[i] * norm;
- }
- }
- float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
- double sum = 0.0;
- double sum1 = 0.0;
- double sum2 = 0.0;
- for (int i = 0; i < n; i++) {
- sum += embd1[i] * embd2[i];
- sum1 += embd1[i] * embd1[i];
- sum2 += embd2[i] * embd2[i];
- }
- // Handle the case where one or both vectors are zero vectors
- if (sum1 == 0.0 || sum2 == 0.0) {
- if (sum1 == 0.0 && sum2 == 0.0) {
- return 1.0f; // two zero vectors are similar
- }
- return 0.0f;
- }
- return sum / (sqrt(sum1) * sqrt(sum2));
- }
- //
- // Control vector utils
- //
- static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
- llama_control_vector_data result = { -1, {} };
- ggml_context * ctx = nullptr;
- struct gguf_init_params meta_gguf_params = {
- /* .no_alloc = */ false,
- /* .ctx = */ &ctx,
- };
- struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
- if (!ctx_gguf) {
- fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
- return result;
- }
- int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
- if (n_tensors == 0) {
- fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
- }
- for (int i = 0; i < n_tensors; i++) {
- std::string name = gguf_get_tensor_name(ctx_gguf, i);
- int layer_idx = -1;
- // split on '.'
- size_t dotpos = name.find('.');
- if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
- try {
- layer_idx = std::stoi(name.substr(dotpos + 1));
- } catch (...) {
- layer_idx = -1;
- }
- }
- if (layer_idx < 0) {
- fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- } else if (layer_idx == 0) {
- fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
- if (tensor->type != GGML_TYPE_F32) {
- fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (ggml_n_dims(tensor) != 1) {
- fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (result.n_embd == -1) {
- result.n_embd = ggml_nelements(tensor);
- } else if (ggml_nelements(tensor) != result.n_embd) {
- fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- // extend if necessary - do not store data for layer 0 (it's not used)
- result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);
- const float * src = (const float *) tensor->data;
- float * dst = result.data.data() + result.n_embd * (layer_idx - 1); // layer 1 at [0]
- for (int j = 0; j < result.n_embd; j++) {
- dst[j] += src[j] * load_info.strength; // allows multiple directions for same layer in same file
- }
- }
- if (result.n_embd == -1) {
- fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
- result.data.clear();
- }
- gguf_free(ctx_gguf);
- ggml_free(ctx);
- return result;
- }
- llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
- llama_control_vector_data result = { -1, {} };
- for (const auto & info : load_infos) {
- auto cur = llama_control_vector_load_one(info);
- if (cur.n_embd == -1) {
- result.n_embd = -1;
- break;
- }
- if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
- fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
- result.n_embd = -1;
- break;
- }
- if (result.n_embd == -1) {
- result = std::move(cur);
- } else {
- result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f); // extend if necessary
- for (size_t i = 0; i < cur.data.size(); i++) {
- result.data[i] += cur.data[i];
- }
- }
- }
- if (result.n_embd == -1) {
- fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
- result.data.clear();
- }
- return result;
- }
- //
- // YAML utils
- //
- void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%e, ", data[i]);
- }
- fprintf(stream, "%e]\n", data.back());
- }
- void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
- if (data.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- fprintf(stream, "%s: [", prop_name);
- for (size_t i = 0; i < data.size() - 1; ++i) {
- fprintf(stream, "%d, ", data[i]);
- }
- fprintf(stream, "%d]\n", data.back());
- }
- void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
- std::string data_str(data == NULL ? "" : data);
- if (data_str.empty()) {
- fprintf(stream, "%s:\n", prop_name);
- return;
- }
- size_t pos_start = 0;
- size_t pos_found = 0;
- if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
- data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
- data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
- data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
- data_str = "\"" + data_str + "\"";
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- if (data_str.find('\n') == std::string::npos) {
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
- return;
- }
- fprintf(stream, "%s: |\n", prop_name);
- while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
- fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
- pos_start = pos_found + 1;
- }
- }
- void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
- const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
- const llama_sampling_params & sparams = params.sparams;
- fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
- fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
- fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
- fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
- fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
- fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
- fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
- fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
- fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
- fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
- fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
- fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
- fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
- fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
- fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
- fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
- fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
- fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
- fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
- #ifdef NDEBUG
- fprintf(stream, "debug: false\n");
- #else
- fprintf(stream, "debug: true\n");
- #endif // NDEBUG
- fprintf(stream, "model_desc: %s\n", model_desc);
- fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
- #ifdef __OPTIMIZE__
- fprintf(stream, "optimize: true\n");
- #else
- fprintf(stream, "optimize: false\n");
- #endif // __OPTIMIZE__
- fprintf(stream, "time: %s\n", timestamp.c_str());
- fprintf(stream, "\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "# User Inputs #\n");
- fprintf(stream, "###############\n");
- fprintf(stream, "\n");
- fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
- fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
- yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
- fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
- fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
- fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
- fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
- fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
- fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
- fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
- yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
- fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
- fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
- fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
- const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
- const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
- fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
- yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
- fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
- yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
- fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
- fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
- fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
- fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
- fprintf(stream, "logit_bias:\n");
- for (std::pair<llama_token, float> lb : sparams.logit_bias) {
- if (ignore_eos && lb.first == logit_bias_eos->first) {
- continue;
- }
- fprintf(stream, " %d: %f", lb.first, lb.second);
- }
- fprintf(stream, "lora:\n");
- for (auto & la : params.lora_adapters) {
- if (la.scale == 1.0f) {
- fprintf(stream, " - %s\n", la.path.c_str());
- }
- }
- fprintf(stream, "lora_scaled:\n");
- for (auto & la : params.lora_adapters) {
- if (la.scale != 1.0f) {
- fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
- }
- }
- fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
- fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
- fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
- fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
- fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
- fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
- fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
- fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
- fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
- fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
- fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
- fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
- fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
- fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
- fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
- fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
- fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
- fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
- yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
- fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
- fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
- fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
- yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
- fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
- fprintf(stream, "reverse_prompt:\n");
- for (std::string ap : params.antiprompt) {
- size_t pos = 0;
- while ((pos = ap.find('\n', pos)) != std::string::npos) {
- ap.replace(pos, 1, "\\n");
- pos += 1;
- }
- fprintf(stream, " - %s\n", ap.c_str());
- }
- fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
- fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
- fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
- fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
- fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
- fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
- fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
- const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
- yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
- fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
- fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
- fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
- fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
- fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
- fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
- fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
- fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
- }
|