123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- package main
- import (
- "context"
- "encoding/json"
- "flag"
- "fmt"
- "log"
- "log/slog"
- "math"
- "net"
- "net/http"
- "runtime"
- "strconv"
- "strings"
- "sync"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/llama"
- )
- type Sequence struct {
- // number of tokens evaluated
- nPast int
- // number of tokens predicted so far
- numPredicted int
- // tokens left to evaluate
- tokens []int
- // channel to send responses over
- responses chan string
- // number of tokens to predict
- numPredict int
- samplingCtx *llama.SamplingContext
- // channel to send back the embedding if embedding only
- embedding chan []float32
- // stop sequences
- stop []string
- // true if an embedding are to be returned instead of text generation
- embeddingOnly bool
- doneReason string
- }
- // prompt returns true if the prompt is still being processed
- // TODO (jmorganca): clean up this logic
- func (s *Sequence) prompt() bool {
- return s.nPast < len(s.tokens)-1
- }
- func (s *Server) NewSequence(prompt string, stop []string, params *llama.SamplingParams, embedding bool) *Sequence {
- tokens, err := s.lc.Model().Tokenize(prompt, false, true)
- if err != nil {
- panic(err)
- }
- // truncate to last n tokens
- // TODO: this shouldn't happen and will severely impact generation
- // quality. instead we should ensure to cut prompt in the API.
- if len(tokens) > s.numCtx {
- tokens = tokens[:s.numCtx]
- }
- var sc *llama.SamplingContext
- if params != nil {
- sc = llama.NewSamplingContext(*params)
- for _, t := range tokens {
- sc.Accept(s.lc, t, false)
- }
- }
- return &Sequence{
- tokens: tokens,
- responses: make(chan string, 1),
- embedding: make(chan []float32, 1),
- samplingCtx: sc,
- embeddingOnly: embedding,
- stop: stop,
- }
- }
- type Server struct {
- model *llama.Model
- lc *llama.Context
- cc *llama.ClipContext
- batchSize int
- // parallel is the number of parallel requests to handle
- parallel int
- // seqs is the list of parallel sequences being evaluated
- // TODO (jmorganca): this can probably be moved into run()
- seqs []*Sequence
- // context window size
- numCtx int
- mu sync.Mutex
- cond *sync.Cond
- progress float32
- status string
- }
- func (s *Server) allNil() bool {
- for _, item := range s.seqs {
- if item != nil {
- return false
- }
- }
- return true
- }
- func (s *Server) run(ctx context.Context) {
- batch := llama.NewBatch(s.batchSize, 0, s.parallel)
- defer batch.Free()
- // build up stop sequences as we recognize them
- // TODO (jmorganca): simplify this
- pieces := make([][]string, s.parallel)
- for {
- select {
- case <-ctx.Done():
- return
- default:
- slog.Info("Processing batch", "seqs", len(s.seqs))
- s.mu.Lock()
- for s.allNil() {
- s.cond.Wait() // Wait until an item is added
- }
- s.mu.Unlock()
- // prepare the batch
- ibatch := make([]int, s.parallel)
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- // if past the num predict limit
- if seq.numPredicted > seq.numPredict || seq.nPast > s.numCtx {
- seq.doneReason = "limit"
- close(seq.responses)
- s.lc.KvCacheSeqRm(i, 0, -1)
- s.seqs[i] = nil
- continue
- }
- for j, t := range seq.tokens {
- // todo: make this n_batch
- if j > s.batchSize {
- break
- }
- batch.Add(t, seq.nPast, []int{i}, !seq.prompt())
- seq.nPast++
- if seq.prompt() {
- ibatch[i] = batch.NumTokens() + 1
- }
- }
- }
- err := s.lc.Decode(batch)
- if err != nil {
- panic("Failed to decode")
- }
- for i, seq := range s.seqs {
- if seq == nil {
- continue
- }
- // don't sample prompt processing
- if seq.prompt() {
- if len(seq.tokens) < s.batchSize {
- seq.tokens = []int{}
- } else {
- seq.tokens = seq.tokens[s.batchSize:]
- }
- continue
- }
- // if done processing the prompt, generating an embedding and return
- if seq.embeddingOnly {
- embd := s.lc.GetEmbeddingsSeq(i)
- if embd == nil {
- embd = s.lc.GetEmbeddingsIth(ibatch[i])
- }
- seq.embedding <- embd
- close(seq.embedding)
- s.lc.KvCacheSeqRm(i, 0, -1)
- s.seqs[i] = nil
- continue
- }
- // sample a token
- // logits := s.lc.GetLogitsIth(ibatch[i])
- // token := s.lc.SampleTokenGreedy(logits)
- token := seq.samplingCtx.Sample(s.lc, nil, ibatch[i])
- seq.samplingCtx.Accept(s.lc, token, true)
- piece := s.model.TokenToPiece(token)
- seq.numPredicted++
- slog.Info("sampled", "piece", piece)
- // if it's an end of sequence token, break
- // TODO: just end this sequence
- if s.model.TokenIsEog(token) {
- // TODO: end the sequence instead of quitting the pool
- s.lc.KvCacheSeqRm(i, 0, -1)
- // TODO (jmorganca): we should send this back
- // as it's important for the /api/generate context
- // seq.responses <- piece
- seq.doneReason = "stop"
- close(seq.responses)
- seq.samplingCtx.Free()
- pieces[i] = []string{}
- s.seqs[i] = nil
- continue
- }
- seq.tokens = []int{token}
- pieces[i] = append(pieces[i], piece)
- sequence := strings.Join(pieces[i], "")
- if ok, stop := findStop(sequence, seq.stop); ok {
- slog.Info("hit stop token", "stop", seq.stop)
- truncated := truncateStop(pieces[i], stop)
- for _, p := range truncated {
- seq.responses <- p
- }
- s.lc.KvCacheSeqRm(i, 0, -1)
- seq.doneReason = "stop"
- close(seq.responses)
- seq.samplingCtx.Free()
- pieces[i] = []string{}
- s.seqs[i] = nil
- continue
- }
- if containsStopSuffix(sequence, seq.stop) {
- continue
- }
- for _, p := range pieces[i] {
- seq.responses <- p
- }
- pieces[i] = []string{}
- }
- batch.Clear()
- }
- }
- }
- type CompletionRequest struct {
- Prompt string `json:"prompt"`
- Images []string `json:"images"`
- Grammar string `json:"grammar"`
- Stop []string `json:"stop"`
- api.Options
- }
- type CompletionResponse struct {
- Token string `json:"token"`
- }
- func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
- var req CompletionRequest
- req.Options = api.DefaultOptions()
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- // Set the headers to indicate streaming
- w.Header().Set("Content-Type", "application/json")
- w.Header().Set("Transfer-Encoding", "chunked")
- w.WriteHeader(http.StatusOK)
- var samplingParams llama.SamplingParams
- samplingParams.TopK = req.TopK
- samplingParams.TopP = req.TopP
- samplingParams.TfsZ = req.TFSZ
- samplingParams.TypicalP = req.TypicalP
- samplingParams.Temp = req.Temperature
- samplingParams.PenaltyRepeat = req.RepeatPenalty
- samplingParams.PenaltyFreq = req.FrequencyPenalty
- samplingParams.PenaltyPresent = req.PresencePenalty
- samplingParams.Mirostat = req.Mirostat
- samplingParams.MirostatTau = req.MirostatTau
- samplingParams.MirostatEta = req.MirostatEta
- samplingParams.PenalizeNl = req.PenalizeNewline
- samplingParams.Seed = uint32(req.Seed)
- samplingParams.Grammar = req.Grammar
- seq := s.NewSequence(req.Prompt, req.Stop, &samplingParams, false)
- // TODO (jmorganca): add to sequence queue instead of
- // failing if a slot isn't available
- s.mu.Lock()
- for i, sq := range s.seqs {
- if sq == nil {
- s.seqs[i] = seq
- s.cond.Signal()
- break
- }
- }
- s.mu.Unlock()
- // stream the response
- for token := range seq.responses {
- if err := json.NewEncoder(w).Encode(&CompletionResponse{
- Token: token,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- flusher, ok := w.(http.Flusher)
- if !ok {
- http.Error(w, "Streaming not supported", http.StatusInternalServerError)
- return
- }
- flusher.Flush()
- }
- }
- type EmbeddingRequest struct {
- Prompt string `json:"prompt"`
- }
- type EmbeddingResponse struct {
- Embedding []float32 `json:"embedding"`
- }
- // TODO (jmorganca): is it safe to do this concurrently with decoding?
- func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
- var req EmbeddingRequest
- if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
- http.Error(w, "Bad request", http.StatusBadRequest)
- return
- }
- w.Header().Set("Content-Type", "application/json")
- seq := s.NewSequence(req.Prompt, nil, nil, true)
- s.mu.Lock()
- for i, sq := range s.seqs {
- if sq == nil {
- s.seqs[i] = seq
- s.cond.Signal()
- break
- }
- }
- s.mu.Unlock()
- embedding := <-seq.embedding
- if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
- Embedding: embedding,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- type HealthResponse struct {
- Status string `json:"status"`
- Progress float32 `json:"progress"`
- }
- // TODO (jmorganca): is it safe to do this concurrently with decoding?
- func (s *Server) health(w http.ResponseWriter, r *http.Request) {
- w.Header().Set("Content-Type", "application/json")
- if err := json.NewEncoder(w).Encode(&HealthResponse{
- Status: s.status,
- Progress: s.progress,
- }); err != nil {
- log.Println("Failed to encode result:", err)
- return
- }
- }
- func main() {
- mpath := flag.String("model", "", "Path to model binary file")
- ppath := flag.String("projector", "", "Path to projector binary file")
- parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously")
- batchSize := flag.Int("batch-size", 512, "Batch size")
- nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
- mainGpu := flag.Int("main-gpu", 0, "Main GPU")
- flashAttention := flag.Bool("flash-attention", false, "Enable flash attention")
- numCtx := flag.Int("num-ctx", 2048, "Context (or KV cache) size")
- lpath := flag.String("lora", "", "Path to lora layer file")
- port := flag.Int("port", 8080, "Port to expose the server on")
- threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
- flag.Parse()
- server := &Server{
- numCtx: *numCtx,
- batchSize: *batchSize,
- parallel: *parallel,
- seqs: make([]*Sequence, *parallel),
- status: "loading",
- }
- // load the model
- llama.BackendInit()
- params := llama.NewModelParams(*nGpuLayers, *mainGpu, func(progress float32) {
- slog.Info("Loading model", "progress %", math.Round(float64(progress*100)))
- server.progress = progress
- })
- server.model = llama.LoadModelFromFile(*mpath, params)
- if *lpath != "" {
- server.model.ApplyLoraFromFile(*lpath, 1.0, "", *threads)
- }
- ctxParams := llama.NewContextParams(*numCtx, *threads, *flashAttention)
- server.lc = llama.NewContextWithModel(server.model, ctxParams)
- if *ppath != "" {
- server.cc = llama.NewClipContext(*ppath)
- }
- server.cond = sync.NewCond(&server.mu)
- ctx, cancel := context.WithCancel(context.Background())
- go server.run(ctx)
- addr := "127.0.0.1:" + strconv.Itoa(*port)
- listener, err := net.Listen("tcp", addr)
- if err != nil {
- fmt.Println("Listen error:", err)
- return
- }
- defer listener.Close()
- mux := http.NewServeMux()
- mux.HandleFunc("/embeddings", server.embeddings)
- mux.HandleFunc("/completion", server.completion)
- mux.HandleFunc("/health", server.health)
- httpServer := http.Server{
- Handler: mux,
- }
- server.status = "ready"
- log.Println("Server listening on", addr)
- if err := httpServer.Serve(listener); err != nil {
- log.Fatal("server error:", err)
- }
- cancel()
- }
|