convert_commandr.go 2.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. package convert
  2. import (
  3. "cmp"
  4. "github.com/ollama/ollama/llm"
  5. )
  6. type commandrModel struct {
  7. ModelParameters
  8. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  9. HiddenSize uint32 `json:"hidden_size"`
  10. HiddenLayers uint32 `json:"num_hidden_layers"`
  11. IntermediateSize uint32 `json:"intermediate_size"`
  12. NumAttentionHeads uint32 `json:"num_attention_heads"`
  13. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  14. LayerNormEPS float32 `json:"layer_norm_eps"`
  15. RopeTheta float32 `json:"rope_theta"`
  16. UseQKNorm bool `json:"use_qk_norm"`
  17. MaxLength uint32 `json:"model_max_length"`
  18. LogitScale float32 `json:"logit_scale"`
  19. NCtx uint32 `json:"n_ctx"`
  20. }
  21. var _ ModelConverter = (*commandrModel)(nil)
  22. func (p *commandrModel) KV(t *Tokenizer) llm.KV {
  23. kv := p.ModelParameters.KV(t)
  24. kv["general.architecture"] = "command-r"
  25. kv["general.name"] = "command-r"
  26. kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
  27. kv["command-r.embedding_length"] = p.HiddenSize
  28. kv["command-r.block_count"] = p.HiddenLayers
  29. kv["command-r.feed_forward_length"] = p.IntermediateSize
  30. kv["command-r.attention.head_count"] = p.NumAttentionHeads
  31. kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
  32. kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
  33. kv["command-r.rope.freq_base"] = p.RopeTheta
  34. kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
  35. kv["command-r.logit_scale"] = p.LogitScale
  36. kv["command-r.rope.scaling.type"] = "none"
  37. return kv
  38. }
  39. func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
  40. var out []llm.Tensor
  41. for _, t := range ts {
  42. out = append(out, llm.Tensor{
  43. Name: t.Name(),
  44. Kind: t.Kind(),
  45. Shape: t.Shape(),
  46. WriterTo: t,
  47. })
  48. }
  49. return out
  50. }
  51. func (p *commandrModel) Replacements() []string {
  52. return []string{
  53. "self_attn.q_norm", "attn_q_norm",
  54. "self_attn.k_norm", "attn_k_norm",
  55. "model.layers", "blk",
  56. "input_layernorm", "attn_norm",
  57. "mlp.down_proj", "ffn_down",
  58. "mlp.gate_proj", "ffn_gate",
  59. "mlp.up_proj", "ffn_up",
  60. "self_attn.k_proj", "attn_k",
  61. "self_attn.o_proj", "attn_output",
  62. "self_attn.q_proj", "attn_q",
  63. "self_attn.v_proj", "attn_v",
  64. "model.norm", "output_norm",
  65. "model.embed_tokens", "token_embd",
  66. }
  67. }