ggml-cpu-quants.c 479 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865
  1. /**
  2. * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define GGML_COMMON_IMPL_C
  27. #include "ggml-common.h"
  28. #include "ggml-quants.h"
  29. #include "ggml-cpu-quants.h"
  30. #include "ggml-impl.h"
  31. #include "ggml-cpu-impl.h"
  32. #include "ggml-cpu.h"
  33. #include <math.h>
  34. #include <string.h>
  35. #include <assert.h>
  36. #include <float.h>
  37. #include <stdlib.h> // for qsort
  38. #include <stdio.h> // for GGML_ASSERT
  39. #define GROUP_MAX_EPS 1e-15f
  40. #define GROUP_MAX_EPS_IQ3_XXS 1e-8f
  41. #define GROUP_MAX_EPS_IQ2_S 1e-8f
  42. #define GROUP_MAX_EPS_IQ1_M 1e-7f
  43. #define GROUP_MAX_EPS_IQ1_S 1e-12f
  44. #if defined(_MSC_VER)
  45. // disable "possible loss of data" to avoid warnings for hundreds of casts
  46. // we should just be careful :)
  47. #pragma warning(disable: 4244 4267)
  48. #endif
  49. #define UNUSED GGML_UNUSED
  50. // some compilers don't provide _mm256_set_m128i, e.g. gcc 7
  51. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  52. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  53. // multiply int8_t, add results pairwise twice
  54. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  55. // Get absolute values of x vectors
  56. const __m128i ax = _mm_sign_epi8(x, x);
  57. // Sign the values of the y vectors
  58. const __m128i sy = _mm_sign_epi8(y, x);
  59. // Perform multiplication and create 16-bit values
  60. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  61. const __m128i ones = _mm_set1_epi16(1);
  62. return _mm_madd_epi16(ones, dot);
  63. }
  64. #if __AVX__ || __AVX2__ || __AVX512F__
  65. // horizontally add 8 floats
  66. static inline float hsum_float_8(const __m256 x) {
  67. __m128 res = _mm256_extractf128_ps(x, 1);
  68. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  69. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  70. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  71. return _mm_cvtss_f32(res);
  72. }
  73. // horizontally add 8 int32_t
  74. static inline int hsum_i32_8(const __m256i a) {
  75. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  76. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  77. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. // horizontally add 4 int32_t
  82. static inline int hsum_i32_4(const __m128i a) {
  83. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  84. const __m128i sum64 = _mm_add_epi32(hi64, a);
  85. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  86. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  87. }
  88. #if defined(__AVX2__) || defined(__AVX512F__)
  89. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  90. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  91. uint32_t x32;
  92. memcpy(&x32, x, sizeof(uint32_t));
  93. const __m256i shuf_mask = _mm256_set_epi64x(
  94. 0x0303030303030303, 0x0202020202020202,
  95. 0x0101010101010101, 0x0000000000000000);
  96. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  97. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  98. bytes = _mm256_or_si256(bytes, bit_mask);
  99. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  100. }
  101. // Unpack 32 4-bit fields into 32 bytes
  102. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  103. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  104. {
  105. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  106. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  107. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  108. return _mm256_and_si256(lowMask, bytes);
  109. }
  110. // add int16_t pairwise and return as float vector
  111. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  112. const __m256i ones = _mm256_set1_epi16(1);
  113. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  114. return _mm256_cvtepi32_ps(summed_pairs);
  115. }
  116. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  117. #if defined(__AVX512VNNI__) && defined(__AVX512VL__)
  118. const __m256i zero = _mm256_setzero_si256();
  119. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  120. return _mm256_cvtepi32_ps(summed_pairs);
  121. #elif defined(__AVXVNNI__)
  122. const __m256i zero = _mm256_setzero_si256();
  123. const __m256i summed_pairs = _mm256_dpbusd_avx_epi32(zero, ax, sy);
  124. return _mm256_cvtepi32_ps(summed_pairs);
  125. #else
  126. // Perform multiplication and create 16-bit values
  127. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  128. return sum_i16_pairs_float(dot);
  129. #endif
  130. }
  131. // multiply int8_t, add results pairwise twice and return as float vector
  132. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  133. #if __AVXVNNIINT8__
  134. const __m256i zero = _mm256_setzero_si256();
  135. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  136. return _mm256_cvtepi32_ps(summed_pairs);
  137. #else
  138. // Get absolute values of x vectors
  139. const __m256i ax = _mm256_sign_epi8(x, x);
  140. // Sign the values of the y vectors
  141. const __m256i sy = _mm256_sign_epi8(y, x);
  142. return mul_sum_us8_pairs_float(ax, sy);
  143. #endif
  144. }
  145. static inline __m128i packNibbles( __m256i bytes )
  146. {
  147. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  148. #if __AVX512F__
  149. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  150. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  151. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  152. #else
  153. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  154. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  155. __m256i low = _mm256_and_si256( lowByte, bytes );
  156. high = _mm256_srli_epi16( high, 4 );
  157. bytes = _mm256_or_si256( low, high );
  158. // Compress uint16_t lanes into bytes
  159. __m128i r0 = _mm256_castsi256_si128( bytes );
  160. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  161. return _mm_packus_epi16( r0, r1 );
  162. #endif
  163. }
  164. #elif defined(__AVX__)
  165. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  166. {
  167. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  168. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  169. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  170. __m128i low = _mm_and_si128( lowByte, bytes1 );
  171. high = _mm_srli_epi16( high, 4 );
  172. bytes1 = _mm_or_si128( low, high );
  173. high = _mm_andnot_si128( lowByte, bytes2 );
  174. low = _mm_and_si128( lowByte, bytes2 );
  175. high = _mm_srli_epi16( high, 4 );
  176. bytes2 = _mm_or_si128( low, high );
  177. return _mm_packus_epi16( bytes1, bytes2);
  178. }
  179. static inline __m128i mul_add_epi8_sse(const __m128i x, const __m128i y) {
  180. const __m128i ax = _mm_sign_epi8(x, x);
  181. const __m128i sy = _mm_sign_epi8(y, x);
  182. return _mm_maddubs_epi16(ax, sy);
  183. }
  184. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  185. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  186. uint32_t x32;
  187. memcpy(&x32, x, sizeof(uint32_t));
  188. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  189. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  190. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  191. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  192. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  193. bytesl = _mm_or_si128(bytesl, bit_mask);
  194. bytesh = _mm_or_si128(bytesh, bit_mask);
  195. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  196. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  197. return MM256_SET_M128I(bytesh, bytesl);
  198. }
  199. // Unpack 32 4-bit fields into 32 bytes
  200. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  201. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  202. {
  203. // Load 16 bytes from memory
  204. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  205. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  206. const __m128i lowMask = _mm_set1_epi8(0xF);
  207. tmpl = _mm_and_si128(lowMask, tmpl);
  208. tmph = _mm_and_si128(lowMask, tmph);
  209. return MM256_SET_M128I(tmph, tmpl);
  210. }
  211. // add int16_t pairwise and return as float vector
  212. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  213. const __m128i ones = _mm_set1_epi16(1);
  214. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  215. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  216. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  217. return _mm256_cvtepi32_ps(summed_pairs);
  218. }
  219. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  220. const __m128i axl = _mm256_castsi256_si128(ax);
  221. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  222. const __m128i syl = _mm256_castsi256_si128(sy);
  223. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  224. // Perform multiplication and create 16-bit values
  225. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  226. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  227. return sum_i16_pairs_float(doth, dotl);
  228. }
  229. // multiply int8_t, add results pairwise twice and return as float vector
  230. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  231. const __m128i xl = _mm256_castsi256_si128(x);
  232. const __m128i xh = _mm256_extractf128_si256(x, 1);
  233. const __m128i yl = _mm256_castsi256_si128(y);
  234. const __m128i yh = _mm256_extractf128_si256(y, 1);
  235. // Get absolute values of x vectors
  236. const __m128i axl = _mm_sign_epi8(xl, xl);
  237. const __m128i axh = _mm_sign_epi8(xh, xh);
  238. // Sign the values of the y vectors
  239. const __m128i syl = _mm_sign_epi8(yl, xl);
  240. const __m128i syh = _mm_sign_epi8(yh, xh);
  241. // Perform multiplication and create 16-bit values
  242. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  243. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  244. return sum_i16_pairs_float(doth, dotl);
  245. }
  246. // larger version of mul_sum_i8_pairs_float where x and y are each represented by four 128-bit vectors
  247. static inline __m256 mul_sum_i8_quad_float(const __m128i x_1_0, const __m128i x_1_1, const __m128i x_2_0, const __m128i x_2_1,
  248. const __m128i y_1_0, const __m128i y_1_1, const __m128i y_2_0, const __m128i y_2_1) {
  249. const __m128i mone = _mm_set1_epi16(1);
  250. const __m128i p16_1_0 = mul_add_epi8_sse(x_1_0, y_1_0);
  251. const __m128i p16_1_1 = mul_add_epi8_sse(x_1_1, y_1_1);
  252. const __m128i p16_2_0 = mul_add_epi8_sse(x_2_0, y_2_0);
  253. const __m128i p16_2_1 = mul_add_epi8_sse(x_2_1, y_2_1);
  254. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, mone);
  255. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, mone);
  256. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, mone);
  257. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, mone);
  258. const __m128i p_1 = _mm_add_epi32(p_1_0, p_1_1);
  259. const __m128i p_2 = _mm_add_epi32(p_2_0, p_2_1);
  260. return _mm256_cvtepi32_ps(MM256_SET_M128I(p_2, p_1));
  261. }
  262. // quad fp16 delta calculation
  263. static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const float x1, const float y1) {
  264. // GGML_FP16_TO_FP32 is faster than Intel F16C
  265. return _mm256_set_m128(_mm_set1_ps(GGML_FP16_TO_FP32(x1) * GGML_FP16_TO_FP32(y1)),
  266. _mm_set1_ps(GGML_FP16_TO_FP32(x0) * GGML_FP16_TO_FP32(y0)));
  267. }
  268. #endif
  269. #elif defined(__SSSE3__)
  270. // horizontally add 4x4 floats
  271. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  272. __m128 res_0 =_mm_hadd_ps(a, b);
  273. __m128 res_1 =_mm_hadd_ps(c, d);
  274. __m128 res =_mm_hadd_ps(res_0, res_1);
  275. res =_mm_hadd_ps(res, res);
  276. res =_mm_hadd_ps(res, res);
  277. return _mm_cvtss_f32(res);
  278. }
  279. #endif // __AVX__ || __AVX2__ || __AVX512F__
  280. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  281. #if defined(__ARM_NEON) || defined(__wasm_simd128__) || defined(__POWER9_VECTOR__)
  282. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  283. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  284. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  285. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  286. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  287. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  288. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  289. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  290. // precomputed tables for expanding 8bits to 8 bytes:
  291. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  292. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  293. #endif
  294. #if defined(__loongarch_asx)
  295. #ifdef __clang__
  296. #define VREGS_PREFIX "$vr"
  297. #define XREGS_PREFIX "$xr"
  298. #else // GCC
  299. #define VREGS_PREFIX "$f"
  300. #define XREGS_PREFIX "$f"
  301. #endif
  302. #define __ALL_REGS "0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31"
  303. // Convert __m128i to __m256i
  304. static inline __m256i ____m256i(__m128i in) {
  305. __m256i out = __lasx_xvldi(0);
  306. __asm__ volatile (
  307. ".irp i," __ALL_REGS "\n\t"
  308. " .ifc %[out], " XREGS_PREFIX"\\i \n\t"
  309. " .irp j," __ALL_REGS "\n\t"
  310. " .ifc %[in], " VREGS_PREFIX "\\j \n\t"
  311. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  312. " .endif \n\t"
  313. " .endr \n\t"
  314. " .endif \n\t"
  315. ".endr \n\t"
  316. : [out] "+f" (out) : [in] "f" (in)
  317. );
  318. return out;
  319. }
  320. // Convert two __m128i to __m256i
  321. static inline __m256i lasx_set_q(__m128i inhi, __m128i inlo) {
  322. __m256i out;
  323. __asm__ volatile (
  324. ".irp i," __ALL_REGS "\n\t"
  325. " .ifc %[hi], " VREGS_PREFIX "\\i \n\t"
  326. " .irp j," __ALL_REGS "\n\t"
  327. " .ifc %[lo], " VREGS_PREFIX "\\j \n\t"
  328. " xvpermi.q $xr\\i, $xr\\j, 0x20 \n\t"
  329. " .endif \n\t"
  330. " .endr \n\t"
  331. " .endif \n\t"
  332. ".endr \n\t"
  333. ".ifnc %[out], %[hi] \n\t"
  334. ".irp i," __ALL_REGS "\n\t"
  335. " .ifc %[out], " XREGS_PREFIX "\\i \n\t"
  336. " .irp j," __ALL_REGS "\n\t"
  337. " .ifc %[hi], " VREGS_PREFIX "\\j \n\t"
  338. " xvori.b $xr\\i, $xr\\j, 0 \n\t"
  339. " .endif \n\t"
  340. " .endr \n\t"
  341. " .endif \n\t"
  342. ".endr \n\t"
  343. ".endif \n\t"
  344. : [out] "=f" (out), [hi] "+f" (inhi)
  345. : [lo] "f" (inlo)
  346. );
  347. return out;
  348. }
  349. // Convert __m256i low part to __m128i
  350. static inline __m128i lasx_extracti128_lo(__m256i in) {
  351. __m128i out;
  352. __asm__ volatile (
  353. ".ifnc %[out], %[in] \n\t"
  354. ".irp i," __ALL_REGS "\n\t"
  355. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  356. " .irp j," __ALL_REGS "\n\t"
  357. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  358. " vori.b $vr\\i, $vr\\j, 0 \n\t"
  359. " .endif \n\t"
  360. " .endr \n\t"
  361. " .endif \n\t"
  362. ".endr \n\t"
  363. ".endif \n\t"
  364. : [out] "=f" (out) : [in] "f" (in)
  365. );
  366. return out;
  367. }
  368. // Convert __m256i high part to __m128i
  369. static inline __m128i lasx_extracti128_hi(__m256i in) {
  370. __m128i out;
  371. __asm__ volatile (
  372. ".irp i," __ALL_REGS "\n\t"
  373. " .ifc %[out], " VREGS_PREFIX "\\i \n\t"
  374. " .irp j," __ALL_REGS "\n\t"
  375. " .ifc %[in], " XREGS_PREFIX "\\j \n\t"
  376. " xvpermi.q $xr\\i, $xr\\j, 0x11 \n\t"
  377. " .endif \n\t"
  378. " .endr \n\t"
  379. " .endif \n\t"
  380. ".endr \n\t"
  381. : [out] "=f" (out) : [in] "f" (in)
  382. );
  383. return out;
  384. }
  385. static __m256i lasx_set_w(int e7, int e6, int e5, int e4, int e3, int e2, int e1, int e0) {
  386. v8i32 __ret = {e0, e1, e2, e3, e4, e5, e6, e7};
  387. return (__m256i)__ret;
  388. }
  389. static __m128i lsx_set_w(int32_t a, int32_t b, int32_t c, int32_t d) {
  390. v4i32 __ret = {d, c, b, a};
  391. return (__m128i)__ret;
  392. }
  393. static __m256i lasx_set_d(int64_t a, int64_t b, int64_t c, int64_t d) {
  394. v4i64 __ret = {d, c, b, a};
  395. return (__m256i)__ret;
  396. }
  397. static __m256i lasx_insertf128( __m128i x, __m128i y) {
  398. return lasx_set_q(x, y);
  399. }
  400. static __m128i lsx_shuffle_b(__m128i a, __m128i b) {
  401. __m128i mask_f, zero, tmp0, tmp2, mask;
  402. int f = 0x8f;
  403. mask_f = __lsx_vreplgr2vr_b(f);
  404. zero = __lsx_vldi(0);
  405. tmp0 = __lsx_vand_v(b, mask_f); // get mask with low 4 bit and sign bits
  406. tmp0 = __lsx_vori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  407. mask = __lsx_vsle_b(zero, tmp0); // if mask >= 0, set mask
  408. tmp2 = __lsx_vand_v(tmp0, mask); // maskout the in2 < ones
  409. return __lsx_vshuf_b(a, zero, tmp2);
  410. }
  411. static __m256i lasx_shuffle_b(__m256i a, __m256i b) {
  412. __m256i mask_f, zero, tmp0, tmp2, mask;
  413. int f = 0x8f;
  414. mask_f = __lasx_xvreplgr2vr_b(f);
  415. zero = __lasx_xvldi(0);
  416. tmp0 = __lasx_xvand_v(b, mask_f); // get mask with low 4 bit and sign bits
  417. tmp0 = __lasx_xvori_b(tmp0, 0x10); // make each mask or with 0x10 prepare for positive
  418. mask = __lasx_xvsle_b(zero, tmp0); // if mask >= 0, set mask
  419. tmp2 = __lasx_xvand_v(tmp0, mask); // maskout the in2 < ones
  420. return __lasx_xvshuf_b(a, zero, tmp2);
  421. }
  422. static __m256i lasx_extu8_16(__m128i a) {
  423. __m128i zero = __lsx_vldi(0);
  424. __m128i vlo = __lsx_vilvl_b(zero, a);
  425. __m128i vhi = __lsx_vilvh_b(zero, a);
  426. return lasx_set_q(vhi, vlo);
  427. }
  428. static __m256i lasx_ext8_16(__m128i a) {
  429. __m128i sign = __lsx_vslti_b(a, 0);
  430. __m128i vlo = __lsx_vilvl_b(sign, a);
  431. __m128i vhi = __lsx_vilvh_b(sign, a);
  432. return lasx_set_q(vhi, vlo);
  433. }
  434. static __m256i lasx_ext16_32(__m128i a) {
  435. __m256i tmp1;
  436. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 0), 0);
  437. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 1), 1);
  438. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 2), 2);
  439. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 3), 3);
  440. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 4), 4);
  441. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 5), 5);
  442. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 6), 6);
  443. tmp1 = __lasx_xvinsgr2vr_w(tmp1, __lsx_vpickve2gr_h(a, 7), 7);
  444. return tmp1;
  445. }
  446. static __m128i lasx_extracti128( __m256i a, int pos) {
  447. __m128i ret;
  448. if( pos == 0)
  449. {
  450. ret = lasx_extracti128_lo(a);
  451. } else {
  452. ret = lasx_extracti128_hi(a);
  453. }
  454. return ret;
  455. }
  456. static __m128 lasx_extractf128( __m256 a, int pos) {
  457. __m128 ret;
  458. if( pos == 0)
  459. {
  460. ret = (__m128)lasx_extracti128_lo((__m256i)a);
  461. } else {
  462. ret = (__m128)lasx_extracti128_hi((__m256i)a);
  463. }
  464. return ret;
  465. }
  466. static __m128i lsx_hadd_h(__m128i a, __m128i b) {
  467. __m128i tmp1 = __lsx_vpickev_h(b, a);
  468. __m128i tmp2 = __lsx_vpickod_h(b, a);
  469. return __lsx_vadd_h(tmp1, tmp2);
  470. }
  471. static __m128i lsx_hadd_w(__m128i a, __m128i b) {
  472. __m128i tmp1 = __lsx_vpickev_w(b, a);
  473. __m128i tmp2 = __lsx_vpickod_w(b, a);
  474. return __lsx_vadd_w(tmp1, tmp2);
  475. }
  476. static __m128 lsx_hadd_s(__m128 a, __m128 b) {
  477. __m128 tmp1 = (__m128)__lsx_vpickev_w((__m128i)b, (__m128i)a);
  478. __m128 tmp2 = (__m128)__lsx_vpickod_w((__m128i)b, (__m128i)a);
  479. return __lsx_vfadd_s(tmp1, tmp2);
  480. }
  481. static __m256i lasx_maddubs_h(__m256i a, __m256i b) {
  482. __m256i tmp1, tmp2;
  483. tmp1 = __lasx_xvmulwev_h_b(a, b);
  484. tmp2 = __lasx_xvmulwod_h_b(a, b);
  485. return __lasx_xvsadd_h(tmp1, tmp2);
  486. }
  487. static __m256i lasx_madd_h(__m256i a, __m256i b) {
  488. __m256i tmp1, tmp2;
  489. tmp1 = __lasx_xvmulwev_w_h(a, b);
  490. tmp2 = __lasx_xvmulwod_w_h(a, b);
  491. return __lasx_xvadd_w(tmp1, tmp2);
  492. }
  493. static __m256i lasx_packs_w(__m256i a, __m256i b) {
  494. __m256i tmp, tmp1;
  495. tmp = __lasx_xvsat_w(a, 15);
  496. tmp1 = __lasx_xvsat_w(b, 15);
  497. return __lasx_xvpickev_h(tmp1, tmp);
  498. }
  499. static __m256i lasx_packs_h(__m256i a, __m256i b) {
  500. __m256i tmp, tmp1;
  501. tmp = __lasx_xvsat_h(a, 7);
  502. tmp1 = __lasx_xvsat_h(b, 7);
  503. return __lasx_xvpickev_b(tmp1, tmp);
  504. }
  505. static __m128i lsx_packs_w(__m128i a, __m128i b) {
  506. __m128i tmp, tmp1;
  507. tmp = __lsx_vsat_w(a, 15);
  508. tmp1 = __lsx_vsat_w(b, 15);
  509. return __lsx_vpickev_h(tmp1, tmp);
  510. }
  511. static __m128i lsx_packs_h(__m128i a, __m128i b) {
  512. __m128i tmp, tmp1;
  513. tmp = __lsx_vsat_h(a, 7);
  514. tmp1 = __lsx_vsat_h(b, 7);
  515. return __lsx_vpickev_b(tmp1, tmp);
  516. }
  517. static __m128i lsx_packus_h(__m128i a, __m128i b) {
  518. __m128i tmp, tmp1;
  519. tmp = __lsx_vsat_hu(a, 7);
  520. tmp1 = __lsx_vsat_hu(b, 7);
  521. return __lsx_vpickev_b(tmp1, tmp);
  522. }
  523. static __m128i lsx_maddubs_h(__m128i a, __m128i b) {
  524. __m128i tmp1, tmp2;
  525. tmp1 = __lsx_vmulwev_h_b(a, b);
  526. tmp2 = __lsx_vmulwod_h_b(a, b);
  527. return __lsx_vsadd_h(tmp1, tmp2);
  528. }
  529. static __m128i lsx_madd_h(__m128i a, __m128i b) {
  530. __m128i tmp1, tmp2;
  531. tmp1 = __lsx_vmulwev_w_h(a, b);
  532. tmp2 = __lsx_vmulwod_w_h(a, b);
  533. return __lsx_vadd_w(tmp1, tmp2);
  534. }
  535. // multiply int8_t, add results pairwise twice
  536. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  537. // Get absolute values of x vectors
  538. const __m128i ax = __lsx_vsigncov_b(x, x);
  539. // Sign the values of the y vectors
  540. const __m128i sy = __lsx_vsigncov_b(x, y);
  541. // Perform multiplication and create 16-bit values
  542. const __m128i dot = lsx_maddubs_h(ax, sy);
  543. const __m128i ones = __lsx_vreplgr2vr_h(1);
  544. return lsx_madd_h(ones, dot);
  545. }
  546. // horizontally add 8 floats
  547. static inline float hsum_float_8(const __m256 x) {
  548. __m128 res = lasx_extractf128(x, 1);
  549. ft_union tmp;
  550. res = __lsx_vfadd_s(res, lasx_extractf128(x, 0));
  551. res = __lsx_vfadd_s(res, (__m128)__lsx_vpickod_d((__m128i)res, (__m128i)res));
  552. res = __lsx_vfadd_s(res, (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w(res, 1), 0));
  553. tmp.i = __lsx_vpickve2gr_w(res, 0);
  554. return tmp.f;
  555. }
  556. // horizontally add 8 int32_t
  557. static inline int hsum_i32_8(const __m256i a) {
  558. __m256i tmp1 = __lasx_xvpermi_q(a, a, 0x11);
  559. __m256i tmp2 = __lasx_xvpermi_q(a, a, 0x00);
  560. __m128i tmp1_128 = lasx_extracti128_lo(tmp1);
  561. __m128i tmp2_128 = lasx_extracti128_lo(tmp2);
  562. __m128i sum128 = __lsx_vadd_w(tmp1_128, tmp2_128);
  563. __m128i ev = __lsx_vpickev_w(sum128, sum128);
  564. __m128i od = __lsx_vpickod_w(sum128, sum128);
  565. __m128i sum64 = __lsx_vadd_w(ev, od);
  566. int sum64_1, sum64_2;
  567. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  568. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  569. return sum64_1 + sum64_2;
  570. }
  571. // horizontally add 4 int32_t
  572. static inline int hsum_i32_4(const __m128i a) {
  573. __m128i ev = __lsx_vpickev_w(a, a);
  574. __m128i od = __lsx_vpickod_w(a, a);
  575. __m128i sum64 = __lsx_vadd_w(ev, od);
  576. int sum64_1, sum64_2;
  577. sum64_1 = __lsx_vpickve2gr_w(sum64, 0);
  578. sum64_2 = __lsx_vpickve2gr_w(sum64, 1);
  579. return sum64_1 + sum64_2;
  580. }
  581. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  582. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  583. uint32_t x32;
  584. memcpy(&x32, x, sizeof(uint32_t));
  585. const __m256i shuf_mask = lasx_set_d(
  586. 0x0303030303030303, 0x0202020202020202,
  587. 0x0101010101010101, 0x0000000000000000);
  588. __m256i bytes = lasx_shuffle_b(__lasx_xvreplgr2vr_w(x32), shuf_mask);
  589. const __m256i bit_mask = __lasx_xvreplgr2vr_d(0x7fbfdfeff7fbfdfe);
  590. bytes = __lasx_xvor_v(bytes, bit_mask);
  591. return __lasx_xvseq_b(bytes, __lasx_xvreplgr2vr_d(-1));
  592. }
  593. // Unpack 32 4-bit fields into 32 bytes
  594. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  595. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) {
  596. const __m128i lo = __lsx_vld((const __m128i *)rsi, 0);
  597. __m128i hi = __lsx_vsrli_h(lo, 4);
  598. return __lasx_xvandi_b(lasx_insertf128(hi, lo), 0xf);
  599. }
  600. // add int16_t pairwise and return as float vector
  601. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  602. __m256i v = __lasx_xvpackod_h(x, x);
  603. __m256i summed_pairs = __lasx_xvaddwev_w_h(x, v);
  604. return __lasx_xvffint_s_w(summed_pairs);
  605. }
  606. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  607. // Perform multiplication and create 16-bit values
  608. const __m256i dot = lasx_maddubs_h(ax, sy);
  609. return sum_i16_pairs_float(dot);
  610. }
  611. // multiply int8_t, add results pairwise twice and return as float vector
  612. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  613. // Get absolute values of x vectors
  614. const __m256i ax = __lasx_xvsigncov_b(x, x);
  615. // Sign the values of the y vectors
  616. const __m256i sy = __lasx_xvsigncov_b(x, y);
  617. return mul_sum_us8_pairs_float(ax, sy);
  618. }
  619. static inline __m128i packNibbles( __m256i bytes ) {
  620. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  621. const __m256i lowByte = __lasx_xvreplgr2vr_h(0xFF);
  622. __m256i high = __lasx_xvandn_v(lowByte, bytes);
  623. __m256i low = __lasx_xvand_v(lowByte, bytes);
  624. high = __lasx_xvsrli_h(high, 4);
  625. bytes = __lasx_xvor_v(low, high);
  626. // Compress uint16_t lanes into bytes
  627. __m128i *r0 = (__m128i *)&bytes;
  628. __m256i tmp_h128 = __lasx_xvpermi_q(bytes, bytes, 0x11);
  629. __m128i *r1 = (__m128i *)&tmp_h128;
  630. __m128i zero = __lsx_vldi(0);
  631. __m128i tmp, tmp2, tmp3;
  632. tmp = __lsx_vmax_h(zero, *r0);
  633. tmp2 = __lsx_vsat_hu(tmp, 7);
  634. tmp = __lsx_vmax_h(zero, *r1);
  635. tmp3 = __lsx_vsat_hu(tmp, 7);
  636. return __lsx_vpickev_b(tmp3, tmp2);
  637. }
  638. #endif //__loongarch_asx
  639. void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) {
  640. quantize_row_q4_0_ref(x, y, k);
  641. }
  642. void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) {
  643. quantize_row_q4_1_ref(x, y, k);
  644. }
  645. void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) {
  646. quantize_row_q5_0_ref(x, y, k);
  647. }
  648. void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) {
  649. quantize_row_q5_1_ref(x, y, k);
  650. }
  651. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) {
  652. assert(QK8_0 == 32);
  653. assert(k % QK8_0 == 0);
  654. const int nb = k / QK8_0;
  655. block_q8_0 * restrict y = vy;
  656. #if defined(__ARM_NEON)
  657. for (int i = 0; i < nb; i++) {
  658. float32x4_t srcv [8];
  659. float32x4_t asrcv[8];
  660. float32x4_t amaxv[8];
  661. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  662. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  663. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  664. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  665. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  666. const float amax = vmaxvq_f32(amaxv[0]);
  667. const float d = amax / ((1 << 7) - 1);
  668. const float id = d ? 1.0f/d : 0.0f;
  669. y[i].d = GGML_FP32_TO_FP16(d);
  670. for (int j = 0; j < 8; j++) {
  671. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  672. const int32x4_t vi = vcvtnq_s32_f32(v);
  673. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  674. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  675. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  676. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  677. }
  678. }
  679. #elif defined(__wasm_simd128__)
  680. for (int i = 0; i < nb; i++) {
  681. v128_t srcv [8];
  682. v128_t asrcv[8];
  683. v128_t amaxv[8];
  684. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  685. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  686. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  687. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  688. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  689. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  690. wasm_f32x4_extract_lane(amaxv[0], 1)),
  691. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  692. wasm_f32x4_extract_lane(amaxv[0], 3)));
  693. const float d = amax / ((1 << 7) - 1);
  694. const float id = d ? 1.0f/d : 0.0f;
  695. y[i].d = GGML_FP32_TO_FP16(d);
  696. for (int j = 0; j < 8; j++) {
  697. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  698. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  699. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  700. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  701. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  702. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  703. }
  704. }
  705. #elif defined(__AVX2__) || defined(__AVX__)
  706. for (int i = 0; i < nb; i++) {
  707. // Load elements into 4 AVX vectors
  708. __m256 v0 = _mm256_loadu_ps( x );
  709. __m256 v1 = _mm256_loadu_ps( x + 8 );
  710. __m256 v2 = _mm256_loadu_ps( x + 16 );
  711. __m256 v3 = _mm256_loadu_ps( x + 24 );
  712. x += 32;
  713. // Compute max(abs(e)) for the block
  714. const __m256 signBit = _mm256_set1_ps( -0.0f );
  715. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  716. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  717. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  718. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  719. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  720. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  721. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  722. const float maxScalar = _mm_cvtss_f32( max4 );
  723. // Quantize these floats
  724. const float d = maxScalar / 127.f;
  725. y[i].d = GGML_FP32_TO_FP16(d);
  726. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  727. const __m256 mul = _mm256_set1_ps( id );
  728. // Apply the multiplier
  729. v0 = _mm256_mul_ps( v0, mul );
  730. v1 = _mm256_mul_ps( v1, mul );
  731. v2 = _mm256_mul_ps( v2, mul );
  732. v3 = _mm256_mul_ps( v3, mul );
  733. // Round to nearest integer
  734. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  735. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  736. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  737. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  738. // Convert floats to integers
  739. __m256i i0 = _mm256_cvtps_epi32( v0 );
  740. __m256i i1 = _mm256_cvtps_epi32( v1 );
  741. __m256i i2 = _mm256_cvtps_epi32( v2 );
  742. __m256i i3 = _mm256_cvtps_epi32( v3 );
  743. #if defined(__AVX2__)
  744. // Convert int32 to int16
  745. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  746. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  747. // Convert int16 to int8
  748. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  749. // We got our precious signed bytes, but the order is now wrong
  750. // These AVX2 pack instructions process 16-byte pieces independently
  751. // The following instruction is fixing the order
  752. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  753. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  754. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  755. #else
  756. // Since we don't have in AVX some necessary functions,
  757. // we split the registers in half and call AVX2 analogs from SSE
  758. __m128i ni0 = _mm256_castsi256_si128( i0 );
  759. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  760. __m128i ni2 = _mm256_castsi256_si128( i1 );
  761. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  762. __m128i ni4 = _mm256_castsi256_si128( i2 );
  763. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  764. __m128i ni6 = _mm256_castsi256_si128( i3 );
  765. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  766. // Convert int32 to int16
  767. ni0 = _mm_packs_epi32( ni0, ni1 );
  768. ni2 = _mm_packs_epi32( ni2, ni3 );
  769. ni4 = _mm_packs_epi32( ni4, ni5 );
  770. ni6 = _mm_packs_epi32( ni6, ni7 );
  771. // Convert int16 to int8
  772. ni0 = _mm_packs_epi16( ni0, ni2 );
  773. ni4 = _mm_packs_epi16( ni4, ni6 );
  774. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  775. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  776. #endif
  777. }
  778. #elif defined(__riscv_v_intrinsic)
  779. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  780. for (int i = 0; i < nb; i++) {
  781. // load elements
  782. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  783. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  784. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  785. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  786. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  787. const float d = amax / ((1 << 7) - 1);
  788. const float id = d ? 1.0f/d : 0.0f;
  789. y[i].d = GGML_FP32_TO_FP16(d);
  790. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  791. // convert to integer
  792. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  793. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  794. // store result
  795. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  796. }
  797. #elif defined(__POWER9_VECTOR__)
  798. for (int i = 0; i < nb; i++) {
  799. vector float srcv [8];
  800. vector float asrcv[8];
  801. vector float amaxv[8];
  802. vector signed int vi[8];
  803. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  804. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  805. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  806. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  807. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  808. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  809. vec_extract(amaxv[0], 1)),
  810. MAX(vec_extract(amaxv[0], 2),
  811. vec_extract(amaxv[0], 3)));
  812. const float d = amax / ((1 << 7) - 1);
  813. const float id = d ? 1.0f/d : 0.0f;
  814. const vector float vid = vec_splats(id);
  815. y[i].d = GGML_FP32_TO_FP16(d);
  816. for (int j = 0; j < 8; j++) {
  817. const vector float v = vec_round(vec_mul(srcv[j], vid));
  818. vi[j] = vec_cts(v, 0);
  819. }
  820. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  821. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  822. }
  823. #elif defined(__loongarch_asx)
  824. for (int i = 0; i < nb; i++) {
  825. ft_union fi;
  826. __m256 v0 = (__m256)__lasx_xvld( x , 0);
  827. __m256 v1 = (__m256)__lasx_xvld( x , 32);
  828. __m256 v2 = (__m256)__lasx_xvld( x , 64);
  829. __m256 v3 = (__m256)__lasx_xvld( x , 96);
  830. x += 32;
  831. // Compute max(abs(e)) for the block
  832. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  833. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  834. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  835. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  836. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  837. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs , 0) );
  838. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  839. __m128 tmp = max4;
  840. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vinsgr2vr_w(tmp, __lsx_vpickve2gr_w( max4, 1 ), 0 ));
  841. fi.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  842. const float max_scalar = fi.f;
  843. // Quantize these floats
  844. const float d = max_scalar / 127.f;
  845. y[i].d = GGML_FP32_TO_FP16(d);
  846. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  847. const __m256 mul = (__m256)__lasx_xvreplfr2vr_s( id );
  848. // Apply the multiplier
  849. v0 = __lasx_xvfmul_s( v0, mul );
  850. v1 = __lasx_xvfmul_s( v1, mul );
  851. v2 = __lasx_xvfmul_s( v2, mul );
  852. v3 = __lasx_xvfmul_s( v3, mul );
  853. // Round to nearest integer
  854. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  855. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  856. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  857. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  858. __m128i ni0 = lasx_extracti128( i0, 0 );
  859. __m128i ni1 = lasx_extracti128( i0, 1);
  860. __m128i ni2 = lasx_extracti128( i1, 0);
  861. __m128i ni3 = lasx_extracti128( i1, 1);
  862. __m128i ni4 = lasx_extracti128( i2, 0);
  863. __m128i ni5 = lasx_extracti128( i2, 1);
  864. __m128i ni6 = lasx_extracti128( i3, 0);
  865. __m128i ni7 = lasx_extracti128( i3, 1);
  866. // Convert int32 to int16
  867. ni0 = lsx_packs_w( ni0, ni1 );
  868. ni2 = lsx_packs_w( ni2, ni3 );
  869. ni4 = lsx_packs_w( ni4, ni5 );
  870. ni6 = lsx_packs_w( ni6, ni7 );
  871. // Convert int16 to int8
  872. ni0 = lsx_packs_h( ni0, ni2 );
  873. ni4 = lsx_packs_h( ni4, ni6 );
  874. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  875. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  876. }
  877. #else
  878. GGML_UNUSED(nb);
  879. // scalar
  880. quantize_row_q8_0_ref(x, y, k);
  881. #endif
  882. }
  883. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) {
  884. assert(k % QK8_1 == 0);
  885. const int nb = k / QK8_1;
  886. block_q8_1 * restrict y = vy;
  887. #if defined(__ARM_NEON)
  888. for (int i = 0; i < nb; i++) {
  889. float32x4_t srcv [8];
  890. float32x4_t asrcv[8];
  891. float32x4_t amaxv[8];
  892. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  893. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  894. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  895. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  896. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  897. const float amax = vmaxvq_f32(amaxv[0]);
  898. const float d = amax / ((1 << 7) - 1);
  899. const float id = d ? 1.0f/d : 0.0f;
  900. y[i].d = GGML_FP32_TO_FP16(d);
  901. int32x4_t accv = vdupq_n_s32(0);
  902. for (int j = 0; j < 8; j++) {
  903. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  904. const int32x4_t vi = vcvtnq_s32_f32(v);
  905. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  906. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  907. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  908. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  909. accv = vaddq_s32(accv, vi);
  910. }
  911. y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv));
  912. }
  913. #elif defined(__wasm_simd128__)
  914. for (int i = 0; i < nb; i++) {
  915. v128_t srcv [8];
  916. v128_t asrcv[8];
  917. v128_t amaxv[8];
  918. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  919. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  920. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  921. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  922. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  923. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  924. wasm_f32x4_extract_lane(amaxv[0], 1)),
  925. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  926. wasm_f32x4_extract_lane(amaxv[0], 3)));
  927. const float d = amax / ((1 << 7) - 1);
  928. const float id = d ? 1.0f/d : 0.0f;
  929. y[i].d = GGML_FP32_TO_FP16(d);
  930. v128_t accv = wasm_i32x4_splat(0);
  931. for (int j = 0; j < 8; j++) {
  932. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  933. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  934. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  935. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  936. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  937. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  938. accv = wasm_i32x4_add(accv, vi);
  939. }
  940. y[i].s = GGML_FP32_TO_FP16(
  941. d * (wasm_i32x4_extract_lane(accv, 0) +
  942. wasm_i32x4_extract_lane(accv, 1) +
  943. wasm_i32x4_extract_lane(accv, 2) +
  944. wasm_i32x4_extract_lane(accv, 3)));
  945. }
  946. #elif defined(__AVX2__) || defined(__AVX__)
  947. for (int i = 0; i < nb; i++) {
  948. // Load elements into 4 AVX vectors
  949. __m256 v0 = _mm256_loadu_ps( x );
  950. __m256 v1 = _mm256_loadu_ps( x + 8 );
  951. __m256 v2 = _mm256_loadu_ps( x + 16 );
  952. __m256 v3 = _mm256_loadu_ps( x + 24 );
  953. x += 32;
  954. // Compute max(abs(e)) for the block
  955. const __m256 signBit = _mm256_set1_ps( -0.0f );
  956. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  957. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  958. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  959. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  960. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  961. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  962. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  963. const float max_scalar = _mm_cvtss_f32( max4 );
  964. // Quantize these floats
  965. const float d = max_scalar / 127.f;
  966. y[i].d = GGML_FP32_TO_FP16(d);
  967. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  968. const __m256 mul = _mm256_set1_ps( id );
  969. // Apply the multiplier
  970. v0 = _mm256_mul_ps( v0, mul );
  971. v1 = _mm256_mul_ps( v1, mul );
  972. v2 = _mm256_mul_ps( v2, mul );
  973. v3 = _mm256_mul_ps( v3, mul );
  974. // Round to nearest integer
  975. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  976. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  977. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  978. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  979. // Convert floats to integers
  980. __m256i i0 = _mm256_cvtps_epi32( v0 );
  981. __m256i i1 = _mm256_cvtps_epi32( v1 );
  982. __m256i i2 = _mm256_cvtps_epi32( v2 );
  983. __m256i i3 = _mm256_cvtps_epi32( v3 );
  984. #if defined(__AVX2__)
  985. // Compute the sum of the quants and set y[i].s
  986. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3))));
  987. // Convert int32 to int16
  988. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  989. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  990. // Convert int16 to int8
  991. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  992. // We got our precious signed bytes, but the order is now wrong
  993. // These AVX2 pack instructions process 16-byte pieces independently
  994. // The following instruction is fixing the order
  995. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  996. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  997. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  998. #else
  999. // Since we don't have in AVX some necessary functions,
  1000. // we split the registers in half and call AVX2 analogs from SSE
  1001. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1002. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1003. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1004. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1005. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1006. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1007. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1008. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1009. // Compute the sum of the quants and set y[i].s
  1010. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1011. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1012. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1)));
  1013. // Convert int32 to int16
  1014. ni0 = _mm_packs_epi32( ni0, ni1 );
  1015. ni2 = _mm_packs_epi32( ni2, ni3 );
  1016. ni4 = _mm_packs_epi32( ni4, ni5 );
  1017. ni6 = _mm_packs_epi32( ni6, ni7 );
  1018. // Convert int16 to int8
  1019. ni0 = _mm_packs_epi16( ni0, ni2 );
  1020. ni4 = _mm_packs_epi16( ni4, ni6 );
  1021. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1022. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1023. #endif
  1024. }
  1025. #elif defined(__riscv_v_intrinsic)
  1026. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1027. for (int i = 0; i < nb; i++) {
  1028. // load elements
  1029. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1030. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1031. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1032. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1033. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1034. const float d = amax / ((1 << 7) - 1);
  1035. const float id = d ? 1.0f/d : 0.0f;
  1036. y[i].d = GGML_FP32_TO_FP16(d);
  1037. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1038. // convert to integer
  1039. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1040. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1041. // store result
  1042. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1043. // compute sum for y[i].s
  1044. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1045. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1046. // set y[i].s
  1047. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1048. y[i].s = GGML_FP32_TO_FP16(sum*d);
  1049. }
  1050. #elif defined(__POWER9_VECTOR__)
  1051. for (int i = 0; i < nb; i++) {
  1052. vector float srcv [8];
  1053. vector float asrcv[8];
  1054. vector float amaxv[8];
  1055. vector signed int vi[8];
  1056. for (int j = 0; j < 8; j++) srcv[j] = vec_xl(0, x + i*32 + 4*j);
  1057. for (int j = 0; j < 8; j++) asrcv[j] = vec_abs(srcv[j]);
  1058. for (int j = 0; j < 4; j++) amaxv[2*j] = vec_max(asrcv[2*j], asrcv[2*j+1]);
  1059. for (int j = 0; j < 2; j++) amaxv[4*j] = vec_max(amaxv[4*j], amaxv[4*j+2]);
  1060. for (int j = 0; j < 1; j++) amaxv[8*j] = vec_max(amaxv[8*j], amaxv[8*j+4]);
  1061. const float amax = MAX(MAX(vec_extract(amaxv[0], 0),
  1062. vec_extract(amaxv[0], 1)),
  1063. MAX(vec_extract(amaxv[0], 2),
  1064. vec_extract(amaxv[0], 3)));
  1065. const float d = amax / ((1 << 7) - 1);
  1066. const float id = d ? 1.0f/d : 0.0f;
  1067. const vector float vid = vec_splats(id);
  1068. y[i].d = GGML_FP32_TO_FP16(d);
  1069. vector int accv = vec_splats(0);
  1070. for (int j = 0; j < 8; j++) {
  1071. const vector float v = vec_round(vec_mul(srcv[j], vid));
  1072. vi[j] = vec_cts(v, 0);
  1073. accv = vec_add(accv, vi[j]);
  1074. }
  1075. vec_xst(vec_pack(vec_pack(vi[0], vi[1]), vec_pack(vi[2], vi[3])), 0, &y[i].qs[0]);
  1076. vec_xst(vec_pack(vec_pack(vi[4], vi[5]), vec_pack(vi[6], vi[7])), 16, &y[i].qs[0]);
  1077. accv = vec_add(accv, vec_sld(accv, accv, 4));
  1078. accv = vec_add(accv, vec_sld(accv, accv, 8));
  1079. y[i].s = GGML_FP32_TO_FP16(d * vec_extract(accv, 0));
  1080. }
  1081. #elif defined(__loongarch_asx)
  1082. for (int i = 0; i < nb; i++) {
  1083. ft_union ft;
  1084. __m256 v0 = (__m256)__lasx_xvld( x , 0 );
  1085. __m256 v1 = (__m256)__lasx_xvld( x , 32 );
  1086. __m256 v2 = (__m256)__lasx_xvld( x , 64 );
  1087. __m256 v3 = (__m256)__lasx_xvld( x , 96 );
  1088. x += 32;
  1089. // Compute max(abs(e)) for the block
  1090. const __m256 sign_bit = __lasx_xvreplfr2vr_s( -0.0f );
  1091. __m256 max_abs = (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v0 );
  1092. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v1 ) );
  1093. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v2 ) );
  1094. max_abs = __lasx_xvfmax_s( max_abs, (__m256)__lasx_xvandn_v( (__m256i)sign_bit, (__m256i)v3 ) );
  1095. __m128 max4 = __lsx_vfmax_s( lasx_extractf128( max_abs, 1 ), lasx_extractf128( max_abs, 0) );
  1096. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vpickod_d((__m128i) max4, (__m128i)max4 ) );
  1097. __m128 tmp = max4;
  1098. max4 = __lsx_vfmax_s( max4, (__m128)__lsx_vextrins_w((__m128i)tmp, (__m128i)max4, 0x10 ));
  1099. ft.i = __lsx_vpickve2gr_w( (__m128i)max4, 0 );
  1100. const float max_scalar = ft.f;
  1101. // Quantize these floats
  1102. const float d = max_scalar / 127.f;
  1103. y[i].d = GGML_FP32_TO_FP16(d);
  1104. const float id = ( max_scalar != 0.0f ) ? 127.f / max_scalar : 0.0f;
  1105. const __m256 mul = __lasx_xvreplfr2vr_s( id );
  1106. // Apply the multiplier
  1107. v0 = __lasx_xvfmul_s( v0, mul );
  1108. v1 = __lasx_xvfmul_s( v1, mul );
  1109. v2 = __lasx_xvfmul_s( v2, mul );
  1110. v3 = __lasx_xvfmul_s( v3, mul );
  1111. // Round to nearest integer
  1112. __m256i i0 = __lasx_xvftintrne_w_s( v0 );
  1113. __m256i i1 = __lasx_xvftintrne_w_s( v1 );
  1114. __m256i i2 = __lasx_xvftintrne_w_s( v2 );
  1115. __m256i i3 = __lasx_xvftintrne_w_s( v3 );
  1116. __m128i ni0 = lasx_extracti128(i0, 0);
  1117. __m128i ni1 = lasx_extracti128( i0, 1);
  1118. __m128i ni2 = lasx_extracti128( i1, 0);
  1119. __m128i ni3 = lasx_extracti128( i1, 1);
  1120. __m128i ni4 = lasx_extracti128( i2, 0 );
  1121. __m128i ni5 = lasx_extracti128( i2, 1);
  1122. __m128i ni6 = lasx_extracti128( i3, 0);
  1123. __m128i ni7 = lasx_extracti128( i3, 1);
  1124. // Compute the sum of the quants and set y[i].s
  1125. const __m128i s0 = __lsx_vadd_w(__lsx_vadd_w(ni0, ni1), __lsx_vadd_w(ni2, ni3));
  1126. const __m128i s1 = __lsx_vadd_w(__lsx_vadd_w(ni4, ni5), __lsx_vadd_w(ni6, ni7));
  1127. y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(__lsx_vadd_w(s0, s1)));
  1128. // Convert int32 to int16
  1129. ni0 = lsx_packs_w( ni0, ni1 );
  1130. ni2 = lsx_packs_w( ni2, ni3 );
  1131. ni4 = lsx_packs_w( ni4, ni5 );
  1132. ni6 = lsx_packs_w( ni6, ni7 );
  1133. // Convert int16 to int8
  1134. ni0 = lsx_packs_h( ni0, ni2 );
  1135. ni4 = lsx_packs_h( ni4, ni6 );
  1136. __lsx_vst(ni0, (__m128i *)(y[i].qs + 0), 0);
  1137. __lsx_vst(ni4, (__m128i *)(y[i].qs + 16), 0);
  1138. }
  1139. #else
  1140. GGML_UNUSED(nb);
  1141. // scalar
  1142. quantize_row_q8_1_ref(x, y, k);
  1143. #endif
  1144. }
  1145. //
  1146. // 2-6 bit quantization in super-blocks
  1147. //
  1148. //
  1149. // ===================== Helper functions
  1150. //
  1151. static inline int nearest_int(float fval) {
  1152. assert(fabsf(fval) <= 4194303.f);
  1153. float val = fval + 12582912.f;
  1154. int i; memcpy(&i, &val, sizeof(int));
  1155. return (i & 0x007fffff) - 0x00400000;
  1156. }
  1157. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1158. const float * restrict qw) {
  1159. float max = 0;
  1160. float amax = 0;
  1161. for (int i = 0; i < n; ++i) {
  1162. float ax = fabsf(x[i]);
  1163. if (ax > amax) { amax = ax; max = x[i]; }
  1164. }
  1165. if (amax < GROUP_MAX_EPS) { // all zero
  1166. for (int i = 0; i < n; ++i) {
  1167. L[i] = 0;
  1168. }
  1169. return 0.f;
  1170. }
  1171. float iscale = -nmax / max;
  1172. if (rmse_type == 0) {
  1173. for (int i = 0; i < n; ++i) {
  1174. int l = nearest_int(iscale * x[i]);
  1175. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1176. }
  1177. return 1/iscale;
  1178. }
  1179. bool return_early = false;
  1180. if (rmse_type < 0) {
  1181. rmse_type = -rmse_type;
  1182. return_early = true;
  1183. }
  1184. float sumlx = 0;
  1185. float suml2 = 0;
  1186. #ifdef HAVE_BUGGY_APPLE_LINKER
  1187. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1188. for (volatile int i = 0; i < n; ++i) {
  1189. #else
  1190. for (int i = 0; i < n; ++i) {
  1191. #endif
  1192. int l = nearest_int(iscale * x[i]);
  1193. l = MAX(-nmax, MIN(nmax-1, l));
  1194. L[i] = l + nmax;
  1195. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1196. sumlx += w*x[i]*l;
  1197. suml2 += w*l*l;
  1198. }
  1199. float scale = suml2 ? sumlx/suml2 : 0.0f;
  1200. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1201. float best = scale * sumlx;
  1202. for (int is = -9; is <= 9; ++is) {
  1203. if (is == 0) {
  1204. continue;
  1205. }
  1206. iscale = -(nmax + 0.1f*is) / max;
  1207. sumlx = suml2 = 0;
  1208. for (int i = 0; i < n; ++i) {
  1209. int l = nearest_int(iscale * x[i]);
  1210. l = MAX(-nmax, MIN(nmax-1, l));
  1211. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1212. sumlx += w*x[i]*l;
  1213. suml2 += w*l*l;
  1214. }
  1215. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1216. for (int i = 0; i < n; ++i) {
  1217. int l = nearest_int(iscale * x[i]);
  1218. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1219. }
  1220. scale = sumlx/suml2; best = scale*sumlx;
  1221. }
  1222. }
  1223. return scale;
  1224. }
  1225. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1226. float max = 0;
  1227. float amax = 0;
  1228. for (int i = 0; i < n; ++i) {
  1229. float ax = fabsf(x[i]);
  1230. if (ax > amax) { amax = ax; max = x[i]; }
  1231. }
  1232. if (amax < GROUP_MAX_EPS) { // all zero
  1233. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1234. return 0.f;
  1235. }
  1236. float iscale = -nmax / max;
  1237. if (do_rmse) {
  1238. float sumlx = 0;
  1239. float suml2 = 0;
  1240. for (int i = 0; i < n; ++i) {
  1241. int l = nearest_int(iscale * x[i]);
  1242. l = MAX(-nmax, MIN(nmax-1, l));
  1243. L[i] = l;
  1244. float w = x[i]*x[i];
  1245. sumlx += w*x[i]*l;
  1246. suml2 += w*l*l;
  1247. }
  1248. for (int itry = 0; itry < 5; ++itry) {
  1249. int n_changed = 0;
  1250. for (int i = 0; i < n; ++i) {
  1251. float w = x[i]*x[i];
  1252. float slx = sumlx - w*x[i]*L[i];
  1253. if (slx > 0) {
  1254. float sl2 = suml2 - w*L[i]*L[i];
  1255. int new_l = nearest_int(x[i] * sl2 / slx);
  1256. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1257. if (new_l != L[i]) {
  1258. slx += w*x[i]*new_l;
  1259. sl2 += w*new_l*new_l;
  1260. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1261. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1262. ++n_changed;
  1263. }
  1264. }
  1265. }
  1266. }
  1267. if (!n_changed) {
  1268. break;
  1269. }
  1270. }
  1271. for (int i = 0; i < n; ++i) {
  1272. L[i] += nmax;
  1273. }
  1274. return sumlx / suml2;
  1275. }
  1276. for (int i = 0; i < n; ++i) {
  1277. int l = nearest_int(iscale * x[i]);
  1278. l = MAX(-nmax, MIN(nmax-1, l));
  1279. L[i] = l + nmax;
  1280. }
  1281. return 1/iscale;
  1282. }
  1283. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1284. int ntry, float alpha) {
  1285. float min = x[0];
  1286. float max = x[0];
  1287. for (int i = 1; i < n; ++i) {
  1288. if (x[i] < min) min = x[i];
  1289. if (x[i] > max) max = x[i];
  1290. }
  1291. if (max == min) {
  1292. for (int i = 0; i < n; ++i) L[i] = 0;
  1293. *the_min = 0;
  1294. return 0.f;
  1295. }
  1296. if (min > 0) min = 0;
  1297. float iscale = nmax/(max - min);
  1298. float scale = 1/iscale;
  1299. for (int itry = 0; itry < ntry; ++itry) {
  1300. float sumlx = 0; int suml2 = 0;
  1301. bool did_change = false;
  1302. for (int i = 0; i < n; ++i) {
  1303. int l = nearest_int(iscale*(x[i] - min));
  1304. l = MAX(0, MIN(nmax, l));
  1305. if (l != L[i]) {
  1306. L[i] = l;
  1307. did_change = true;
  1308. }
  1309. sumlx += (x[i] - min)*l;
  1310. suml2 += l*l;
  1311. }
  1312. scale = sumlx/suml2;
  1313. float sum = 0;
  1314. for (int i = 0; i < n; ++i) {
  1315. sum += x[i] - scale*L[i];
  1316. }
  1317. min = alpha*min + (1 - alpha)*sum/n;
  1318. if (min > 0) min = 0;
  1319. iscale = 1/scale;
  1320. if (!did_change) break;
  1321. }
  1322. *the_min = -min;
  1323. return scale;
  1324. }
  1325. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1326. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1327. float rmin, float rdelta, int nstep, bool use_mad) {
  1328. float min = x[0];
  1329. float max = x[0];
  1330. float sum_w = weights[0];
  1331. float sum_x = sum_w * x[0];
  1332. #ifdef HAVE_BUGGY_APPLE_LINKER
  1333. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1334. for (volatile int i = 1; i < n; ++i) {
  1335. #else
  1336. for (int i = 1; i < n; ++i) {
  1337. #endif
  1338. if (x[i] < min) min = x[i];
  1339. if (x[i] > max) max = x[i];
  1340. float w = weights[i];
  1341. sum_w += w;
  1342. sum_x += w * x[i];
  1343. }
  1344. if (min > 0) min = 0;
  1345. if (max == min) {
  1346. for (int i = 0; i < n; ++i) L[i] = 0;
  1347. *the_min = -min;
  1348. return 0.f;
  1349. }
  1350. float iscale = nmax/(max - min);
  1351. float scale = 1/iscale;
  1352. float best_mad = 0;
  1353. for (int i = 0; i < n; ++i) {
  1354. int l = nearest_int(iscale*(x[i] - min));
  1355. L[i] = MAX(0, MIN(nmax, l));
  1356. float diff = scale * L[i] + min - x[i];
  1357. diff = use_mad ? fabsf(diff) : diff * diff;
  1358. float w = weights[i];
  1359. best_mad += w * diff;
  1360. }
  1361. if (nstep < 1) {
  1362. *the_min = -min;
  1363. return scale;
  1364. }
  1365. for (int is = 0; is <= nstep; ++is) {
  1366. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1367. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1368. for (int i = 0; i < n; ++i) {
  1369. int l = nearest_int(iscale*(x[i] - min));
  1370. l = MAX(0, MIN(nmax, l));
  1371. Laux[i] = l;
  1372. float w = weights[i];
  1373. sum_l += w*l;
  1374. sum_l2 += w*l*l;
  1375. sum_xl += w*l*x[i];
  1376. }
  1377. float D = sum_w * sum_l2 - sum_l * sum_l;
  1378. if (D > 0) {
  1379. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1380. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1381. if (this_min > 0) {
  1382. this_min = 0;
  1383. this_scale = sum_xl / sum_l2;
  1384. }
  1385. float mad = 0;
  1386. for (int i = 0; i < n; ++i) {
  1387. float diff = this_scale * Laux[i] + this_min - x[i];
  1388. diff = use_mad ? fabsf(diff) : diff * diff;
  1389. float w = weights[i];
  1390. mad += w * diff;
  1391. }
  1392. if (mad < best_mad) {
  1393. for (int i = 0; i < n; ++i) {
  1394. L[i] = Laux[i];
  1395. }
  1396. best_mad = mad;
  1397. scale = this_scale;
  1398. min = this_min;
  1399. }
  1400. }
  1401. }
  1402. *the_min = -min;
  1403. return scale;
  1404. }
  1405. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1406. if (j < 4) {
  1407. *d = q[j] & 63; *m = q[j + 4] & 63;
  1408. } else {
  1409. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1410. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1411. }
  1412. }
  1413. //========================- 2-bit (de)-quantization
  1414. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) {
  1415. quantize_row_q2_K_ref(x, vy, k);
  1416. }
  1417. //========================= 3-bit (de)-quantization
  1418. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) {
  1419. quantize_row_q3_K_ref(x, vy, k);
  1420. }
  1421. // ====================== 4-bit (de)-quantization
  1422. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) {
  1423. assert(k % QK_K == 0);
  1424. block_q4_K * restrict y = vy;
  1425. quantize_row_q4_K_ref(x, y, k);
  1426. }
  1427. // ====================== 5-bit (de)-quantization
  1428. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) {
  1429. assert(k % QK_K == 0);
  1430. block_q5_K * restrict y = vy;
  1431. quantize_row_q5_K_ref(x, y, k);
  1432. }
  1433. // ====================== 6-bit (de)-quantization
  1434. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) {
  1435. assert(k % QK_K == 0);
  1436. block_q6_K * restrict y = vy;
  1437. quantize_row_q6_K_ref(x, y, k);
  1438. }
  1439. // ====================== Ternary (de)-quantization (BitNet b1.58 and TriLMs)
  1440. void quantize_row_tq1_0(const float * restrict x, void * restrict vy, int64_t k) {
  1441. assert(k % QK_K == 0);
  1442. block_tq1_0 * restrict y = vy;
  1443. quantize_row_tq1_0_ref(x, y, k);
  1444. }
  1445. void quantize_row_tq2_0(const float * restrict x, void * restrict vy, int64_t k) {
  1446. assert(k % QK_K == 0);
  1447. block_tq2_0 * restrict y = vy;
  1448. quantize_row_tq2_0_ref(x, y, k);
  1449. }
  1450. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  1451. //===================================== Q8_K ==============================================
  1452. void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) {
  1453. quantize_row_q8_K_ref(x, y, k);
  1454. }
  1455. //===================================== Dot products =================================
  1456. //
  1457. // Helper functions
  1458. //
  1459. #if __AVX__ || __AVX2__ || __AVX512F__
  1460. // shuffles to pick the required scales in dot products
  1461. static inline __m256i get_scale_shuffle_q3k(int i) {
  1462. static const uint8_t k_shuffle[128] = {
  1463. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1464. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1465. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1466. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1467. };
  1468. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1469. }
  1470. static inline __m256i get_scale_shuffle_k4(int i) {
  1471. static const uint8_t k_shuffle[256] = {
  1472. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1473. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1474. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1475. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1476. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1477. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1478. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1479. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1480. };
  1481. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1482. }
  1483. static inline __m128i get_scale_shuffle(int i) {
  1484. static const uint8_t k_shuffle[128] = {
  1485. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1486. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1487. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1488. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1489. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1490. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1491. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1492. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1493. };
  1494. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1495. }
  1496. #elif defined(__loongarch_asx)
  1497. // shuffles to pick the required scales in dot products
  1498. static inline __m256i get_scale_shuffle_q3k(int i) {
  1499. static const uint8_t k_shuffle[128] = {
  1500. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1501. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1502. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1503. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1504. };
  1505. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1506. }
  1507. static inline __m256i get_scale_shuffle_k4(int i) {
  1508. static const uint8_t k_shuffle[256] = {
  1509. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1510. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1511. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1512. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1513. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1514. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1515. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1516. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1517. };
  1518. return __lasx_xvld((const __m256i*)k_shuffle + i, 0);
  1519. }
  1520. static inline __m128i get_scale_shuffle(int i) {
  1521. static const uint8_t k_shuffle[128] = {
  1522. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1523. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1524. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1525. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1526. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1527. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1528. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1529. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1530. };
  1531. return __lsx_vld((const __m128i*)k_shuffle + i, 0);
  1532. }
  1533. #endif
  1534. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1535. const int qk = QK8_0;
  1536. const int nb = n / qk;
  1537. assert(n % qk == 0);
  1538. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1539. assert((nrc == 2) || (nrc == 1));
  1540. #else
  1541. assert(nrc == 1);
  1542. #endif
  1543. UNUSED(nrc);
  1544. UNUSED(bx);
  1545. UNUSED(by);
  1546. UNUSED(bs);
  1547. const block_q4_0 * restrict x = vx;
  1548. const block_q8_0 * restrict y = vy;
  1549. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1550. if (nrc == 2) {
  1551. const block_q4_0 * restrict vx0 = vx;
  1552. const block_q4_0 * restrict vx1 = (const block_q4_0 *) ((const uint8_t*)vx + bx);
  1553. const block_q8_0 * restrict vy0 = vy;
  1554. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  1555. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1556. for (int i = 0; i < nb; i++) {
  1557. const block_q4_0 * restrict b_x0 = &vx0[i];
  1558. const block_q4_0 * restrict b_x1 = &vx1[i];
  1559. const block_q8_0 * restrict b_y0 = &vy0[i];
  1560. const block_q8_0 * restrict b_y1 = &vy1[i];
  1561. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1562. const int8x16_t s8b = vdupq_n_s8(0x8);
  1563. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  1564. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  1565. // 4-bit -> 8-bit
  1566. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1567. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1568. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1569. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1570. // sub 8
  1571. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  1572. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  1573. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  1574. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  1575. // load y
  1576. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  1577. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  1578. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  1579. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  1580. float32_t _scale[4] = {
  1581. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  1582. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  1583. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  1584. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  1585. };
  1586. float32x4_t scale = vld1q_f32(_scale);
  1587. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1588. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  1589. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1590. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  1591. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1592. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  1593. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1594. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  1595. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  1596. l1, r1)), l2, r2)), l3, r3))), scale);
  1597. }
  1598. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  1599. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  1600. vst1_f32(s, vget_low_f32 (sumv2));
  1601. vst1_f32(s + bs, vget_high_f32(sumv2));
  1602. return;
  1603. }
  1604. #endif
  1605. int ib = 0;
  1606. float sumf = 0;
  1607. #if defined(__ARM_FEATURE_SVE)
  1608. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  1609. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  1610. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  1611. // VLA Implementation using switch case
  1612. switch (vector_length) {
  1613. case 128:
  1614. {
  1615. // predicate for activating higher lanes for 4 float32 elements
  1616. const svbool_t ph4 = svptrue_pat_b32(SV_VL4);
  1617. for (; ib + 1 < nb; ib += 2) {
  1618. const block_q4_0 * restrict x0 = &x[ib + 0];
  1619. const block_q4_0 * restrict x1 = &x[ib + 1];
  1620. const block_q8_0 * restrict y0 = &y[ib + 0];
  1621. const block_q8_0 * restrict y1 = &y[ib + 1];
  1622. // load x
  1623. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1624. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1625. // 4-bit -> 8-bit
  1626. const svint8_t qx0l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx0r, 0x0F));
  1627. const svint8_t qx0h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx0r, 0x04));
  1628. const svint8_t qx1l = svreinterpret_s8_u8(svand_n_u8_m(svptrue_b8(), qx1r, 0x0F));
  1629. const svint8_t qx1h = svreinterpret_s8_u8(svlsr_n_u8_m(svptrue_b8(), qx1r, 0x04));
  1630. // sub 8
  1631. const svint8_t qx0ls = svsub_n_s8_x(svptrue_b8(), qx0h, 8);
  1632. const svint8_t qx0hs = svsub_n_s8_x(svptrue_b8(), qx0l, 8);
  1633. const svint8_t qx1ls = svsub_n_s8_x(svptrue_b8(), qx1h, 8);
  1634. const svint8_t qx1hs = svsub_n_s8_x(svptrue_b8(), qx1l, 8);
  1635. // load y
  1636. const svint8_t qy0h = svld1_s8(svptrue_b8(), y0->qs);
  1637. const svint8_t qy0l = svld1_s8(svptrue_b8(), y0->qs + 16);
  1638. const svint8_t qy1h = svld1_s8(svptrue_b8(), y1->qs);
  1639. const svint8_t qy1l = svld1_s8(svptrue_b8(), y1->qs + 16);
  1640. // dot product
  1641. sumv0 = svmla_n_f32_x(ph4, sumv0, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1642. svdot_s32(svdup_n_s32(0), qx0ls, qy0l),
  1643. svdot_s32(svdup_n_s32(0), qx0hs, qy0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1644. sumv1 = svmla_n_f32_x(ph4, sumv1, svcvt_f32_s32_x(ph4, svadd_x(ph4,
  1645. svdot_s32(svdup_n_s32(0), qx1ls, qy1l),
  1646. svdot_s32(svdup_n_s32(0), qx1hs, qy1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1647. }
  1648. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1649. } break;
  1650. case 256:
  1651. {
  1652. // predicate for activating higher lanes for 16 int8 elements
  1653. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1654. // predicate for activating lower lanes for 16 int8 elements
  1655. const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
  1656. for (; ib + 1 < nb; ib += 2) {
  1657. const block_q4_0 * restrict x0 = &x[ib + 0];
  1658. const block_q4_0 * restrict x1 = &x[ib + 1];
  1659. const block_q8_0 * restrict y0 = &y[ib + 0];
  1660. const block_q8_0 * restrict y1 = &y[ib + 1];
  1661. // load x
  1662. const svuint8_t qx0r = svld1rq_u8(svptrue_b8(), x0->qs);
  1663. const svuint8_t qx1r = svld1rq_u8(svptrue_b8(), x1->qs);
  1664. // 4-bit -> 8-bit
  1665. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1666. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1667. // sub 8
  1668. const svint8_t qx0s = svsub_n_s8_x(svptrue_b8(), qx0, 8);
  1669. const svint8_t qx1s = svsub_n_s8_x(svptrue_b8(), qx1, 8);
  1670. // load y
  1671. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  1672. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  1673. // dot product
  1674. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  1675. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1676. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  1677. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1678. }
  1679. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  1680. } break;
  1681. case 512:
  1682. {
  1683. // predicate for activating higher lanes for 32 int8 elements
  1684. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  1685. // predicate for activating higher lanes for 16 int8 elements
  1686. const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
  1687. // predicate for activating lower lanes for 16 int8 elements from first 32 int8 activated lanes
  1688. const svbool_t pl16 = svnot_b_z(ph32, ph16);
  1689. for (; ib + 1 < nb; ib += 2) {
  1690. const block_q4_0 * restrict x0 = &x[ib + 0];
  1691. const block_q4_0 * restrict x1 = &x[ib + 1];
  1692. const block_q8_0 * restrict y0 = &y[ib + 0];
  1693. const block_q8_0 * restrict y1 = &y[ib + 1];
  1694. // load x
  1695. const svuint8_t qx0r = svld1rq_u8(ph32, x0->qs);
  1696. const svuint8_t qx1r = svld1rq_u8(ph32, x1->qs);
  1697. // 4-bit -> 8-bit
  1698. const svint8_t qx0 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx0r, 0x0F), 0x04));
  1699. const svint8_t qx1 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_n_u8_m(ph16, qx1r, 0x0F), 0x04));
  1700. // sub 8
  1701. const svint8_t qx0s = svsub_n_s8_x(ph32, qx0, 8);
  1702. const svint8_t qx1s = svsub_n_s8_x(ph32, qx1, 8);
  1703. // load y
  1704. const svint8_t qy0 = svld1_s8(ph32, y0->qs);
  1705. const svint8_t qy1 = svld1_s8(ph32, y1->qs);
  1706. // dot product
  1707. sumv0 = svmla_n_f32_x(ph32, sumv0, svcvt_f32_s32_x(ph32,
  1708. svdot_s32(svdup_n_s32(0), qx0s, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1709. sumv1 = svmla_n_f32_x(ph32, sumv1, svcvt_f32_s32_x(ph32,
  1710. svdot_s32(svdup_n_s32(0), qx1s, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1711. }
  1712. sumf = svaddv_f32(ph32, svadd_f32_x(ph32, sumv0, sumv1));
  1713. } break;
  1714. default:
  1715. assert(false && "Unsupported vector length");
  1716. break;
  1717. }
  1718. #elif defined(__ARM_NEON)
  1719. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1720. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1721. for (; ib + 1 < nb; ib += 2) {
  1722. const block_q4_0 * restrict x0 = &x[ib + 0];
  1723. const block_q4_0 * restrict x1 = &x[ib + 1];
  1724. const block_q8_0 * restrict y0 = &y[ib + 0];
  1725. const block_q8_0 * restrict y1 = &y[ib + 1];
  1726. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1727. const int8x16_t s8b = vdupq_n_s8(0x8);
  1728. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1729. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1730. // 4-bit -> 8-bit
  1731. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1732. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1733. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1734. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1735. // sub 8
  1736. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1737. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1738. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1739. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1740. // load y
  1741. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1742. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1743. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1744. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1745. // dot product into int32x4_t
  1746. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1747. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1748. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1749. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1750. }
  1751. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1752. #elif defined(__AVX2__)
  1753. // Initialize accumulator with zeros
  1754. __m256 acc = _mm256_setzero_ps();
  1755. // Main loop
  1756. for (; ib < nb; ++ib) {
  1757. /* Compute combined scale for the block */
  1758. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1759. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1760. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1761. const __m256i off = _mm256_set1_epi8( 8 );
  1762. qx = _mm256_sub_epi8( qx, off );
  1763. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  1764. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1765. /* Multiply q with scale and accumulate */
  1766. acc = _mm256_fmadd_ps( d, q, acc );
  1767. }
  1768. sumf = hsum_float_8(acc);
  1769. #elif defined(__AVX__)
  1770. __m256 accum = _mm256_setzero_ps();
  1771. for (; ib + 1 < nb; ib += 2) {
  1772. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  1773. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1774. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  1775. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  1776. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1777. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  1778. const __m128i q4b_1_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_1), _mm_set1_epi8(8));
  1779. const __m128i q4b_1_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_1, 4)), _mm_set1_epi8(8));
  1780. const __m128i q4b_2_0 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), q4bits_2), _mm_set1_epi8(8));
  1781. const __m128i q4b_2_1 = _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(q4bits_2, 4)), _mm_set1_epi8(8));
  1782. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  1783. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  1784. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  1785. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  1786. const __m128i p_1 = _mm_add_epi16(p16_1_0, p16_1_1);
  1787. const __m128i p_2 = _mm_add_epi16(p16_2_0, p16_2_1);
  1788. const __m256 p = sum_i16_pairs_float(p_2, p_1);
  1789. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  1790. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  1791. }
  1792. sumf = hsum_float_8(accum);
  1793. #elif defined(__SSSE3__)
  1794. // set constants
  1795. const __m128i lowMask = _mm_set1_epi8(0xF);
  1796. const __m128i off = _mm_set1_epi8(8);
  1797. // Initialize accumulator with zeros
  1798. __m128 acc_0 = _mm_setzero_ps();
  1799. __m128 acc_1 = _mm_setzero_ps();
  1800. __m128 acc_2 = _mm_setzero_ps();
  1801. __m128 acc_3 = _mm_setzero_ps();
  1802. for (; ib + 1 < nb; ib += 2) {
  1803. _mm_prefetch(&x[ib] + sizeof(block_q4_0), _MM_HINT_T0);
  1804. _mm_prefetch(&y[ib] + sizeof(block_q8_0), _MM_HINT_T0);
  1805. // Compute combined scale for the block 0 and 1
  1806. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1807. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  1808. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1809. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  1810. bx_0 = _mm_sub_epi8(bx_0, off);
  1811. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1812. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1813. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[ib].qs + 16));
  1814. bx_1 = _mm_sub_epi8(bx_1, off);
  1815. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1816. _mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1817. _mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1818. // Compute combined scale for the block 2 and 3
  1819. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1820. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  1821. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1822. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  1823. bx_2 = _mm_sub_epi8(bx_2, off);
  1824. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1825. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1826. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[ib + 1].qs + 16));
  1827. bx_3 = _mm_sub_epi8(bx_3, off);
  1828. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1829. // Convert int32_t to float
  1830. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1831. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1832. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1833. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1834. // Apply the scale
  1835. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1836. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1837. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1838. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1839. // Acummulate
  1840. acc_0 = _mm_add_ps(p0_d, acc_0);
  1841. acc_1 = _mm_add_ps(p1_d, acc_1);
  1842. acc_2 = _mm_add_ps(p2_d, acc_2);
  1843. acc_3 = _mm_add_ps(p3_d, acc_3);
  1844. }
  1845. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1846. #elif defined(__riscv_v_intrinsic)
  1847. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  1848. for (; ib < nb; ++ib) {
  1849. // load elements
  1850. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  1851. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  1852. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  1853. // mask and store lower part of x, and then upper part
  1854. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  1855. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  1856. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  1857. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  1858. // subtract offset
  1859. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  1860. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  1861. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  1862. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  1863. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  1864. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  1865. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  1866. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  1867. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1868. }
  1869. #elif defined(__POWER9_VECTOR__)
  1870. const vector signed char lowMask = vec_splats((signed char)0xF);
  1871. const vector signed int v0 = vec_splats((int32_t)0);
  1872. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  1873. const vector signed char v8 = vec_splats((signed char)0x8);
  1874. vector float vsumf0 = vec_splats(0.0f);
  1875. #pragma GCC unroll 8
  1876. for (; ib < nb; ++ib) {
  1877. __builtin_prefetch(x[ib].qs, 0, 1);
  1878. __builtin_prefetch(y[ib].qs, 0, 1);
  1879. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  1880. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  1881. vector float vd = vec_mul(vxd, vyd);
  1882. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  1883. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  1884. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  1885. vector signed char q4x0 = vec_and(qxs, lowMask);
  1886. vector signed char q4x1 = vec_sr(qxs, v4);
  1887. q4x0 = vec_sub(q4x0, v8);
  1888. q4x1 = vec_sub(q4x1, v8);
  1889. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  1890. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  1891. vector signed int vsumi0 = v0;
  1892. vsumi0 = vec_sum4s(qv0, vsumi0);
  1893. vsumi0 = vec_sum4s(qv1, vsumi0);
  1894. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  1895. }
  1896. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  1897. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  1898. sumf = vec_extract(vsumf0, 0);
  1899. #elif defined(__loongarch_asx)
  1900. // Initialize accumulator with zeros
  1901. __m256 acc = (__m256)__lasx_xvldi(0);
  1902. // Main loop
  1903. for (; ib < nb; ++ib) {
  1904. /* Compute combined scale for the block */
  1905. const __m256 d = __lasx_xvreplfr2vr_s( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1906. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  1907. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1908. const __m256i off = __lasx_xvreplgr2vr_b( 8 );
  1909. qx = __lasx_xvsub_b( qx, off );
  1910. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  1911. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  1912. /* Multiply q with scale and accumulate */
  1913. acc = __lasx_xvfmadd_s( d, q, acc );
  1914. }
  1915. sumf = hsum_float_8(acc);
  1916. #elif defined(__loongarch_sx)
  1917. // set constants
  1918. const __m128i low_mask = __lsx_vreplgr2vr_b(0xF);
  1919. const __m128i off = __lsx_vreplgr2vr_b(8);
  1920. // Initialize accumulator with zeros
  1921. __m128 acc_0 = __lsx_vldi(0);
  1922. __m128 acc_1 = __lsx_vldi(0);
  1923. __m128 acc_2 = __lsx_vldi(0);
  1924. __m128 acc_3 = __lsx_vldi(0);
  1925. for (; ib + 1 < nb; ib += 2) {
  1926. // Compute combined scale for the block 0 and 1
  1927. const __m128 d_0_1 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d) );
  1928. const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
  1929. __m128i bx_0 = __lsx_vand_v(low_mask, tmp_0_1);
  1930. __m128i by_0 = __lsx_vld((const __m128i *)y[ib].qs, 0);
  1931. bx_0 = __lsx_vsub_b(bx_0, off);
  1932. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1933. __m128i bx_1 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_0_1, 4));
  1934. __m128i by_1 = __lsx_vld((const __m128i *)(y[ib].qs + 16), 0);
  1935. bx_1 = __lsx_vsub_b(bx_1, off);
  1936. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1937. //_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1938. //_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1939. // Compute combined scale for the block 2 and 3
  1940. const __m128 d_2_3 = __lsx_vreplgr2vr_w( GGML_FP16_TO_FP32(x[ib + 1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) );
  1941. const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
  1942. __m128i bx_2 = __lsx_vand_v(low_mask, tmp_2_3);
  1943. __m128i by_2 = __lsx_vld((const __m128i *)y[ib + 1].qs, 0);
  1944. bx_2 = __lsx_vsub_b(bx_2, off);
  1945. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1946. __m128i bx_3 = __lsx_vand_v(low_mask, __lsx_vsrli_d(tmp_2_3, 4));
  1947. __m128i by_3 = __lsx_vld((const __m128i *)(y[ib + 1].qs + 16), 0);
  1948. bx_3 = __lsx_vsub_b(bx_3, off);
  1949. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1950. // Convert int32_t to float
  1951. __m128 p0 = __lsx_vffint_s_w(i32_0);
  1952. __m128 p1 = __lsx_vffint_s_w(i32_1);
  1953. __m128 p2 = __lsx_vffint_s_w(i32_2);
  1954. __m128 p3 = __lsx_vffint_s_w(i32_3);
  1955. // Apply the scale
  1956. __m128 p0_d = __lsx_vfmul_s( d_0_1, p0 );
  1957. __m128 p1_d = __lsx_vfmul_s( d_0_1, p1 );
  1958. __m128 p2_d = __lsx_vfmul_s( d_2_3, p2 );
  1959. __m128 p3_d = __lsx_vfmul_s( d_2_3, p3 );
  1960. // Acummulate
  1961. acc_0 = __lsx_vfadd_s(p0_d, acc_0);
  1962. acc_1 = __lsx_vfadd_s(p1_d, acc_1);
  1963. acc_2 = __lsx_vfadd_s(p2_d, acc_2);
  1964. acc_3 = __lsx_vfadd_s(p3_d, acc_3);
  1965. }
  1966. sumf = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1967. #endif
  1968. for (; ib < nb; ++ib) {
  1969. int sumi0 = 0;
  1970. int sumi1 = 0;
  1971. for (int j = 0; j < qk/2; ++j) {
  1972. const int v0 = (x[ib].qs[j] & 0x0F) - 8;
  1973. const int v1 = (x[ib].qs[j] >> 4) - 8;
  1974. sumi0 += (v0 * y[ib].qs[j]);
  1975. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  1976. }
  1977. int sumi = sumi0 + sumi1;
  1978. sumf += sumi*GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d);
  1979. }
  1980. *s = sumf;
  1981. }
  1982. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  1983. const int qk = QK8_1;
  1984. const int nb = n / qk;
  1985. assert(n % qk == 0);
  1986. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1987. assert((nrc == 2) || (nrc == 1));
  1988. #else
  1989. assert(nrc == 1);
  1990. #endif
  1991. UNUSED(nrc);
  1992. UNUSED(bx);
  1993. UNUSED(by);
  1994. UNUSED(bs);
  1995. const block_q4_1 * restrict x = vx;
  1996. const block_q8_1 * restrict y = vy;
  1997. #if defined(__ARM_FEATURE_MATMUL_INT8)
  1998. if (nrc == 2) {
  1999. const block_q4_1 * restrict vx0 = vx;
  2000. const block_q4_1 * restrict vx1 = (const block_q4_1 *) ((const uint8_t*)vx + bx);
  2001. const block_q8_1 * restrict vy0 = vy;
  2002. const block_q8_1 * restrict vy1 = (const block_q8_1 *) ((const uint8_t*)vy + by);
  2003. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2004. float32x4_t summs0 = vdupq_n_f32(0.0f);
  2005. for (int i = 0; i < nb; i++) {
  2006. const block_q4_1 * restrict b_x0 = &vx0[i];
  2007. const block_q4_1 * restrict b_x1 = &vx1[i];
  2008. const block_q8_1 * restrict b_y0 = &vy0[i];
  2009. const block_q8_1 * restrict b_y1 = &vy1[i];
  2010. float32_t summs_t[4] = {
  2011. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s),
  2012. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s),
  2013. GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s),
  2014. GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)
  2015. };
  2016. summs0 = vaddq_f32(summs0, vld1q_f32(summs_t));
  2017. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2018. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  2019. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  2020. // 4-bit -> 8-bit
  2021. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2022. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2023. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2024. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2025. // load y
  2026. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  2027. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  2028. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2029. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2030. // mmla into int32x4_t
  2031. float32_t _scale[4] = {
  2032. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2033. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2034. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2035. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2036. };
  2037. float32x4_t scale = vld1q_f32(_scale);
  2038. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2039. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2040. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2041. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2042. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2043. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2044. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2045. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2046. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2047. l1, r1)), l2, r2)), l3, r3))), scale);
  2048. }
  2049. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2050. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2051. sumv2 = vaddq_f32(sumv2, summs0);
  2052. vst1_f32(s, vget_low_f32 (sumv2));
  2053. vst1_f32(s + bs, vget_high_f32(sumv2));
  2054. return;
  2055. }
  2056. #endif
  2057. int ib = 0;
  2058. float sumf = 0;
  2059. // TODO: add WASM SIMD
  2060. #if defined(__ARM_NEON)
  2061. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2062. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2063. float summs = 0;
  2064. for (; ib + 1 < nb; ib += 2) {
  2065. const block_q4_1 * restrict x0 = &x[ib + 0];
  2066. const block_q4_1 * restrict x1 = &x[ib + 1];
  2067. const block_q8_1 * restrict y0 = &y[ib + 0];
  2068. const block_q8_1 * restrict y1 = &y[ib + 1];
  2069. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2070. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2071. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2072. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2073. // 4-bit -> 8-bit
  2074. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2075. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2076. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2077. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2078. // load y
  2079. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2080. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2081. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2082. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2083. // dot product into int32x4_t
  2084. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2085. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2086. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2087. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2088. }
  2089. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2090. #elif defined(__AVX2__) || defined(__AVX__)
  2091. // Initialize accumulator with zeros
  2092. __m256 acc = _mm256_setzero_ps();
  2093. float summs = 0;
  2094. // Main loop
  2095. for (; ib < nb; ++ib) {
  2096. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2097. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2098. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2099. const __m256 d0v = _mm256_set1_ps( d0 );
  2100. const __m256 d1v = _mm256_set1_ps( d1 );
  2101. // Compute combined scales
  2102. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2103. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2104. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2105. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[ib].qs );
  2106. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2107. // Accumulate d0*d1*x*y
  2108. #if defined(__AVX2__)
  2109. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2110. #else
  2111. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2112. #endif
  2113. }
  2114. sumf = hsum_float_8(acc) + summs;
  2115. #elif defined(__riscv_v_intrinsic)
  2116. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2117. for (; ib < nb; ++ib) {
  2118. // load elements
  2119. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2120. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2121. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2122. // mask and store lower part of x, and then upper part
  2123. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2124. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2125. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2126. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2127. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2128. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2129. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2130. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2131. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2132. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2133. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2134. }
  2135. #elif defined(__POWER9_VECTOR__)
  2136. const vector signed char lowMask = vec_splats((signed char)0xF);
  2137. const vector signed int v0 = vec_splats((int32_t)0);
  2138. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2139. vector float vsumf0 = vec_splats(0.0f);
  2140. #pragma GCC unroll 4
  2141. for (; ib < nb; ++ib) {
  2142. __builtin_prefetch(x[ib].qs, 0, 1);
  2143. __builtin_prefetch(y[ib].qs, 0, 1);
  2144. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2145. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2146. vector float vd = vec_mul(vxd, vyd);
  2147. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2148. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.0f, 0.0f, 0.0f};
  2149. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2150. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2151. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2152. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2153. vector unsigned char q4x0 = (vector unsigned char)vec_and(qxs, lowMask);
  2154. vector unsigned char q4x1 = (vector unsigned char)vec_sr(qxs, v4);
  2155. vector signed int vsumi0 = v0;
  2156. vsumi0 = vec_msum(q8y0, q4x0, vsumi0);
  2157. vsumi0 = vec_msum(q8y1, q4x1, vsumi0);
  2158. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2159. }
  2160. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2161. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2162. sumf = vec_extract(vsumf0, 0);
  2163. #elif defined(__loongarch_asx)
  2164. // Initialize accumulator with zeros
  2165. __m256 acc = (__m256)__lasx_xvldi(0);
  2166. float summs = 0;
  2167. // Main loop
  2168. for (; ib < nb; ++ib) {
  2169. const float d0 = GGML_FP16_TO_FP32(x[ib].d);
  2170. const float d1 = GGML_FP16_TO_FP32(y[ib].d);
  2171. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2172. const __m256 d0v = __lasx_xvreplfr2vr_s( d0 );
  2173. const __m256 d1v = __lasx_xvreplfr2vr_s( d1 );
  2174. // Compute combined scales
  2175. const __m256 d0d1 = __lasx_xvfmul_s( d0v, d1v );
  2176. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2177. const __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2178. const __m256i qy = __lasx_xvld( (const __m256i *)y[ib].qs, 0);
  2179. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  2180. // Accumulate d0*d1*x*y
  2181. acc = __lasx_xvfmadd_s( d0d1, xy, acc );
  2182. }
  2183. sumf = hsum_float_8(acc) + summs;
  2184. #endif
  2185. for (; ib < nb; ++ib) {
  2186. int sumi0 = 0;
  2187. int sumi1 = 0;
  2188. for (int j = 0; j < qk/2; ++j) {
  2189. const int v0 = (x[ib].qs[j] & 0x0F);
  2190. const int v1 = (x[ib].qs[j] >> 4);
  2191. sumi0 += (v0 * y[ib].qs[j]);
  2192. sumi1 += (v1 * y[ib].qs[j + qk/2]);
  2193. }
  2194. int sumi = sumi0 + sumi1;
  2195. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2196. }
  2197. *s = sumf;
  2198. }
  2199. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2200. const int qk = QK8_0;
  2201. const int nb = n / qk;
  2202. int ib = 0;
  2203. float sumf = 0;
  2204. assert(n % qk == 0);
  2205. assert(qk == QK5_0);
  2206. assert(nrc == 1);
  2207. UNUSED(nrc);
  2208. UNUSED(bx);
  2209. UNUSED(by);
  2210. UNUSED(bs);
  2211. const block_q5_0 * restrict x = vx;
  2212. const block_q8_0 * restrict y = vy;
  2213. #if defined(__ARM_NEON)
  2214. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2215. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2216. uint32_t qh0;
  2217. uint32_t qh1;
  2218. uint64_t tmp0[4];
  2219. uint64_t tmp1[4];
  2220. for (; ib + 1 < nb; ib += 2) {
  2221. const block_q5_0 * restrict x0 = &x[ib];
  2222. const block_q5_0 * restrict x1 = &x[ib + 1];
  2223. const block_q8_0 * restrict y0 = &y[ib];
  2224. const block_q8_0 * restrict y1 = &y[ib + 1];
  2225. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2226. // extract the 5th bit via lookup table ((!b) << 4)
  2227. memcpy(&qh0, x0->qh, sizeof(qh0));
  2228. memcpy(&qh1, x1->qh, sizeof(qh1));
  2229. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2230. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2231. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2232. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2233. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2234. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2235. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2236. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2237. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2238. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2239. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2240. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2241. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2242. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2243. // 4-bit -> 8-bit
  2244. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2245. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2246. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2247. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2248. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2249. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2250. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2251. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2252. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2253. // load y
  2254. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2255. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2256. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2257. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2258. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2259. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2260. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2261. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2262. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2263. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2264. }
  2265. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2266. #elif defined(__wasm_simd128__)
  2267. v128_t sumv = wasm_f32x4_splat(0.0f);
  2268. uint32_t qh;
  2269. uint64_t tmp[4];
  2270. // TODO: check if unrolling this is better
  2271. for (; ib < nb; ++ib) {
  2272. const block_q5_0 * restrict x0 = &x[ib];
  2273. const block_q8_0 * restrict y0 = &y[ib];
  2274. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2275. // extract the 5th bit
  2276. memcpy(&qh, x0->qh, sizeof(qh));
  2277. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2278. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2279. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2280. tmp[3] = table_b2b_1[(qh >> 24) ];
  2281. const v128_t qhl = wasm_v128_load(tmp + 0);
  2282. const v128_t qhh = wasm_v128_load(tmp + 2);
  2283. const v128_t v0 = wasm_v128_load(x0->qs);
  2284. // 4-bit -> 8-bit
  2285. const v128_t v0l = wasm_v128_and (v0, m4b);
  2286. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2287. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2288. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2289. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2290. // load y
  2291. const v128_t v1l = wasm_v128_load(y0->qs);
  2292. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2293. // int8x16 -> int16x8
  2294. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2295. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2296. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2297. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2298. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2299. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2300. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2301. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2302. // dot product
  2303. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2304. wasm_i32x4_add(
  2305. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2306. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2307. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2308. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2309. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2310. }
  2311. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2312. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2313. #elif defined(__AVX2__)
  2314. // Initialize accumulator with zeros
  2315. __m256 acc = _mm256_setzero_ps();
  2316. // Main loop
  2317. for (; ib < nb; ++ib) {
  2318. /* Compute combined scale for the block */
  2319. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2320. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2321. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2322. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2323. qx = _mm256_or_si256(qx, bxhi);
  2324. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2325. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2326. /* Multiply q with scale and accumulate */
  2327. acc = _mm256_fmadd_ps(d, q, acc);
  2328. }
  2329. sumf = hsum_float_8(acc);
  2330. #elif defined(__AVX__)
  2331. // Initialize accumulator with zeros
  2332. __m256 acc = _mm256_setzero_ps();
  2333. __m128i mask = _mm_set1_epi8((char)0xF0);
  2334. // Main loop
  2335. for (; ib < nb; ++ib) {
  2336. /* Compute combined scale for the block */
  2337. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2338. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2339. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2340. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2341. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2342. bxhil = _mm_andnot_si128(bxhil, mask);
  2343. bxhih = _mm_andnot_si128(bxhih, mask);
  2344. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2345. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2346. bxl = _mm_or_si128(bxl, bxhil);
  2347. bxh = _mm_or_si128(bxh, bxhih);
  2348. bx_0 = MM256_SET_M128I(bxh, bxl);
  2349. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2350. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  2351. /* Multiply q with scale and accumulate */
  2352. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2353. }
  2354. sumf = hsum_float_8(acc);
  2355. #elif defined(__riscv_v_intrinsic)
  2356. uint32_t qh;
  2357. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2358. // These temporary registers are for masking and shift operations
  2359. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2360. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  2361. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  2362. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2363. for (; ib < nb; ++ib) {
  2364. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2365. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2366. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  2367. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  2368. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2369. // ((qh & (1u << (j + 16))) >> (j + 12));
  2370. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  2371. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  2372. // narrowing
  2373. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  2374. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2375. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  2376. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2377. // load
  2378. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2379. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2380. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2381. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2382. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2383. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2384. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2385. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2386. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2387. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  2388. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  2389. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2390. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2391. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2392. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2393. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2394. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2395. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2396. }
  2397. #elif defined(__POWER9_VECTOR__)
  2398. const vector signed char lowMask = vec_splats((signed char)0xF);
  2399. const vector unsigned char v4 = vec_splats((unsigned char)4);
  2400. vector float vsumf0 = vec_splats(0.0f);
  2401. #pragma GCC unroll 4
  2402. for (; ib < nb; ++ib) {
  2403. __builtin_prefetch(x[ib].qs, 0, 1);
  2404. __builtin_prefetch(y[ib].qs, 0, 1);
  2405. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2406. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2407. vector float vd = vec_mul(vxd, vyd);
  2408. vector signed long long aux64x2_0 = {(uint64_t)(table_b2b_1[x[ib].qh[0]]), (uint64_t)(table_b2b_1[x[ib].qh[1]])};
  2409. vector signed long long aux64x2_1 = {(uint64_t)(table_b2b_1[x[ib].qh[2]]), (uint64_t)(table_b2b_1[x[ib].qh[3]])};
  2410. vector signed char qh0 = (vector signed char)aux64x2_0;
  2411. vector signed char qh1 = (vector signed char)aux64x2_1;
  2412. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2413. vector signed char q5x0 = vec_sub(vec_and (qxs, lowMask), qh0);
  2414. vector signed char q5x1 = vec_sub(vec_sr(qxs, v4), qh1);
  2415. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2416. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2417. vector signed short qv0 = vec_add(vec_mule(q5x0, q8y0), vec_mulo(q5x0, q8y0));
  2418. vector signed short qv1 = vec_add(vec_mule(q5x1, q8y1), vec_mulo(q5x1, q8y1));
  2419. qv0 = vec_add(qv0, qv1);
  2420. vector signed int vsumi0 = vec_add(vec_unpackh(qv0), vec_unpackl(qv0));
  2421. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2422. }
  2423. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2424. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2425. sumf = vec_extract(vsumf0, 0);
  2426. #elif defined(__loongarch_asx)
  2427. // Initialize accumulator with zeros
  2428. __m256 acc = (__m256)__lasx_xvldi(0);
  2429. // Main loop
  2430. for (; ib < nb; ++ib) {
  2431. /* Compute combined scale for the block */
  2432. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d)); //FIXME
  2433. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2434. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2435. bxhi = __lasx_xvandn_v(bxhi, __lasx_xvreplgr2vr_b((char)0xF0));
  2436. qx = __lasx_xvor_v(qx, bxhi);
  2437. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2438. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2439. /* Multiply q with scale and accumulate */
  2440. acc = __lasx_xvfmadd_s(d, q, acc);
  2441. }
  2442. sumf = hsum_float_8(acc);
  2443. #endif
  2444. for (; ib < nb; ++ib) {
  2445. uint32_t qh;
  2446. memcpy(&qh, x[ib].qh, sizeof(qh));
  2447. int sumi0 = 0;
  2448. int sumi1 = 0;
  2449. for (int j = 0; j < qk/2; ++j) {
  2450. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2451. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2452. const int32_t x0 = (int8_t)(((x[ib].qs[j] & 0x0F) | xh_0) - 16);
  2453. const int32_t x1 = (int8_t)(((x[ib].qs[j] >> 4) | xh_1) - 16);
  2454. sumi0 += (x0 * y[ib].qs[j]);
  2455. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2456. }
  2457. int sumi = sumi0 + sumi1;
  2458. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d)) * sumi;
  2459. }
  2460. *s = sumf;
  2461. }
  2462. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2463. const int qk = QK8_1;
  2464. const int nb = n / qk;
  2465. int ib = 0;
  2466. float sumf = 0;
  2467. assert(n % qk == 0);
  2468. assert(qk == QK5_1);
  2469. assert(nrc == 1);
  2470. UNUSED(nrc);
  2471. UNUSED(bx);
  2472. UNUSED(by);
  2473. UNUSED(bs);
  2474. const block_q5_1 * restrict x = vx;
  2475. const block_q8_1 * restrict y = vy;
  2476. #if defined(__ARM_NEON)
  2477. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2478. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2479. float summs0 = 0.0f;
  2480. float summs1 = 0.0f;
  2481. uint32_t qh0;
  2482. uint32_t qh1;
  2483. uint64_t tmp0[4];
  2484. uint64_t tmp1[4];
  2485. for (; ib + 1 < nb; ib += 2) {
  2486. const block_q5_1 * restrict x0 = &x[ib];
  2487. const block_q5_1 * restrict x1 = &x[ib + 1];
  2488. const block_q8_1 * restrict y0 = &y[ib];
  2489. const block_q8_1 * restrict y1 = &y[ib + 1];
  2490. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2491. summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2492. summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s);
  2493. // extract the 5th bit via lookup table ((b) << 4)
  2494. memcpy(&qh0, x0->qh, sizeof(qh0));
  2495. memcpy(&qh1, x1->qh, sizeof(qh1));
  2496. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2497. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2498. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2499. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2500. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2501. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2502. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2503. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2504. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2505. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2506. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2507. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2508. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2509. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2510. // 4-bit -> 8-bit
  2511. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2512. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2513. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2514. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2515. // add high bit
  2516. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2517. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2518. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2519. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2520. // load y
  2521. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2522. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2523. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2524. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2525. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2526. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2527. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2528. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2529. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2530. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2531. }
  2532. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2533. #elif defined(__wasm_simd128__)
  2534. v128_t sumv = wasm_f32x4_splat(0.0f);
  2535. float summs = 0.0f;
  2536. uint32_t qh;
  2537. uint64_t tmp[4];
  2538. // TODO: check if unrolling this is better
  2539. for (; ib < nb; ++ib) {
  2540. const block_q5_1 * restrict x0 = &x[ib];
  2541. const block_q8_1 * restrict y0 = &y[ib];
  2542. summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s);
  2543. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2544. // extract the 5th bit
  2545. memcpy(&qh, x0->qh, sizeof(qh));
  2546. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2547. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2548. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2549. tmp[3] = table_b2b_0[(qh >> 24) ];
  2550. const v128_t qhl = wasm_v128_load(tmp + 0);
  2551. const v128_t qhh = wasm_v128_load(tmp + 2);
  2552. const v128_t v0 = wasm_v128_load(x0->qs);
  2553. // 4-bit -> 8-bit
  2554. const v128_t v0l = wasm_v128_and (v0, m4b);
  2555. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2556. // add high bit
  2557. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2558. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2559. // load y
  2560. const v128_t v1l = wasm_v128_load(y0->qs);
  2561. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2562. // int8x16 -> int16x8
  2563. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2564. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2565. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2566. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2567. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2568. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2569. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2570. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2571. // dot product
  2572. sumv = wasm_f32x4_add(sumv,
  2573. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2574. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2575. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2576. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2577. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2578. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2579. }
  2580. sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2581. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2582. #elif defined(__AVX2__)
  2583. // Initialize accumulator with zeros
  2584. __m256 acc = _mm256_setzero_ps();
  2585. float summs = 0.0f;
  2586. // Main loop
  2587. for (; ib < nb; ++ib) {
  2588. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2589. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2590. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2591. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2592. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2593. qx = _mm256_or_si256(qx, bxhi);
  2594. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2595. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2596. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2597. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2598. }
  2599. sumf = hsum_float_8(acc) + summs;
  2600. #elif defined(__AVX__)
  2601. // Initialize accumulator with zeros
  2602. __m256 acc = _mm256_setzero_ps();
  2603. __m128i mask = _mm_set1_epi8(0x10);
  2604. float summs = 0.0f;
  2605. // Main loop
  2606. for (; ib < nb; ++ib) {
  2607. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d));
  2608. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2609. __m256i bx_0 = bytes_from_nibbles_32(x[ib].qs);
  2610. const __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2611. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2612. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2613. bxhil = _mm_and_si128(bxhil, mask);
  2614. bxhih = _mm_and_si128(bxhih, mask);
  2615. __m128i bxl = _mm256_castsi256_si128(bx_0);
  2616. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  2617. bxl = _mm_or_si128(bxl, bxhil);
  2618. bxh = _mm_or_si128(bxh, bxhih);
  2619. bx_0 = MM256_SET_M128I(bxh, bxl);
  2620. const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[ib].d));
  2621. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2622. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  2623. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2624. }
  2625. sumf = hsum_float_8(acc) + summs;
  2626. #elif defined(__riscv_v_intrinsic)
  2627. uint32_t qh;
  2628. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2629. // temporary registers for shift operations
  2630. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2631. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2632. for (; ib < nb; ++ib) {
  2633. memcpy(&qh, x[ib].qh, sizeof(uint32_t));
  2634. // load qh
  2635. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  2636. // ((qh >> (j + 0)) << 4) & 0x10;
  2637. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  2638. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2639. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  2640. // ((qh >> (j + 12)) ) & 0x10;
  2641. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  2642. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  2643. // narrowing
  2644. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  2645. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2646. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  2647. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2648. // load
  2649. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[ib].qs, vl);
  2650. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[ib].qs, vl);
  2651. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[ib].qs+16, vl);
  2652. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2653. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2654. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2655. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2656. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2657. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2658. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2659. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2660. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2661. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2662. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2663. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2664. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2665. }
  2666. #elif defined(__POWER9_VECTOR__)
  2667. const vector signed char lowMask = vec_splats((signed char)0xF);
  2668. const vector signed int v0 = vec_splats((int32_t)0);
  2669. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  2670. vector float vsumf0 = vec_splats(0.0f);
  2671. #pragma GCC unroll 4
  2672. for (; ib < nb; ++ib) {
  2673. __builtin_prefetch(x[ib].qs, 0, 1);
  2674. __builtin_prefetch(y[ib].qs, 0, 1);
  2675. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2676. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2677. vector float vd = vec_mul(vxd, vyd);
  2678. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[ib].m));
  2679. vector float vys = {GGML_FP16_TO_FP32(y[ib].s), 0.f, 0.f, 0.f};
  2680. vsumf0 = vec_madd(vxmin, vys, vsumf0);
  2681. vector unsigned long long aux64x2_0 = {(uint64_t)(table_b2b_0[x[ib].qh[0]]), (uint64_t)(table_b2b_0[x[ib].qh[1]])};
  2682. vector unsigned long long aux64x2_1 = {(uint64_t)(table_b2b_0[x[ib].qh[2]]), (uint64_t)(table_b2b_0[x[ib].qh[3]])};
  2683. vector signed char qh0 = (vector signed char)aux64x2_0;
  2684. vector signed char qh1 = (vector signed char)aux64x2_1;
  2685. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  2686. vector unsigned char q5x0 = (vector unsigned char)vec_or(vec_and(qxs, lowMask), qh0);
  2687. vector unsigned char q5x1 = (vector unsigned char)vec_or(vec_sr(qxs, v4), qh1);
  2688. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2689. vector signed char q8y1 = vec_xl( 16, y[ib].qs);
  2690. vector signed int vsumi0 = v0;
  2691. vsumi0 = vec_msum(q8y0, q5x0, vsumi0);
  2692. vsumi0 = vec_msum(q8y1, q5x1, vsumi0);
  2693. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2694. }
  2695. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2696. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2697. sumf = vec_extract(vsumf0, 0);
  2698. #elif defined(__loongarch_asx)
  2699. // Initialize accumulator with zeros
  2700. __m256 acc = (__m256)__lasx_xvldi(0);
  2701. float summs = 0.0f;
  2702. // Main loop
  2703. for (; ib < nb; ++ib) {
  2704. const __m256 dx = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d));
  2705. summs += GGML_FP16_TO_FP32(x[ib].m) * GGML_FP16_TO_FP32(y[ib].s);
  2706. __m256i qx = bytes_from_nibbles_32(x[ib].qs);
  2707. __m256i bxhi = bytes_from_bits_32(x[ib].qh);
  2708. bxhi = __lasx_xvand_v(bxhi, __lasx_xvreplgr2vr_b(0x10));
  2709. qx = __lasx_xvor_v(qx, bxhi);
  2710. const __m256 dy = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib].d));
  2711. const __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  2712. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  2713. acc = __lasx_xvfmadd_s(q, __lasx_xvfmul_s(dx, dy), acc);
  2714. }
  2715. sumf = hsum_float_8(acc) + summs;
  2716. #endif
  2717. for (; ib < nb; ++ib) {
  2718. uint32_t qh;
  2719. memcpy(&qh, x[ib].qh, sizeof(qh));
  2720. int sumi0 = 0;
  2721. int sumi1 = 0;
  2722. for (int j = 0; j < qk/2; ++j) {
  2723. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2724. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2725. const int32_t x0 = (x[ib].qs[j] & 0xF) | xh_0;
  2726. const int32_t x1 = (x[ib].qs[j] >> 4) | xh_1;
  2727. sumi0 += (x0 * y[ib].qs[j]);
  2728. sumi1 += (x1 * y[ib].qs[j + qk/2]);
  2729. }
  2730. int sumi = sumi0 + sumi1;
  2731. sumf += (GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d))*sumi + GGML_FP16_TO_FP32(x[ib].m)*GGML_FP16_TO_FP32(y[ib].s);
  2732. }
  2733. *s = sumf;
  2734. }
  2735. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  2736. const int qk = QK8_0;
  2737. const int nb = n / qk;
  2738. assert(n % qk == 0);
  2739. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2740. assert((nrc == 2) || (nrc == 1));
  2741. #else
  2742. assert(nrc == 1);
  2743. #endif
  2744. UNUSED(nrc);
  2745. UNUSED(bx);
  2746. UNUSED(by);
  2747. UNUSED(bs);
  2748. const block_q8_0 * restrict x = vx;
  2749. const block_q8_0 * restrict y = vy;
  2750. #if defined(__ARM_FEATURE_MATMUL_INT8)
  2751. if (nrc == 2) {
  2752. const block_q8_0 * restrict vx0 = vx;
  2753. const block_q8_0 * restrict vx1 = (const block_q8_0 *) ((const uint8_t*)vx + bx);
  2754. const block_q8_0 * restrict vy0 = vy;
  2755. const block_q8_0 * restrict vy1 = (const block_q8_0 *) ((const uint8_t*)vy + by);
  2756. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2757. for (int i = 0; i < nb; i++) {
  2758. const block_q8_0 * restrict b_x0 = &vx0[i];
  2759. const block_q8_0 * restrict b_y0 = &vy0[i];
  2760. const block_q8_0 * restrict b_x1 = &vx1[i];
  2761. const block_q8_0 * restrict b_y1 = &vy1[i];
  2762. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  2763. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  2764. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  2765. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  2766. // load y
  2767. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  2768. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  2769. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  2770. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  2771. float32_t _scale[4] = {
  2772. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  2773. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  2774. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  2775. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)
  2776. };
  2777. float32x4_t scale = vld1q_f32(_scale);
  2778. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2779. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  2780. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2781. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  2782. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2783. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  2784. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2785. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  2786. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  2787. l1, r1)), l2, r2)), l3, r3))), scale);
  2788. }
  2789. float32x4_t sumv1 = vextq_f32 (sumv0, sumv0, 2);
  2790. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  2791. vst1_f32(s, vget_low_f32 (sumv2));
  2792. vst1_f32(s + bs, vget_high_f32(sumv2));
  2793. return;
  2794. }
  2795. #endif
  2796. int ib = 0;
  2797. float sumf = 0;
  2798. #if defined(__ARM_FEATURE_SVE)
  2799. svfloat32_t sumv0 = svdup_n_f32(0.0f);
  2800. svfloat32_t sumv1 = svdup_n_f32(0.0f);
  2801. const int vector_length = ggml_cpu_get_sve_cnt()*8;
  2802. //VLA Implemenation for SVE
  2803. switch (vector_length) {
  2804. case 128:
  2805. {
  2806. // predicate for activating lanes for 16 Int8 elements
  2807. const svbool_t ph16 = svptrue_pat_b8 (SV_VL16);
  2808. const svbool_t pl16 = svptrue_pat_b32(SV_VL4);
  2809. for (; ib + 1 < nb; ib += 2) {
  2810. const block_q8_0 * restrict x0 = &x[ib + 0];
  2811. const block_q8_0 * restrict x1 = &x[ib + 1];
  2812. const block_q8_0 * restrict y0 = &y[ib + 0];
  2813. const block_q8_0 * restrict y1 = &y[ib + 1];
  2814. // load x
  2815. const svint8_t qx0_0 = svld1_s8(ph16, x0->qs);
  2816. const svint8_t qx0_1 = svld1_s8(ph16, x0->qs+16);
  2817. const svint8_t qx1_0 = svld1_s8(ph16, x1->qs);
  2818. const svint8_t qx1_1 = svld1_s8(ph16, x1->qs+16);
  2819. // load y
  2820. const svint8_t qy0_0 = svld1_s8(ph16, y0->qs);
  2821. const svint8_t qy0_1 = svld1_s8(ph16, y0->qs+16);
  2822. const svint8_t qy1_0 = svld1_s8(ph16, y1->qs);
  2823. const svint8_t qy1_1 = svld1_s8(ph16, y1->qs+16);
  2824. sumv0 = svmla_n_f32_x(pl16, sumv0, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2825. svdot_s32(svdup_n_s32(0), qx0_0, qy0_0),
  2826. svdot_s32(svdup_n_s32(0), qx0_1, qy0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2827. sumv1 = svmla_n_f32_x(pl16, sumv1, svcvt_f32_s32_x(pl16, svadd_x(pl16,
  2828. svdot_s32(svdup_n_s32(0), qx1_0, qy1_0),
  2829. svdot_s32(svdup_n_s32(0), qx1_1, qy1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2830. }
  2831. sumf = svaddv_f32(pl16, svadd_f32_x(pl16, sumv0, sumv1));
  2832. } break;
  2833. case 256:
  2834. {
  2835. //printf("sve256");
  2836. for (; ib + 1 < nb; ib += 2) {
  2837. const block_q8_0 * restrict x0 = &x[ib + 0];
  2838. const block_q8_0 * restrict x1 = &x[ib + 1];
  2839. const block_q8_0 * restrict y0 = &y[ib + 0];
  2840. const block_q8_0 * restrict y1 = &y[ib + 1];
  2841. // load x
  2842. const svint8_t qx0 = svld1_s8(svptrue_b8(), x0->qs);
  2843. const svint8_t qx1 = svld1_s8(svptrue_b8(), x1->qs);
  2844. // load y
  2845. const svint8_t qy0 = svld1_s8(svptrue_b8(), y0->qs);
  2846. const svint8_t qy1 = svld1_s8(svptrue_b8(), y1->qs);
  2847. sumv0 = svmla_n_f32_x(svptrue_b32(), sumv0, svcvt_f32_s32_x(svptrue_b32(),
  2848. svdot_s32(svdup_n_s32(0), qx0, qy0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2849. sumv1 = svmla_n_f32_x(svptrue_b32(), sumv1, svcvt_f32_s32_x(svptrue_b32(),
  2850. svdot_s32(svdup_n_s32(0), qx1, qy1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2851. }
  2852. sumf = svaddv_f32(svptrue_b32(), svadd_f32_x(svptrue_b32(), sumv0, sumv1));
  2853. } break;
  2854. case 512:
  2855. {
  2856. // predicate for activating high 256 bit
  2857. const svbool_t ph32 = svptrue_pat_b8(SV_VL32);
  2858. // predicate for activating low 256 bit
  2859. const svbool_t pl32 = svnot_b_z(svptrue_b8(), ph32);
  2860. // predicate for activating high lanes for 8 float32 elements
  2861. const svbool_t ph8 = svptrue_pat_b32(SV_VL8);
  2862. // predicate for activating low lanes for 8 float32 elements
  2863. const svbool_t pl8 = svnot_b_z(svptrue_b32(), ph8);
  2864. svfloat32_t sumv00 = svdup_n_f32(0.0f);
  2865. for (; ib + 1 < nb; ib += 2) {
  2866. const block_q8_0 * restrict x0 = &x[ib + 0];
  2867. const block_q8_0 * restrict x1 = &x[ib + 1];
  2868. const block_q8_0 * restrict y0 = &y[ib + 0];
  2869. const block_q8_0 * restrict y1 = &y[ib + 1];
  2870. //load 32 int8_t in first half of vector and put another 32 int8_t in second vector lower bits
  2871. // and add them to make one 64 element vector
  2872. // load x
  2873. const svint8_t qx_32 = svld1_s8(ph32, x0->qs);
  2874. svint8_t qx_64 = svld1_s8(pl32, x0->qs + 2);
  2875. qx_64 = svadd_s8_x(svptrue_b8(), qx_32, qx_64);
  2876. // load y
  2877. const svint8_t qy_32 = svld1_s8(ph32, y0->qs);
  2878. svint8_t qy_64 = svld1_s8(pl32, y0->qs + 2);
  2879. qy_64 = svadd_s8_x(svptrue_b8(), qy_32, qy_64);
  2880. // scale creation
  2881. const float32_t deq1 = GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d);
  2882. const float32_t deq2 = GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d);
  2883. // duplicate deq1 in first half of vector and deq2 in second half of vector
  2884. const svfloat32_t temp = svdup_f32_m(svdup_f32_z(ph8, deq1), pl8, deq2);
  2885. const svfloat32_t sumvt = svcvt_f32_s32_x(svptrue_b32(), svdot_s32(svdup_n_s32(0), qx_64, qy_64));
  2886. sumv00 = svmla_f32_m(svptrue_b32(), sumv00, sumvt, temp);
  2887. }
  2888. sumf = svaddv_f32(svptrue_b32(), sumv00);
  2889. break;
  2890. }
  2891. default:
  2892. assert(false && "Unsupported vector length");
  2893. break;
  2894. }
  2895. #elif defined(__ARM_NEON)
  2896. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2897. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2898. for (; ib + 1 < nb; ib += 2) {
  2899. const block_q8_0 * restrict x0 = &x[ib + 0];
  2900. const block_q8_0 * restrict x1 = &x[ib + 1];
  2901. const block_q8_0 * restrict y0 = &y[ib + 0];
  2902. const block_q8_0 * restrict y1 = &y[ib + 1];
  2903. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2904. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2905. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2906. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2907. // load y
  2908. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2909. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2910. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2911. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2912. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2913. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2914. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2915. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2916. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2917. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2918. }
  2919. sumf = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2920. #elif defined(__AVX2__)
  2921. // Initialize accumulator with zeros
  2922. __m256 acc = _mm256_setzero_ps();
  2923. // Main loop
  2924. for (; ib < nb; ++ib) {
  2925. // Compute combined scale for the block
  2926. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2927. __m256i qx = _mm256_loadu_si256((const __m256i *)x[ib].qs);
  2928. __m256i qy = _mm256_loadu_si256((const __m256i *)y[ib].qs);
  2929. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  2930. // Multiply q with scale and accumulate
  2931. acc = _mm256_fmadd_ps( d, q, acc );
  2932. }
  2933. sumf = hsum_float_8(acc);
  2934. #elif defined(__AVX__)
  2935. __m256 accum = _mm256_setzero_ps();
  2936. for (; ib + 1 < nb; ib += 2) {
  2937. const __m128i qx_1_0 = _mm_loadu_si128((const __m128i *)x[ib].qs);
  2938. const __m128i qx_1_1 = _mm_loadu_si128((const __m128i *)x[ib].qs + 1);
  2939. const __m128i qx_2_0 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  2940. const __m128i qx_2_1 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs + 1);
  2941. const __m128i qy_1_0 = _mm_loadu_si128((const __m128i *)y[ib].qs);
  2942. const __m128i qy_1_1 = _mm_loadu_si128((const __m128i *)y[ib].qs + 1);
  2943. const __m128i qy_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  2944. const __m128i qy_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  2945. const __m256 p = mul_sum_i8_quad_float(qx_1_0, qx_1_1, qx_2_0, qx_2_1, qy_1_0, qy_1_1, qy_2_0, qy_2_1);
  2946. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  2947. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  2948. }
  2949. sumf = hsum_float_8(accum);
  2950. #elif defined(__riscv_v_intrinsic)
  2951. size_t vl = __riscv_vsetvl_e8m1(qk);
  2952. for (; ib < nb; ++ib) {
  2953. // load elements
  2954. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[ib].qs, vl);
  2955. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[ib].qs, vl);
  2956. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  2957. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2958. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2959. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2960. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  2961. }
  2962. #elif defined(__POWER9_VECTOR__)
  2963. const vector signed int v0 = vec_splats((int32_t)0);
  2964. vector float vsumf0 = vec_splats(0.0f);
  2965. #pragma GCC unroll 8
  2966. for (; ib < nb; ++ib) {
  2967. __builtin_prefetch(x[ib].qs, 0, 1);
  2968. __builtin_prefetch(y[ib].qs, 0, 1);
  2969. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  2970. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  2971. vector float vd = vec_mul(vxd, vyd);
  2972. vector signed char q8x0 = vec_xl( 0, x[ib].qs);
  2973. vector signed char q8x1 = vec_xl(16, x[ib].qs);
  2974. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  2975. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  2976. vector signed short qv0 = vec_mule(q8x0, q8y0);
  2977. vector signed short qv1 = vec_mulo(q8x0, q8y0);
  2978. vector signed short qv2 = vec_mule(q8x1, q8y1);
  2979. vector signed short qv3 = vec_mulo(q8x1, q8y1);
  2980. vector signed int vsumi0 = v0;
  2981. vector signed int vsumi1 = v0;
  2982. vsumi0 = vec_sum4s(qv0, vsumi0);
  2983. vsumi1 = vec_sum4s(qv1, vsumi1);
  2984. vsumi0 = vec_sum4s(qv2, vsumi0);
  2985. vsumi1 = vec_sum4s(qv3, vsumi1);
  2986. vsumi0 = vec_add(vsumi0, vsumi1);
  2987. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  2988. }
  2989. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  2990. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  2991. sumf = vec_extract(vsumf0, 0);
  2992. #elif defined(__loongarch_asx)
  2993. // Initialize accumulator with zeros
  2994. __m256 acc = (__m256)__lasx_xvldi(0);
  2995. // Main loop
  2996. for (; ib < nb; ++ib) {
  2997. // Compute combined scale for the block
  2998. const __m256 d = __lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ib].d) * GGML_FP16_TO_FP32(y[ib].d));
  2999. __m256i qx = __lasx_xvld((const __m256i *)x[ib].qs, 0);
  3000. __m256i qy = __lasx_xvld((const __m256i *)y[ib].qs, 0);
  3001. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3002. // Multiply q with scale and accumulate
  3003. acc = __lasx_xvfmadd_s( d, q, acc );
  3004. }
  3005. sumf = hsum_float_8(acc);
  3006. #endif
  3007. for (; ib < nb; ++ib) {
  3008. int sumi = 0;
  3009. for (int j = 0; j < qk; j++) {
  3010. sumi += x[ib].qs[j]*y[ib].qs[j];
  3011. }
  3012. sumf += sumi*(GGML_FP16_TO_FP32(x[ib].d)*GGML_FP16_TO_FP32(y[ib].d));
  3013. }
  3014. *s = sumf;
  3015. }
  3016. void ggml_vec_dot_tq1_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3017. assert(nrc == 1);
  3018. UNUSED(nrc);
  3019. UNUSED(bx);
  3020. UNUSED(by);
  3021. UNUSED(bs);
  3022. const block_tq1_0 * restrict x = vx;
  3023. const block_q8_K * restrict y = vy;
  3024. const int nb = n / QK_K;
  3025. #if defined(__ARM_NEON)
  3026. float sumf = 0.0f;
  3027. uint8_t k_shift[16] = {1, 1, 1, 1, 3, 3, 3, 3, 9, 9, 9, 9, 27, 27, 27, 27};
  3028. const uint8x16_t shift = vld1q_u8(k_shift);
  3029. for (int i = 0; i < nb; ++i) {
  3030. #if defined(__ARM_FEATURE_DOTPROD)
  3031. int32x4_t sumi0 = vdupq_n_s32(0);
  3032. int32x4_t sumi1 = vdupq_n_s32(0);
  3033. #else
  3034. int16x8_t sumi0 = vdupq_n_s16(0);
  3035. int16x8_t sumi1 = vdupq_n_s16(0);
  3036. #endif
  3037. // first 32 bytes of 5 elements
  3038. {
  3039. uint8x16_t qx0 = vld1q_u8(x[i].qs + 0);
  3040. uint8x16_t qx1 = vld1q_u8(x[i].qs + 16);
  3041. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(3));
  3042. uint8x16_t qx3 = vmulq_u8(qx1, vdupq_n_u8(3));
  3043. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(9));
  3044. uint8x16_t qx5 = vmulq_u8(qx1, vdupq_n_u8(9));
  3045. uint8x16_t qx6 = vmulq_u8(qx0, vdupq_n_u8(27));
  3046. uint8x16_t qx7 = vmulq_u8(qx1, vdupq_n_u8(27));
  3047. uint8x16_t qx8 = vmulq_u8(qx0, vdupq_n_u8(81));
  3048. uint8x16_t qx9 = vmulq_u8(qx1, vdupq_n_u8(81));
  3049. // multiply by 3 and keep the 2 bits above 8 bits
  3050. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3051. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3052. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3053. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3054. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3055. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3056. int8x16_t sqx6 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx6, vshrq_n_u8(qx6, 1)), 6));
  3057. int8x16_t sqx7 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx7, vshrq_n_u8(qx7, 1)), 6));
  3058. int8x16_t sqx8 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx8, vshrq_n_u8(qx8, 1)), 6));
  3059. int8x16_t sqx9 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx9, vshrq_n_u8(qx9, 1)), 6));
  3060. const int8x16_t qy0 = vld1q_s8(y[i].qs + 0);
  3061. const int8x16_t qy1 = vld1q_s8(y[i].qs + 16);
  3062. const int8x16_t qy2 = vld1q_s8(y[i].qs + 32);
  3063. const int8x16_t qy3 = vld1q_s8(y[i].qs + 48);
  3064. const int8x16_t qy4 = vld1q_s8(y[i].qs + 64);
  3065. const int8x16_t qy5 = vld1q_s8(y[i].qs + 80);
  3066. const int8x16_t qy6 = vld1q_s8(y[i].qs + 96);
  3067. const int8x16_t qy7 = vld1q_s8(y[i].qs + 112);
  3068. const int8x16_t qy8 = vld1q_s8(y[i].qs + 128);
  3069. const int8x16_t qy9 = vld1q_s8(y[i].qs + 144);
  3070. #if defined(__ARM_FEATURE_DOTPROD)
  3071. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3072. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3073. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3074. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3075. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3076. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3077. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3078. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3079. sumi0 = vdotq_s32(sumi0, sqx8, qy8);
  3080. sumi1 = vdotq_s32(sumi1, sqx9, qy9);
  3081. #else
  3082. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3083. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3084. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3085. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3086. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3087. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3088. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3089. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3090. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3091. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3092. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3093. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3094. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3095. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3096. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3097. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3098. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx8), vget_low_s8(qy8));
  3099. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx8), vget_high_s8(qy8));
  3100. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx9), vget_low_s8(qy9));
  3101. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx9), vget_high_s8(qy9));
  3102. #endif
  3103. }
  3104. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3105. {
  3106. uint8x16_t qx0 = vld1q_u8(x[i].qs + 32);
  3107. uint8x16_t qx1 = vmulq_u8(qx0, vdupq_n_u8(3));
  3108. uint8x16_t qx2 = vmulq_u8(qx0, vdupq_n_u8(9));
  3109. uint8x16_t qx3 = vmulq_u8(qx0, vdupq_n_u8(27));
  3110. uint8x16_t qx4 = vmulq_u8(qx0, vdupq_n_u8(81));
  3111. uint32_t qh;
  3112. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3113. uint8x16_t qx5 = vreinterpretq_u8_u32(vdupq_n_u32(qh));
  3114. qx5 = vmulq_u8(qx5, shift);
  3115. // multiply by 3 and keep the 2 bits above 8 bits
  3116. int8x16_t sqx0 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx0, vshrq_n_u8(qx0, 1)), 6));
  3117. int8x16_t sqx1 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx1, vshrq_n_u8(qx1, 1)), 6));
  3118. int8x16_t sqx2 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx2, vshrq_n_u8(qx2, 1)), 6));
  3119. int8x16_t sqx3 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx3, vshrq_n_u8(qx3, 1)), 6));
  3120. int8x16_t sqx4 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx4, vshrq_n_u8(qx4, 1)), 6));
  3121. int8x16_t sqx5 = vreinterpretq_s8_u8(vshrq_n_u8(vhaddq_u8(qx5, vshrq_n_u8(qx5, 1)), 6));
  3122. const int8x16_t qy0 = vld1q_s8(y[i].qs + 160);
  3123. const int8x16_t qy1 = vld1q_s8(y[i].qs + 176);
  3124. const int8x16_t qy2 = vld1q_s8(y[i].qs + 192);
  3125. const int8x16_t qy3 = vld1q_s8(y[i].qs + 208);
  3126. const int8x16_t qy4 = vld1q_s8(y[i].qs + 224);
  3127. const int8x16_t qy5 = vld1q_s8(y[i].qs + 240);
  3128. #if defined(__ARM_FEATURE_DOTPROD)
  3129. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3130. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3131. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3132. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3133. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3134. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3135. #else
  3136. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3137. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3138. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3139. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3140. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3141. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3142. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3143. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3144. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3145. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3146. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3147. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3148. #endif
  3149. }
  3150. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3151. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3152. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3153. #if defined(__ARM_FEATURE_DOTPROD)
  3154. sumi0 = vaddq_s32(sumi0, sumi1);
  3155. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3156. sumf += d * (float) vaddvq_s32(sumi0);
  3157. #else
  3158. sumi0 = vaddq_s16(sumi0, sumi1);
  3159. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3160. sumf += d * (float) vaddlvq_s16(sumi0);
  3161. #endif
  3162. }
  3163. *s = sumf;
  3164. #elif defined(__AVX2__)
  3165. __m256 sumf = _mm256_setzero_ps();
  3166. for (int i = 0; i < nb; ++i) {
  3167. // 16-bit sums
  3168. __m256i sumi0 = _mm256_setzero_si256();
  3169. __m256i sumi1 = _mm256_setzero_si256();
  3170. __m256i sumi2 = _mm256_setzero_si256();
  3171. // first 32 bytes of 5 elements
  3172. {
  3173. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs));
  3174. // 8-bit multiplies with shifts, masks and adds
  3175. __m256i qx1 = _mm256_add_epi8(qx0, _mm256_add_epi8(qx0, qx0)); // 1 * 3
  3176. __m256i qx2 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx0, 3), _mm256_set1_epi8(-8)), qx0); // 1 * 9
  3177. __m256i qx3 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx1, 3), _mm256_set1_epi8(-8)), qx1); // 3 * 9
  3178. __m256i qx4 = _mm256_add_epi8(_mm256_and_si256(_mm256_slli_epi16(qx2, 3), _mm256_set1_epi8(-8)), qx2); // 9 * 9
  3179. // TODO: can _mm256_mulhi_epu16 be faster even if 16-bits?
  3180. // Cancel the +1 from avg so that it behaves like a halving add
  3181. qx0 = _mm256_subs_epu8(qx0, _mm256_set1_epi8(1));
  3182. qx1 = _mm256_subs_epu8(qx1, _mm256_set1_epi8(1));
  3183. qx2 = _mm256_subs_epu8(qx2, _mm256_set1_epi8(1));
  3184. qx3 = _mm256_subs_epu8(qx3, _mm256_set1_epi8(1));
  3185. qx4 = _mm256_subs_epu8(qx4, _mm256_set1_epi8(1));
  3186. // Multiply by 3 and get the top 2 bits
  3187. qx0 = _mm256_avg_epu8(qx0, _mm256_avg_epu8(qx0, _mm256_setzero_si256()));
  3188. qx1 = _mm256_avg_epu8(qx1, _mm256_avg_epu8(qx1, _mm256_setzero_si256()));
  3189. qx2 = _mm256_avg_epu8(qx2, _mm256_avg_epu8(qx2, _mm256_setzero_si256()));
  3190. qx3 = _mm256_avg_epu8(qx3, _mm256_avg_epu8(qx3, _mm256_setzero_si256()));
  3191. qx4 = _mm256_avg_epu8(qx4, _mm256_avg_epu8(qx4, _mm256_setzero_si256()));
  3192. qx0 = _mm256_and_si256(_mm256_srli_epi16(qx0, 6), _mm256_set1_epi8(3));
  3193. qx1 = _mm256_and_si256(_mm256_srli_epi16(qx1, 6), _mm256_set1_epi8(3));
  3194. qx2 = _mm256_and_si256(_mm256_srli_epi16(qx2, 6), _mm256_set1_epi8(3));
  3195. qx3 = _mm256_and_si256(_mm256_srli_epi16(qx3, 6), _mm256_set1_epi8(3));
  3196. qx4 = _mm256_and_si256(_mm256_srli_epi16(qx4, 6), _mm256_set1_epi8(3));
  3197. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 0));
  3198. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 32));
  3199. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 64));
  3200. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 96));
  3201. const __m256i qy4 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 128));
  3202. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3203. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3204. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3205. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3206. qx4 = _mm256_maddubs_epi16(qx4, qy4);
  3207. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3208. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3209. sumi2 = _mm256_add_epi16(sumi2, qx4);
  3210. }
  3211. // last 16 bytes of 5-element, along with the 4 bytes of 4 elements
  3212. {
  3213. __m128i qx0 = _mm_loadu_si128((const __m128i *) (x[i].qs + 32));
  3214. uint32_t qh;
  3215. memcpy(&qh, x[i].qh, sizeof(qh)); // potentially unaligned
  3216. __m256i qx5_l = _mm256_cvtepu8_epi16(_mm_set1_epi32(qh));
  3217. __m128i qx1 = _mm_add_epi8(qx0, _mm_add_epi8(qx0, qx0)); // 1 * 3
  3218. __m128i qx2 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx0, 3), _mm_set1_epi8(-8)), qx0); // 1 * 9
  3219. __m128i qx3 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx1, 3), _mm_set1_epi8(-8)), qx1); // 3 * 9
  3220. __m128i qx4 = _mm_add_epi8(_mm_and_si128(_mm_slli_epi16(qx2, 3), _mm_set1_epi8(-8)), qx2); // 9 * 9
  3221. __m256i qx01 = MM256_SET_M128I(qx1, qx0);
  3222. __m256i qx23 = MM256_SET_M128I(qx3, qx2);
  3223. // avx2 does not have 8-bit multiplies, so 16-bit it is.
  3224. qx5_l = _mm256_mullo_epi16(qx5_l, _mm256_set_epi16(27, 27, 27, 27, 9, 9, 9, 9, 3, 3, 3, 3, 1, 1, 1, 1));
  3225. qx5_l = _mm256_and_si256(qx5_l, _mm256_set1_epi16(0xFF));
  3226. __m128i qx5 = _mm_packus_epi16(_mm256_castsi256_si128(qx5_l), _mm256_extracti128_si256(qx5_l, 1));
  3227. __m256i qx45 = MM256_SET_M128I(qx5, qx4);
  3228. // Cancel the +1 from avg so that it behaves like a halving add
  3229. qx01 = _mm256_subs_epu8(qx01, _mm256_set1_epi8(1));
  3230. qx23 = _mm256_subs_epu8(qx23, _mm256_set1_epi8(1));
  3231. qx45 = _mm256_subs_epu8(qx45, _mm256_set1_epi8(1));
  3232. // Multiply by 3 and get the top 2 bits
  3233. qx01 = _mm256_avg_epu8(qx01, _mm256_avg_epu8(qx01, _mm256_setzero_si256()));
  3234. qx23 = _mm256_avg_epu8(qx23, _mm256_avg_epu8(qx23, _mm256_setzero_si256()));
  3235. qx45 = _mm256_avg_epu8(qx45, _mm256_avg_epu8(qx45, _mm256_setzero_si256()));
  3236. qx01 = _mm256_and_si256(_mm256_srli_epi16(qx01, 6), _mm256_set1_epi8(3));
  3237. qx23 = _mm256_and_si256(_mm256_srli_epi16(qx23, 6), _mm256_set1_epi8(3));
  3238. qx45 = _mm256_and_si256(_mm256_srli_epi16(qx45, 6), _mm256_set1_epi8(3));
  3239. const __m256i qy01 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 160));
  3240. const __m256i qy23 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 192));
  3241. const __m256i qy45 = _mm256_loadu_si256((const __m256i *) (y[i].qs + 224));
  3242. qx01 = _mm256_maddubs_epi16(qx01, qy01);
  3243. qx23 = _mm256_maddubs_epi16(qx23, qy23);
  3244. qx45 = _mm256_maddubs_epi16(qx45, qy45);
  3245. sumi0 = _mm256_add_epi16(sumi0, qx01);
  3246. sumi1 = _mm256_add_epi16(sumi1, qx23);
  3247. sumi2 = _mm256_add_epi16(sumi2, qx45);
  3248. }
  3249. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3250. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3251. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3252. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(sumi1, sumi2));
  3253. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3254. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3255. }
  3256. *s = hsum_float_8(sumf);
  3257. #else
  3258. const uint8_t pow3[6] = {1, 3, 9, 27, 81, 243};
  3259. float sumf = 0.0f;
  3260. for (int i = 0; i < nb; ++i) {
  3261. int sum = 0;
  3262. for (size_t j = 0; j < sizeof(x->qs) - sizeof(x->qs) % 32; j += 32) {
  3263. for (size_t l = 0; l < 5; ++l) {
  3264. for (size_t m = 0; m < 32; ++m) {
  3265. uint8_t q = x[i].qs[j + m] * pow3[l];
  3266. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3267. sum += (xi - 1) * y[i].qs[j*5 + l*32 + m];
  3268. }
  3269. }
  3270. }
  3271. for (size_t j = sizeof(x->qs) - sizeof(x->qs) % 32; j < sizeof(x->qs); j += 16) {
  3272. for (size_t l = 0; l < 5; ++l) {
  3273. for (size_t m = 0; m < 16; ++m) {
  3274. uint8_t q = x[i].qs[j + m] * pow3[l];
  3275. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3276. sum += (xi - 1) * y[i].qs[j*5 + l*16 + m];
  3277. }
  3278. }
  3279. }
  3280. for (size_t l = 0; l < 4; ++l) {
  3281. for (size_t j = 0; j < sizeof(x->qh); ++j) {
  3282. uint8_t q = x[i].qh[j] * pow3[l];
  3283. uint16_t xi = ((uint16_t) q * 3) >> 8;
  3284. sum += (xi - 1) * y[i].qs[sizeof(x->qs)*5 + l*sizeof(x->qh) + j];
  3285. }
  3286. }
  3287. sumf += (float) sum * (GGML_FP16_TO_FP32(x[i].d) * y[i].d);
  3288. }
  3289. *s = sumf;
  3290. #endif
  3291. }
  3292. void ggml_vec_dot_tq2_0_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3293. assert(nrc == 1);
  3294. UNUSED(nrc);
  3295. UNUSED(bx);
  3296. UNUSED(by);
  3297. UNUSED(bs);
  3298. const block_tq2_0 * restrict x = vx;
  3299. const block_q8_K * restrict y = vy;
  3300. const int nb = n / QK_K;
  3301. #if defined(__ARM_NEON)
  3302. float sumf = 0.0f;
  3303. const uint8x16_t m3 = vdupq_n_u8(3);
  3304. for (int i = 0; i < nb; ++i) {
  3305. #if defined(__ARM_FEATURE_DOTPROD)
  3306. int32x4_t sumi0 = vdupq_n_s32(0);
  3307. int32x4_t sumi1 = vdupq_n_s32(0);
  3308. #else
  3309. int16x8_t sumi0 = vdupq_n_s16(0);
  3310. int16x8_t sumi1 = vdupq_n_s16(0);
  3311. #endif
  3312. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3313. uint8x16_t qx0 = vld1q_u8(x[i].qs + j);
  3314. uint8x16_t qx1 = vld1q_u8(x[i].qs + j + 16);
  3315. uint8x16_t qx2 = vshrq_n_u8(qx0, 2);
  3316. uint8x16_t qx3 = vshrq_n_u8(qx1, 2);
  3317. uint8x16_t qx4 = vshrq_n_u8(qx0, 4);
  3318. uint8x16_t qx5 = vshrq_n_u8(qx1, 4);
  3319. uint8x16_t qx6 = vshrq_n_u8(qx0, 6);
  3320. uint8x16_t qx7 = vshrq_n_u8(qx1, 6);
  3321. int8x16_t sqx0 = vreinterpretq_s8_u8(vandq_u8(qx0, m3));
  3322. int8x16_t sqx1 = vreinterpretq_s8_u8(vandq_u8(qx1, m3));
  3323. int8x16_t sqx2 = vreinterpretq_s8_u8(vandq_u8(qx2, m3));
  3324. int8x16_t sqx3 = vreinterpretq_s8_u8(vandq_u8(qx3, m3));
  3325. int8x16_t sqx4 = vreinterpretq_s8_u8(vandq_u8(qx4, m3));
  3326. int8x16_t sqx5 = vreinterpretq_s8_u8(vandq_u8(qx5, m3));
  3327. int8x16_t sqx6 = vreinterpretq_s8_u8(vandq_u8(qx6, m3));
  3328. int8x16_t sqx7 = vreinterpretq_s8_u8(vandq_u8(qx7, m3));
  3329. const int8x16_t qy0 = vld1q_s8(y[i].qs + j*4 + 0);
  3330. const int8x16_t qy1 = vld1q_s8(y[i].qs + j*4 + 16);
  3331. const int8x16_t qy2 = vld1q_s8(y[i].qs + j*4 + 32);
  3332. const int8x16_t qy3 = vld1q_s8(y[i].qs + j*4 + 48);
  3333. const int8x16_t qy4 = vld1q_s8(y[i].qs + j*4 + 64);
  3334. const int8x16_t qy5 = vld1q_s8(y[i].qs + j*4 + 80);
  3335. const int8x16_t qy6 = vld1q_s8(y[i].qs + j*4 + 96);
  3336. const int8x16_t qy7 = vld1q_s8(y[i].qs + j*4 + 112);
  3337. #if defined(__ARM_FEATURE_DOTPROD)
  3338. sumi0 = vdotq_s32(sumi0, sqx0, qy0);
  3339. sumi1 = vdotq_s32(sumi1, sqx1, qy1);
  3340. sumi0 = vdotq_s32(sumi0, sqx2, qy2);
  3341. sumi1 = vdotq_s32(sumi1, sqx3, qy3);
  3342. sumi0 = vdotq_s32(sumi0, sqx4, qy4);
  3343. sumi1 = vdotq_s32(sumi1, sqx5, qy5);
  3344. sumi0 = vdotq_s32(sumi0, sqx6, qy6);
  3345. sumi1 = vdotq_s32(sumi1, sqx7, qy7);
  3346. #else
  3347. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx0), vget_low_s8(qy0));
  3348. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx0), vget_high_s8(qy0));
  3349. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx1), vget_low_s8(qy1));
  3350. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx1), vget_high_s8(qy1));
  3351. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx2), vget_low_s8(qy2));
  3352. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx2), vget_high_s8(qy2));
  3353. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx3), vget_low_s8(qy3));
  3354. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx3), vget_high_s8(qy3));
  3355. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx4), vget_low_s8(qy4));
  3356. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx4), vget_high_s8(qy4));
  3357. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx5), vget_low_s8(qy5));
  3358. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx5), vget_high_s8(qy5));
  3359. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx6), vget_low_s8(qy6));
  3360. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx6), vget_high_s8(qy6));
  3361. sumi0 = vmlal_s8(sumi0, vget_low_s8(sqx7), vget_low_s8(qy7));
  3362. sumi1 = vmlal_s8(sumi1, vget_high_s8(sqx7), vget_high_s8(qy7));
  3363. #endif
  3364. }
  3365. const int16x8_t ysum0 = vld1q_s16(y[i].bsums);
  3366. const int16x8_t ysum1 = vld1q_s16(y[i].bsums + 8);
  3367. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  3368. #if defined(__ARM_FEATURE_DOTPROD)
  3369. sumi0 = vaddq_s32(sumi0, sumi1);
  3370. sumi0 = vsubq_s32(sumi0, vpaddlq_s16(vaddq_s16(ysum0, ysum1)));
  3371. sumf += d * (float) vaddvq_s32(sumi0);
  3372. #else
  3373. sumi0 = vaddq_s16(sumi0, sumi1);
  3374. sumi0 = vsubq_s16(sumi0, vaddq_s16(ysum0, ysum1));
  3375. sumf += d * (float) vaddlvq_s16(sumi0);
  3376. #endif
  3377. }
  3378. *s = sumf;
  3379. #elif defined(__AVX2__)
  3380. __m256 sumf = _mm256_setzero_ps();
  3381. for (int i = 0; i < nb; ++i) {
  3382. // 16-bit sums, because 256*127 still fits
  3383. __m256i sumi0 = _mm256_setzero_si256();
  3384. __m256i sumi1 = _mm256_setzero_si256();
  3385. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3386. __m256i qx0 = _mm256_loadu_si256((const __m256i *) (x[i].qs + j));
  3387. __m256i qx1 = _mm256_srli_epi16(qx0, 2);
  3388. __m256i qx2 = _mm256_srli_epi16(qx0, 4);
  3389. __m256i qx3 = _mm256_srli_epi16(qx0, 6);
  3390. // 0, 1, 2 (should not be 3)
  3391. qx0 = _mm256_and_si256(qx0, _mm256_set1_epi8(3));
  3392. qx1 = _mm256_and_si256(qx1, _mm256_set1_epi8(3));
  3393. qx2 = _mm256_and_si256(qx2, _mm256_set1_epi8(3));
  3394. qx3 = _mm256_and_si256(qx3, _mm256_set1_epi8(3));
  3395. const __m256i qy0 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 0));
  3396. const __m256i qy1 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 32));
  3397. const __m256i qy2 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 64));
  3398. const __m256i qy3 = _mm256_loadu_si256((const __m256i *) (y[i].qs + j*4 + 96));
  3399. qx0 = _mm256_maddubs_epi16(qx0, qy0);
  3400. qx1 = _mm256_maddubs_epi16(qx1, qy1);
  3401. qx2 = _mm256_maddubs_epi16(qx2, qy2);
  3402. qx3 = _mm256_maddubs_epi16(qx3, qy3);
  3403. sumi0 = _mm256_add_epi16(sumi0, _mm256_add_epi16(qx0, qx1));
  3404. sumi1 = _mm256_add_epi16(sumi1, _mm256_add_epi16(qx2, qx3));
  3405. }
  3406. const __m256i ysum = _mm256_loadu_si256((const __m256i *) y[i].bsums);
  3407. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d));
  3408. sumi0 = _mm256_add_epi16(sumi0, sumi1);
  3409. sumi0 = _mm256_sub_epi16(sumi0, ysum);
  3410. sumi0 = _mm256_madd_epi16(sumi0, _mm256_set1_epi16(1));
  3411. sumf = _mm256_add_ps(_mm256_mul_ps(_mm256_cvtepi32_ps(sumi0), d), sumf);
  3412. }
  3413. *s = hsum_float_8(sumf);
  3414. #else
  3415. float sumf = 0.0f;
  3416. for (int i = 0; i < nb; ++i) {
  3417. int32_t sumi = 0;
  3418. for (size_t j = 0; j < sizeof(x->qs); j += 32) {
  3419. for (size_t l = 0; l < 4; ++l) {
  3420. for (size_t k = 0; k < 32; ++k) {
  3421. sumi += y[i].qs[j*4 + l*32 + k] * (((x[i].qs[j + k] >> (l*2)) & 3) - 1);
  3422. }
  3423. }
  3424. }
  3425. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3426. sumf += (float) sumi * d;
  3427. }
  3428. *s = sumf;
  3429. #endif
  3430. }
  3431. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3432. assert(nrc == 1);
  3433. UNUSED(nrc);
  3434. UNUSED(bx);
  3435. UNUSED(by);
  3436. UNUSED(bs);
  3437. const block_q2_K * restrict x = vx;
  3438. const block_q8_K * restrict y = vy;
  3439. const int nb = n / QK_K;
  3440. #ifdef __ARM_NEON
  3441. const uint8x16_t m3 = vdupq_n_u8(0x3);
  3442. const uint8x16_t m4 = vdupq_n_u8(0xF);
  3443. const int32x4_t vzero = vdupq_n_s32(0);
  3444. ggml_int8x16x2_t q2bytes;
  3445. uint8_t aux[16];
  3446. float sum = 0;
  3447. for (int i = 0; i < nb; ++i) {
  3448. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3449. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3450. const uint8_t * restrict q2 = x[i].qs;
  3451. const int8_t * restrict q8 = y[i].qs;
  3452. const uint8_t * restrict sc = x[i].scales;
  3453. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  3454. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  3455. vst1q_u8(aux, scales);
  3456. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  3457. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  3458. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  3459. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  3460. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  3461. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  3462. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  3463. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  3464. int isum = 0;
  3465. int is = 0;
  3466. // We use this macro instead of a function call because for some reason
  3467. // the code runs 2-3% slower, even if the function is declared inline
  3468. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  3469. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  3470. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  3471. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  3472. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  3473. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  3474. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  3475. MULTIPLY_ACCUM_WITH_SCALE((index));
  3476. for (int j = 0; j < QK_K/128; ++j) {
  3477. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  3478. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  3479. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  3480. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  3481. MULTIPLY_ACCUM_WITH_SCALE(0);
  3482. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  3483. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  3484. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  3485. is += 8;
  3486. }
  3487. sum += d * isum;
  3488. }
  3489. *s = sum;
  3490. #elif defined __AVX2__
  3491. const __m256i m3 = _mm256_set1_epi8(3);
  3492. const __m128i m4 = _mm_set1_epi8(0xF);
  3493. __m256 acc = _mm256_setzero_ps();
  3494. for (int i = 0; i < nb; ++i) {
  3495. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3496. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3497. const uint8_t * restrict q2 = x[i].qs;
  3498. const int8_t * restrict q8 = y[i].qs;
  3499. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3500. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  3501. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3502. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  3503. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  3504. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  3505. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  3506. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3507. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3508. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3509. __m256i sumi = _mm256_setzero_si256();
  3510. for (int j = 0; j < QK_K/128; ++j) {
  3511. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  3512. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3513. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3514. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3515. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3516. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  3517. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  3518. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  3519. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  3520. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  3521. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  3522. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  3523. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  3524. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  3525. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  3526. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  3527. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  3528. p0 = _mm256_add_epi32(p0, p1);
  3529. p2 = _mm256_add_epi32(p2, p3);
  3530. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  3531. }
  3532. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3533. }
  3534. *s = hsum_float_8(acc);
  3535. #elif defined __AVX__
  3536. const __m128i m3 = _mm_set1_epi8(0x3);
  3537. const __m128i m4 = _mm_set1_epi8(0xF);
  3538. const __m128i m2 = _mm_set1_epi8(0x2);
  3539. __m256 acc = _mm256_setzero_ps();
  3540. for (int i = 0; i < nb; ++i) {
  3541. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3542. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3543. const uint8_t * restrict q2 = x[i].qs;
  3544. const int8_t * restrict q8 = y[i].qs;
  3545. // load mins and scales from block_q2_K.scales[QK_K/16]
  3546. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3547. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  3548. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  3549. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  3550. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  3551. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  3552. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  3553. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  3554. // sumf += -dmin * summs in 32bits*8
  3555. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  3556. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  3557. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  3558. const __m128i scales[2] = { scales_0, scales_1 };
  3559. __m128i sumi_0 = _mm_setzero_si128();
  3560. __m128i sumi_1 = _mm_setzero_si128();
  3561. for (int j = 0; j < QK_K/128; ++j) {
  3562. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  3563. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3564. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3565. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3566. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3567. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3568. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3569. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3570. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3571. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  3572. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3573. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  3574. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3575. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3576. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3577. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  3578. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  3579. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  3580. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  3581. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  3582. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  3583. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  3584. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  3585. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  3586. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  3587. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  3588. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  3589. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  3590. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  3591. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  3592. __m128i shuffle = _mm_set1_epi16(0x0100);
  3593. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  3594. shuffle = _mm_add_epi16(shuffle, m2);
  3595. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  3596. shuffle = _mm_add_epi16(shuffle, m2);
  3597. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  3598. shuffle = _mm_add_epi16(shuffle, m2);
  3599. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  3600. shuffle = _mm_add_epi16(shuffle, m2);
  3601. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  3602. shuffle = _mm_add_epi16(shuffle, m2);
  3603. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  3604. shuffle = _mm_add_epi16(shuffle, m2);
  3605. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  3606. shuffle = _mm_add_epi16(shuffle, m2);
  3607. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  3608. p0 = _mm_add_epi32(p0, p1);
  3609. p2 = _mm_add_epi32(p2, p3);
  3610. p4 = _mm_add_epi32(p4, p5);
  3611. p6 = _mm_add_epi32(p6, p7);
  3612. // isum in 32bits*4*2
  3613. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  3614. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  3615. }
  3616. // sumf += dall * isum - dmin * summs in 32bits
  3617. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3618. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  3619. }
  3620. *s = hsum_float_8(acc);
  3621. #elif defined __riscv_v_intrinsic
  3622. float sumf = 0;
  3623. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  3624. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  3625. for (int i = 0; i < nb; ++i) {
  3626. const uint8_t * q2 = x[i].qs;
  3627. const int8_t * q8 = y[i].qs;
  3628. const uint8_t * sc = x[i].scales;
  3629. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3630. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3631. size_t vl = 16;
  3632. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  3633. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  3634. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  3635. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  3636. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  3637. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  3638. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  3639. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  3640. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  3641. vl = 32;
  3642. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  3643. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  3644. uint8_t is=0;
  3645. int isum=0;
  3646. for (int j = 0; j < QK_K/128; ++j) {
  3647. // load Q2
  3648. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  3649. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  3650. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  3651. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  3652. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  3653. // duplicate scale elements for product
  3654. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  3655. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  3656. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  3657. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  3658. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  3659. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  3660. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  3661. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  3662. // load Q8
  3663. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  3664. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  3665. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  3666. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  3667. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  3668. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  3669. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  3670. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  3671. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  3672. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  3673. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  3674. q2+=32; q8+=128; is=8;
  3675. }
  3676. sumf += dall * isum;
  3677. }
  3678. *s = sumf;
  3679. #elif defined(__POWER9_VECTOR__)
  3680. const vector signed char lowMask = vec_splats((signed char)0x3);
  3681. const vector signed char lowScaleMask = vec_splats((signed char)0xF);
  3682. const vector int v0 = vec_splats((int32_t)0);
  3683. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  3684. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  3685. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  3686. vector float vsumf0 = vec_splats(0.0f);
  3687. vector float vsumf1 = vec_splats(0.0f);
  3688. vector float vsumf2 = vec_splats(0.0f);
  3689. vector float vsumf3 = vec_splats(0.0f);
  3690. for (int i = 0; i < nb; ++i) {
  3691. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  3692. vector float vyd = vec_splats(y[i].d);
  3693. vector float vd = vec_mul(vxd, vyd);
  3694. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  3695. vector float vdmin = vec_mul(vxmin, vyd);
  3696. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  3697. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  3698. vector signed char q2xmins = (vector signed char)vec_xl( 0, x[i].scales);
  3699. vector signed char vscales = vec_and(q2xmins, lowScaleMask);
  3700. q2xmins = vec_sr(q2xmins, v4);
  3701. vector signed short q2xmins0 = vec_unpackh(q2xmins);
  3702. vector signed short q2xmins1 = vec_unpackl(q2xmins);
  3703. vector signed int prod0 = vec_mule(q2xmins0, q8ysums0);
  3704. vector signed int prod1 = vec_mulo(q2xmins0, q8ysums0);
  3705. vector signed int prod2 = vec_mule(q2xmins1, q8ysums1);
  3706. vector signed int prod3 = vec_mulo(q2xmins1, q8ysums1);
  3707. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  3708. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  3709. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  3710. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  3711. vector signed int vsumi0 = v0;
  3712. vector signed int vsumi1 = v0;
  3713. vector signed int vsumi2 = v0;
  3714. vector signed int vsumi3 = v0;
  3715. vector signed int vsumi4 = v0;
  3716. vector signed int vsumi5 = v0;
  3717. vector signed int vsumi6 = v0;
  3718. vector signed int vsumi7 = v0;
  3719. const uint8_t * restrict q2 = x[i].qs;
  3720. const int8_t * restrict q8 = y[i].qs;
  3721. for (int j = 0; j < QK_K/128; ++j) {
  3722. __builtin_prefetch(q2, 0, 1);
  3723. __builtin_prefetch(q8, 0, 1);
  3724. vector signed char qxs0 = (vector signed char)vec_xl( 0, q2);
  3725. vector signed char qxs1 = (vector signed char)vec_xl(16, q2);
  3726. q2 += 32;
  3727. vector unsigned char q2x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  3728. vector unsigned char q2x01 = (vector unsigned char)vec_and(vec_sr(qxs0, v2), lowMask);
  3729. vector unsigned char q2x02 = (vector unsigned char)vec_and(vec_sr(qxs0, v4), lowMask);
  3730. vector unsigned char q2x03 = (vector unsigned char)vec_and(vec_sr(qxs0, v6), lowMask);
  3731. vector unsigned char q2x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  3732. vector unsigned char q2x11 = (vector unsigned char)vec_and(vec_sr(qxs1, v2), lowMask);
  3733. vector unsigned char q2x12 = (vector unsigned char)vec_and(vec_sr(qxs1, v4), lowMask);
  3734. vector unsigned char q2x13 = (vector unsigned char)vec_and(vec_sr(qxs1, v6), lowMask);
  3735. vector signed char q8y00 = vec_xl( 0, q8);
  3736. vector signed char q8y10 = vec_xl( 16, q8);
  3737. vector signed char q8y01 = vec_xl( 32, q8);
  3738. vector signed char q8y11 = vec_xl( 48, q8);
  3739. vector signed char q8y02 = vec_xl( 64, q8);
  3740. vector signed char q8y12 = vec_xl( 80, q8);
  3741. vector signed char q8y03 = vec_xl( 96, q8);
  3742. vector signed char q8y13 = vec_xl(112, q8);
  3743. q8 += 128;
  3744. vector signed int qv0 = vec_msum(q8y00, q2x00, v0);
  3745. vector signed int qv1 = vec_msum(q8y01, q2x01, v0);
  3746. vector signed int qv2 = vec_msum(q8y02, q2x02, v0);
  3747. vector signed int qv3 = vec_msum(q8y03, q2x03, v0);
  3748. vector signed int qv4 = vec_msum(q8y10, q2x10, v0);
  3749. vector signed int qv5 = vec_msum(q8y11, q2x11, v0);
  3750. vector signed int qv6 = vec_msum(q8y12, q2x12, v0);
  3751. vector signed int qv7 = vec_msum(q8y13, q2x13, v0);
  3752. vector signed short vscales_07 = vec_unpackh(vscales);
  3753. vector signed int vscales_03 = vec_unpackh(vscales_07);
  3754. vector signed int vscales_47 = vec_unpackl(vscales_07);
  3755. vector signed int vs0 = vec_splat(vscales_03, 0);
  3756. vector signed int vs1 = vec_splat(vscales_03, 1);
  3757. vector signed int vs2 = vec_splat(vscales_03, 2);
  3758. vector signed int vs3 = vec_splat(vscales_03, 3);
  3759. vector signed int vs4 = vec_splat(vscales_47, 0);
  3760. vector signed int vs5 = vec_splat(vscales_47, 1);
  3761. vector signed int vs6 = vec_splat(vscales_47, 2);
  3762. vector signed int vs7 = vec_splat(vscales_47, 3);
  3763. vscales = vec_sld(vscales, vscales, 8);
  3764. vsumi0 = vec_add(vec_mul(qv0, vs0), vsumi0);
  3765. vsumi1 = vec_add(vec_mul(qv1, vs2), vsumi1);
  3766. vsumi2 = vec_add(vec_mul(qv2, vs4), vsumi2);
  3767. vsumi3 = vec_add(vec_mul(qv3, vs6), vsumi3);
  3768. vsumi4 = vec_add(vec_mul(qv4, vs1), vsumi4);
  3769. vsumi5 = vec_add(vec_mul(qv5, vs3), vsumi5);
  3770. vsumi6 = vec_add(vec_mul(qv6, vs5), vsumi6);
  3771. vsumi7 = vec_add(vec_mul(qv7, vs7), vsumi7);
  3772. }
  3773. vsumi0 = vec_add(vsumi0, vsumi4);
  3774. vsumi1 = vec_add(vsumi1, vsumi5);
  3775. vsumi2 = vec_add(vsumi2, vsumi6);
  3776. vsumi3 = vec_add(vsumi3, vsumi7);
  3777. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  3778. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  3779. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  3780. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  3781. }
  3782. vsumf0 = vec_add(vsumf0, vsumf2);
  3783. vsumf1 = vec_add(vsumf1, vsumf3);
  3784. vsumf0 = vec_add(vsumf0, vsumf1);
  3785. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  3786. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  3787. *s = vec_extract(vsumf0, 0);
  3788. #elif defined __loongarch_asx
  3789. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  3790. const __m128i m4 = __lsx_vreplgr2vr_b(0xF);
  3791. __m256 acc = (__m256)__lasx_xvldi(0);
  3792. for (int i = 0; i < nb; ++i) {
  3793. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3794. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3795. const uint8_t * restrict q2 = x[i].qs;
  3796. const int8_t * restrict q8 = y[i].qs;
  3797. const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  3798. const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
  3799. const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
  3800. const __m256i mins = lasx_ext8_16(mins8);
  3801. const __m256i prod = lasx_madd_h(mins, __lasx_xvld((const __m256i*)y[i].bsums, 0));
  3802. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(dmin), __lasx_xvffint_s_w(prod), acc);
  3803. const __m256i all_scales = lasx_ext8_16(scales8);
  3804. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  3805. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  3806. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  3807. __m256i sumi = __lasx_xvldi(0);
  3808. for (int j = 0; j < QK_K/128; ++j) {
  3809. const __m256i q2bits = __lasx_xvld((const __m256i*)q2, 0); q2 += 32;
  3810. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3811. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3812. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3813. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  3814. const __m256i q2_0 = __lasx_xvand_v(q2bits, m3);
  3815. const __m256i q2_1 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 2), m3);
  3816. const __m256i q2_2 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 4), m3);
  3817. const __m256i q2_3 = __lasx_xvand_v(__lasx_xvsrli_h(q2bits, 6), m3);
  3818. __m256i p0 = lasx_maddubs_h(q2_0, q8_0);
  3819. __m256i p1 = lasx_maddubs_h(q2_1, q8_1);
  3820. __m256i p2 = lasx_maddubs_h(q2_2, q8_2);
  3821. __m256i p3 = lasx_maddubs_h(q2_3, q8_3);
  3822. p0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(0)), p0);
  3823. p1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(1)), p1);
  3824. p2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(2)), p2);
  3825. p3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(3)), p3);
  3826. p0 = __lasx_xvadd_w(p0, p1);
  3827. p2 = __lasx_xvadd_w(p2, p3);
  3828. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p0, p2));
  3829. }
  3830. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  3831. }
  3832. *s = hsum_float_8(acc);
  3833. #else
  3834. float sumf = 0;
  3835. for (int i = 0; i < nb; ++i) {
  3836. const uint8_t * q2 = x[i].qs;
  3837. const int8_t * q8 = y[i].qs;
  3838. const uint8_t * sc = x[i].scales;
  3839. int summs = 0;
  3840. for (int j = 0; j < 16; ++j) {
  3841. summs += y[i].bsums[j] * (sc[j] >> 4);
  3842. }
  3843. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3844. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  3845. int isum = 0;
  3846. int is = 0;
  3847. int d;
  3848. for (int k = 0; k < QK_K/128; ++k) {
  3849. int shift = 0;
  3850. for (int j = 0; j < 4; ++j) {
  3851. d = sc[is++] & 0xF;
  3852. int isuml = 0;
  3853. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3854. isum += d * isuml;
  3855. d = sc[is++] & 0xF;
  3856. isuml = 0;
  3857. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  3858. isum += d * isuml;
  3859. shift += 2;
  3860. q8 += 32;
  3861. }
  3862. q2 += 32;
  3863. }
  3864. sumf += dall * isum - dmin * summs;
  3865. }
  3866. *s = sumf;
  3867. #endif
  3868. }
  3869. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3870. assert(n % QK_K == 0);
  3871. assert(nrc == 1);
  3872. UNUSED(nrc);
  3873. UNUSED(bx);
  3874. UNUSED(by);
  3875. UNUSED(bs);
  3876. const uint32_t kmask1 = 0x03030303;
  3877. const uint32_t kmask2 = 0x0f0f0f0f;
  3878. const block_q3_K * restrict x = vx;
  3879. const block_q8_K * restrict y = vy;
  3880. const int nb = n / QK_K;
  3881. #ifdef __ARM_NEON
  3882. uint32_t aux[3];
  3883. uint32_t utmp[4];
  3884. const uint8x16_t m3b = vdupq_n_u8(0x3);
  3885. const int32x4_t vzero = vdupq_n_s32(0);
  3886. const uint8x16_t m0 = vdupq_n_u8(1);
  3887. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  3888. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  3889. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  3890. const int8_t m32 = 32;
  3891. ggml_int8x16x4_t q3bytes;
  3892. float sum = 0;
  3893. for (int i = 0; i < nb; ++i) {
  3894. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3895. const uint8_t * restrict q3 = x[i].qs;
  3896. const uint8_t * restrict qh = x[i].hmask;
  3897. const int8_t * restrict q8 = y[i].qs;
  3898. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  3899. ggml_uint8x16x4_t q3h;
  3900. int32_t isum = 0;
  3901. // Set up scales
  3902. memcpy(aux, x[i].scales, 12);
  3903. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  3904. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  3905. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  3906. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  3907. int8_t * scale = (int8_t *)utmp;
  3908. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  3909. for (int j = 0; j < QK_K/128; ++j) {
  3910. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  3911. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3912. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  3913. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  3914. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  3915. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  3916. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  3917. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3918. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3919. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3920. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3921. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  3922. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  3923. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  3924. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  3925. scale += 4;
  3926. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  3927. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  3928. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  3929. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  3930. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  3931. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  3932. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  3933. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  3934. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  3935. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  3936. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  3937. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  3938. scale += 4;
  3939. if (j == 0) {
  3940. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  3941. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  3942. }
  3943. }
  3944. sum += d * isum;
  3945. }
  3946. *s = sum;
  3947. #elif defined __AVX2__
  3948. const __m256i m3 = _mm256_set1_epi8(3);
  3949. const __m256i mone = _mm256_set1_epi8(1);
  3950. const __m128i m32 = _mm_set1_epi8(32);
  3951. __m256 acc = _mm256_setzero_ps();
  3952. uint32_t aux[3];
  3953. for (int i = 0; i < nb; ++i) {
  3954. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  3955. const uint8_t * restrict q3 = x[i].qs;
  3956. const int8_t * restrict q8 = y[i].qs;
  3957. // Set up scales
  3958. memcpy(aux, x[i].scales, 12);
  3959. __m128i scales128 = _mm_set_epi32(
  3960. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  3961. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  3962. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  3963. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  3964. scales128 = _mm_sub_epi8(scales128, m32);
  3965. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  3966. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  3967. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  3968. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  3969. // high bit
  3970. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  3971. // integer accumulator
  3972. __m256i sumi = _mm256_setzero_si256();
  3973. int bit = 0;
  3974. int is = 0;
  3975. for (int j = 0; j < QK_K/128; ++j) {
  3976. // load low 2 bits
  3977. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  3978. // prepare low and high bits
  3979. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  3980. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3981. ++bit;
  3982. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  3983. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3984. ++bit;
  3985. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  3986. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3987. ++bit;
  3988. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  3989. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  3990. ++bit;
  3991. // load Q8 quants
  3992. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3993. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3994. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3995. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3996. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  3997. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  3998. // and 2 if the high bit was set)
  3999. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  4000. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  4001. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  4002. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  4003. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  4004. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  4005. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  4006. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  4007. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  4008. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  4009. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  4010. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  4011. // multiply with scales
  4012. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4013. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4014. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4015. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4016. // accumulate
  4017. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  4018. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  4019. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  4020. }
  4021. // multiply with block scale and accumulate
  4022. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4023. }
  4024. *s = hsum_float_8(acc);
  4025. #elif defined __AVX__
  4026. const __m128i m3 = _mm_set1_epi8(3);
  4027. const __m128i mone = _mm_set1_epi8(1);
  4028. const __m128i m32 = _mm_set1_epi8(32);
  4029. const __m128i m2 = _mm_set1_epi8(2);
  4030. __m256 acc = _mm256_setzero_ps();
  4031. const uint32_t *aux;
  4032. for (int i = 0; i < nb; ++i) {
  4033. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4034. const uint8_t * restrict q3 = x[i].qs;
  4035. const int8_t * restrict q8 = y[i].qs;
  4036. // Set up scales
  4037. aux = (const uint32_t *)x[i].scales;
  4038. __m128i scales128 = _mm_set_epi32(
  4039. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4040. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4041. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4042. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4043. scales128 = _mm_sub_epi8(scales128, m32);
  4044. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  4045. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  4046. const __m128i scales[2] = { scales_0, scales_1 };
  4047. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  4048. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  4049. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  4050. // integer accumulator
  4051. __m128i sumi_0 = _mm_setzero_si128();
  4052. __m128i sumi_1 = _mm_setzero_si128();
  4053. for (int j = 0; j < QK_K/128; ++j) {
  4054. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  4055. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4056. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  4057. // prepare low and high bits
  4058. const int bit = j << 2;
  4059. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  4060. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  4061. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  4062. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  4063. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  4064. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  4065. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4066. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  4067. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  4068. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  4069. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4070. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  4071. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  4072. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  4073. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4074. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  4075. // load Q8 quants from block_q8_K.qs[QK_K]
  4076. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4077. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4078. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4079. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4080. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4081. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4082. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4083. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4084. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  4085. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4086. // and 2 if the high bit was set)
  4087. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  4088. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  4089. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  4090. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  4091. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  4092. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  4093. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  4094. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  4095. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  4096. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  4097. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  4098. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  4099. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  4100. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  4101. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  4102. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  4103. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  4104. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  4105. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  4106. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  4107. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  4108. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  4109. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  4110. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  4111. // multiply with scales
  4112. __m128i shuffle = _mm_set1_epi16(0x0100);
  4113. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  4114. shuffle = _mm_add_epi16(shuffle, m2);
  4115. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  4116. shuffle = _mm_add_epi16(shuffle, m2);
  4117. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  4118. shuffle = _mm_add_epi16(shuffle, m2);
  4119. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  4120. shuffle = _mm_add_epi16(shuffle, m2);
  4121. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  4122. shuffle = _mm_add_epi16(shuffle, m2);
  4123. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  4124. shuffle = _mm_add_epi16(shuffle, m2);
  4125. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  4126. shuffle = _mm_add_epi16(shuffle, m2);
  4127. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  4128. // accumulate
  4129. p16_0 = _mm_add_epi32(p16_0, p16_1);
  4130. p16_2 = _mm_add_epi32(p16_2, p16_3);
  4131. p16_4 = _mm_add_epi32(p16_4, p16_5);
  4132. p16_6 = _mm_add_epi32(p16_6, p16_7);
  4133. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  4134. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  4135. }
  4136. // multiply with block scale and accumulate
  4137. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4138. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  4139. }
  4140. *s = hsum_float_8(acc);
  4141. #elif defined __riscv_v_intrinsic
  4142. uint32_t aux[3];
  4143. uint32_t utmp[4];
  4144. float sumf = 0;
  4145. for (int i = 0; i < nb; ++i) {
  4146. const uint8_t * restrict q3 = x[i].qs;
  4147. const uint8_t * restrict qh = x[i].hmask;
  4148. const int8_t * restrict q8 = y[i].qs;
  4149. memcpy(aux, x[i].scales, 12);
  4150. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  4151. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  4152. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  4153. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  4154. int8_t * scale = (int8_t *)utmp;
  4155. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  4156. size_t vl = 32;
  4157. uint8_t m = 1;
  4158. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4159. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  4160. int sum_t = 0;
  4161. for (int j = 0; j < QK_K; j += 128) {
  4162. vl = 32;
  4163. // load Q3
  4164. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  4165. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  4166. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  4167. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  4168. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  4169. // compute mask for subtraction
  4170. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4171. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  4172. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_mu(vmask_0, q3_0, q3_0, 0x4, vl);
  4173. m <<= 1;
  4174. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4175. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  4176. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_mu(vmask_1, q3_1, q3_1, 0x4, vl);
  4177. m <<= 1;
  4178. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4179. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  4180. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_mu(vmask_2, q3_2, q3_2, 0x4, vl);
  4181. m <<= 1;
  4182. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  4183. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  4184. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_mu(vmask_3, q3_3, q3_3, 0x4, vl);
  4185. m <<= 1;
  4186. // load Q8 and take product with Q3
  4187. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  4188. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  4189. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  4190. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  4191. vl = 16;
  4192. // retrieve lane to multiply with scale
  4193. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  4194. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  4195. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  4196. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  4197. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  4198. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  4199. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  4200. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  4201. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  4202. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  4203. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  4204. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  4205. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  4206. q3 += 32; q8 += 128; scale += 8;
  4207. }
  4208. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4209. sumf += d*sum_t;
  4210. }
  4211. *s = sumf;
  4212. #elif defined(__POWER9_VECTOR__)
  4213. const vector signed char lowMask = vec_splats((signed char)0x3);
  4214. const vector signed char lowMask1 = vec_splats((int8_t)0xf);
  4215. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4216. const vector int v0 = vec_splats((int32_t)0);
  4217. const vector signed char v1 = vec_splats((signed char)0x1);
  4218. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  4219. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  4220. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4221. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  4222. const vector signed char off = vec_splats((signed char)0x20);
  4223. vector float vsumf0 = vec_splats(0.0f);
  4224. vector float vsumf1 = vec_splats(0.0f);
  4225. vector float vsumf2 = vec_splats(0.0f);
  4226. vector float vsumf3 = vec_splats(0.0f);
  4227. for (int i = 0; i < nb; ++i) {
  4228. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4229. vector float vyd = vec_splats(y[i].d);
  4230. vector float vd = vec_mul(vxd, vyd);
  4231. UNUSED(kmask1);
  4232. UNUSED(kmask2);
  4233. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4234. vector signed char u1 = vec_and(u0, lowMask1);
  4235. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4236. vector signed char u3 = (vector signed char)vec_mergeh((vector signed int)u2, (vector signed int)vec_sr(u2, v2));
  4237. vector signed char u30 = vec_sl(vec_and(u3, lowMask), v4);
  4238. vector signed char u31 = vec_and(u3, lowMask2);
  4239. u1 = vec_or(u1, u30);
  4240. u2 = vec_or(vec_sr(u0, v4), u31);
  4241. vector signed char vscales = (vector signed char)vec_mergeh((vector signed long long)u1, (vector signed long long)u2);
  4242. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].hmask);
  4243. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].hmask);
  4244. vscales = vec_sub(vscales, off);
  4245. vector signed int vsumi0 = v0;
  4246. vector signed int vsumi1 = v0;
  4247. vector signed int vsumi2 = v0;
  4248. vector signed int vsumi3 = v0;
  4249. vector signed int vsumi4 = v0;
  4250. vector signed int vsumi5 = v0;
  4251. vector signed int vsumi6 = v0;
  4252. vector signed int vsumi7 = v0;
  4253. const uint8_t * restrict q3 = x[i].qs;
  4254. const int8_t * restrict q8 = y[i].qs;
  4255. for (int j = 0; j < QK_K/128; ++j) {
  4256. __builtin_prefetch(q3, 0, 1);
  4257. __builtin_prefetch(q8, 0, 1);
  4258. vector signed char qxs0 = (vector signed char)vec_xl( 0, q3);
  4259. vector signed char qxs1 = (vector signed char)vec_xl(16, q3);
  4260. q3 += 32;
  4261. //the low 2 bits
  4262. vector signed char qxs00 = vec_and(qxs0, lowMask);
  4263. vector signed char qxs01 = vec_and(vec_sr(qxs0, v2), lowMask);
  4264. vector signed char qxs02 = vec_and(vec_sr(qxs0, v4), lowMask);
  4265. vector signed char qxs03 = vec_and(vec_sr(qxs0, v6), lowMask);
  4266. vector signed char qxs10 = vec_and(qxs1, lowMask);
  4267. vector signed char qxs11 = vec_and(vec_sr(qxs1, v2), lowMask);
  4268. vector signed char qxs12 = vec_and(vec_sr(qxs1, v4), lowMask);
  4269. vector signed char qxs13 = vec_and(vec_sr(qxs1, v6), lowMask);
  4270. //the 3rd bit
  4271. vector signed char qxh00 = vec_sl(vec_andc(v1, qxhs0), v2);
  4272. vector signed char qxh01 = vec_sl(vec_andc(v1, vec_sr(qxhs0, (vector unsigned char)v1)), v2);
  4273. vector signed char qxh02 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v2)), v2);
  4274. vector signed char qxh03 = vec_sl(vec_andc(v1, vec_sr(qxhs0, v3)), v2);
  4275. vector signed char qxh10 = vec_sl(vec_andc(v1, qxhs1), v2);
  4276. vector signed char qxh11 = vec_sl(vec_andc(v1, vec_sr(qxhs1, (vector unsigned char)v1)), v2);
  4277. vector signed char qxh12 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v2)), v2);
  4278. vector signed char qxh13 = vec_sl(vec_andc(v1, vec_sr(qxhs1, v3)), v2);
  4279. qxhs0 = vec_sr(qxhs0, v4);
  4280. qxhs1 = vec_sr(qxhs1, v4);
  4281. vector signed char q3x00 = vec_sub(qxs00, qxh00);
  4282. vector signed char q3x01 = vec_sub(qxs01, qxh01);
  4283. vector signed char q3x02 = vec_sub(qxs02, qxh02);
  4284. vector signed char q3x03 = vec_sub(qxs03, qxh03);
  4285. vector signed char q3x10 = vec_sub(qxs10, qxh10);
  4286. vector signed char q3x11 = vec_sub(qxs11, qxh11);
  4287. vector signed char q3x12 = vec_sub(qxs12, qxh12);
  4288. vector signed char q3x13 = vec_sub(qxs13, qxh13);
  4289. vector signed char q8y00 = vec_xl( 0, q8);
  4290. vector signed char q8y10 = vec_xl( 16, q8);
  4291. vector signed char q8y01 = vec_xl( 32, q8);
  4292. vector signed char q8y11 = vec_xl( 48, q8);
  4293. vector signed char q8y02 = vec_xl( 64, q8);
  4294. vector signed char q8y12 = vec_xl( 80, q8);
  4295. vector signed char q8y03 = vec_xl( 96, q8);
  4296. vector signed char q8y13 = vec_xl(112, q8);
  4297. q8 += 128;
  4298. vector signed short vscales_h = vec_unpackh(vscales);
  4299. vector signed short vs0 = vec_splat(vscales_h, 0);
  4300. vector signed short vs1 = vec_splat(vscales_h, 1);
  4301. vector signed short vs2 = vec_splat(vscales_h, 2);
  4302. vector signed short vs3 = vec_splat(vscales_h, 3);
  4303. vector signed short vs4 = vec_splat(vscales_h, 4);
  4304. vector signed short vs5 = vec_splat(vscales_h, 5);
  4305. vector signed short vs6 = vec_splat(vscales_h, 6);
  4306. vector signed short vs7 = vec_splat(vscales_h, 7);
  4307. vscales = vec_sld(vscales, vscales, 8);
  4308. vector signed short qv00 = vec_add(vec_mule(q3x00, q8y00), vec_mulo(q3x00, q8y00));
  4309. vector signed short qv01 = vec_add(vec_mule(q3x01, q8y01), vec_mulo(q3x01, q8y01));
  4310. vector signed short qv02 = vec_add(vec_mule(q3x02, q8y02), vec_mulo(q3x02, q8y02));
  4311. vector signed short qv03 = vec_add(vec_mule(q3x03, q8y03), vec_mulo(q3x03, q8y03));
  4312. vector signed short qv10 = vec_add(vec_mule(q3x10, q8y10), vec_mulo(q3x10, q8y10));
  4313. vector signed short qv11 = vec_add(vec_mule(q3x11, q8y11), vec_mulo(q3x11, q8y11));
  4314. vector signed short qv12 = vec_add(vec_mule(q3x12, q8y12), vec_mulo(q3x12, q8y12));
  4315. vector signed short qv13 = vec_add(vec_mule(q3x13, q8y13), vec_mulo(q3x13, q8y13));
  4316. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  4317. vsumi1 = vec_msum(qv01, vs2, vsumi1);
  4318. vsumi2 = vec_msum(qv02, vs4, vsumi2);
  4319. vsumi3 = vec_msum(qv03, vs6, vsumi3);
  4320. vsumi4 = vec_msum(qv10, vs1, vsumi4);
  4321. vsumi5 = vec_msum(qv11, vs3, vsumi5);
  4322. vsumi6 = vec_msum(qv12, vs5, vsumi6);
  4323. vsumi7 = vec_msum(qv13, vs7, vsumi7);
  4324. }
  4325. vsumi0 = vec_add(vsumi0, vsumi4);
  4326. vsumi1 = vec_add(vsumi1, vsumi5);
  4327. vsumi2 = vec_add(vsumi2, vsumi6);
  4328. vsumi3 = vec_add(vsumi3, vsumi7);
  4329. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4330. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4331. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4332. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4333. }
  4334. vsumf0 = vec_add(vsumf0, vsumf2);
  4335. vsumf1 = vec_add(vsumf1, vsumf3);
  4336. vsumf0 = vec_add(vsumf0, vsumf1);
  4337. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4338. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4339. *s = vec_extract(vsumf0, 0);
  4340. #elif defined __loongarch_asx
  4341. const __m256i m3 = __lasx_xvreplgr2vr_b(3);
  4342. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  4343. const __m128i m32 = __lsx_vreplgr2vr_b(32);
  4344. __m256 acc = (__m256)__lasx_xvldi(0);
  4345. uint32_t aux[3];
  4346. for (int i = 0; i < nb; ++i) {
  4347. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4348. const uint8_t * restrict q3 = x[i].qs;
  4349. const int8_t * restrict q8 = y[i].qs;
  4350. // Set up scales
  4351. memcpy(aux, x[i].scales, 12);
  4352. __m128i scales128 = lsx_set_w(
  4353. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  4354. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  4355. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  4356. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  4357. scales128 = __lsx_vsub_b(scales128, m32);
  4358. const __m256i all_scales = lasx_ext8_16(scales128);
  4359. const __m128i l_scales = lasx_extracti128(all_scales, 0);
  4360. const __m128i h_scales = lasx_extracti128(all_scales, 1);
  4361. const __m256i scales[2] = {lasx_insertf128(l_scales, l_scales), lasx_insertf128(h_scales, h_scales)};
  4362. // high bit
  4363. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].hmask, 0);
  4364. // integer accumulator
  4365. __m256i sumi = __lasx_xvldi(0);
  4366. int bit = 0;
  4367. int is = 0;
  4368. __m256i xvbit;
  4369. for (int j = 0; j < QK_K/128; ++j) {
  4370. // load low 2 bits
  4371. const __m256i q3bits = __lasx_xvld((const __m256i*)q3, 0); q3 += 32;
  4372. xvbit = __lasx_xvreplgr2vr_h(bit);
  4373. // prepare low and high bits
  4374. const __m256i q3l_0 = __lasx_xvand_v(q3bits, m3);
  4375. const __m256i q3h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4376. ++bit;
  4377. xvbit = __lasx_xvreplgr2vr_h(bit);
  4378. const __m256i q3l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 2), m3);
  4379. const __m256i q3h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4380. ++bit;
  4381. xvbit = __lasx_xvreplgr2vr_h(bit);
  4382. const __m256i q3l_2 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 4), m3);
  4383. const __m256i q3h_2 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4384. ++bit;
  4385. xvbit = __lasx_xvreplgr2vr_h(bit);
  4386. const __m256i q3l_3 = __lasx_xvand_v(__lasx_xvsrli_h(q3bits, 6), m3);
  4387. const __m256i q3h_3 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvandn_v(hbits, __lasx_xvsll_h(mone, xvbit)), xvbit), 2);
  4388. ++bit;
  4389. // load Q8 quants
  4390. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4391. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4392. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4393. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4394. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use lasx_maddubs_h,
  4395. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  4396. // and 2 if the high bit was set)
  4397. __m256i q8s_0 = lasx_maddubs_h(q3h_0, q8_0);
  4398. __m256i q8s_1 = lasx_maddubs_h(q3h_1, q8_1);
  4399. __m256i q8s_2 = lasx_maddubs_h(q3h_2, q8_2);
  4400. __m256i q8s_3 = lasx_maddubs_h(q3h_3, q8_3);
  4401. __m256i p16_0 = lasx_maddubs_h(q3l_0, q8_0);
  4402. __m256i p16_1 = lasx_maddubs_h(q3l_1, q8_1);
  4403. __m256i p16_2 = lasx_maddubs_h(q3l_2, q8_2);
  4404. __m256i p16_3 = lasx_maddubs_h(q3l_3, q8_3);
  4405. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  4406. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  4407. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  4408. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  4409. // multiply with scales
  4410. p16_0 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  4411. p16_1 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  4412. p16_2 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  4413. p16_3 = lasx_madd_h(lasx_shuffle_b(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  4414. // accumulate
  4415. p16_0 = __lasx_xvadd_w(p16_0, p16_1);
  4416. p16_2 = __lasx_xvadd_w(p16_2, p16_3);
  4417. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_2));
  4418. }
  4419. // multiply with block scale and accumulate
  4420. acc = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);//FIXME
  4421. }
  4422. *s = hsum_float_8(acc);
  4423. #else
  4424. // scalar version
  4425. // This function is written like this so the compiler can manage to vectorize most of it
  4426. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  4427. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  4428. // The ideal situation would be if we could just write the code once, and the compiler would
  4429. // automatically produce the best possible set of machine instructions, instead of us having to manually
  4430. // write vectorized versions for AVX, ARM_NEON, etc.
  4431. int8_t aux8[QK_K];
  4432. int16_t aux16[8];
  4433. float sums [8];
  4434. int32_t aux32[8];
  4435. memset(sums, 0, 8*sizeof(float));
  4436. uint32_t auxs[4];
  4437. const int8_t * scales = (const int8_t*)auxs;
  4438. float sumf = 0;
  4439. for (int i = 0; i < nb; ++i) {
  4440. const uint8_t * restrict q3 = x[i].qs;
  4441. const uint8_t * restrict hm = x[i].hmask;
  4442. const int8_t * restrict q8 = y[i].qs;
  4443. memset(aux32, 0, 8*sizeof(int32_t));
  4444. int8_t * restrict a = aux8;
  4445. uint8_t m = 1;
  4446. for (int j = 0; j < QK_K; j += 128) {
  4447. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  4448. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4449. a += 32; m <<= 1;
  4450. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  4451. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4452. a += 32; m <<= 1;
  4453. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  4454. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4455. a += 32; m <<= 1;
  4456. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  4457. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  4458. a += 32; m <<= 1;
  4459. q3 += 32;
  4460. }
  4461. a = aux8;
  4462. memcpy(auxs, x[i].scales, 12);
  4463. uint32_t tmp = auxs[2];
  4464. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  4465. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  4466. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  4467. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  4468. for (int j = 0; j < QK_K/16; ++j) {
  4469. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4470. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4471. q8 += 8; a += 8;
  4472. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4473. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  4474. q8 += 8; a += 8;
  4475. }
  4476. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4477. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4478. }
  4479. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4480. *s = sumf;
  4481. #endif
  4482. }
  4483. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4484. assert(n % QK_K == 0);
  4485. assert(nrc == 1);
  4486. UNUSED(nrc);
  4487. UNUSED(bx);
  4488. UNUSED(by);
  4489. UNUSED(bs);
  4490. const block_q4_K * restrict x = vx;
  4491. const block_q8_K * restrict y = vy;
  4492. const int nb = n / QK_K;
  4493. static const uint32_t kmask1 = 0x3f3f3f3f;
  4494. static const uint32_t kmask2 = 0x0f0f0f0f;
  4495. static const uint32_t kmask3 = 0x03030303;
  4496. uint32_t utmp[4];
  4497. #ifdef __ARM_NEON
  4498. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4499. const int32x4_t mzero = vdupq_n_s32(0);
  4500. ggml_int8x16x2_t q4bytes;
  4501. ggml_int8x16x2_t q8bytes;
  4502. float sumf = 0;
  4503. for (int i = 0; i < nb; ++i) {
  4504. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4505. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4506. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4507. memcpy(utmp, x[i].scales, 12);
  4508. uint32x2_t mins8 = { 0 };
  4509. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  4510. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  4511. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4512. utmp[0] &= kmask1;
  4513. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  4514. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4515. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4516. sumf -= dmin * vaddvq_s32(prod);
  4517. const uint8_t * scales = (const uint8_t *)utmp;
  4518. const uint8_t * restrict q4 = x[i].qs;
  4519. const int8_t * restrict q8 = y[i].qs;
  4520. int32_t sumi1 = 0;
  4521. int32_t sumi2 = 0;
  4522. for (int j = 0; j < QK_K/64; ++j) {
  4523. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  4524. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4525. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  4526. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  4527. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4528. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  4529. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4530. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  4531. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  4532. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  4533. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  4534. }
  4535. sumf += d * (sumi1 + sumi2);
  4536. }
  4537. *s = sumf;
  4538. #elif defined __AVX2__
  4539. const __m256i m4 = _mm256_set1_epi8(0xF);
  4540. __m256 acc = _mm256_setzero_ps();
  4541. __m128 acc_m = _mm_setzero_ps();
  4542. for (int i = 0; i < nb; ++i) {
  4543. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4544. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4545. memcpy(utmp, x[i].scales, 12);
  4546. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4547. const uint32_t uaux = utmp[1] & kmask1;
  4548. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4549. utmp[2] = uaux;
  4550. utmp[0] &= kmask1;
  4551. const uint8_t * restrict q4 = x[i].qs;
  4552. const int8_t * restrict q8 = y[i].qs;
  4553. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4554. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4555. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4556. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4557. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  4558. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4559. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4560. __m256i sumi = _mm256_setzero_si256();
  4561. for (int j = 0; j < QK_K/64; ++j) {
  4562. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4563. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4564. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  4565. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  4566. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  4567. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4568. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  4569. p16l = _mm256_madd_epi16(scale_l, p16l);
  4570. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4571. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  4572. p16h = _mm256_madd_epi16(scale_h, p16h);
  4573. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  4574. sumi = _mm256_add_epi32(sumi, sumj);
  4575. }
  4576. __m256 vd = _mm256_set1_ps(d);
  4577. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  4578. }
  4579. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4580. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4581. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4582. #elif defined __AVX__
  4583. const __m128i m4 = _mm_set1_epi8(0xF);
  4584. const __m128i m2 = _mm_set1_epi8(0x2);
  4585. __m256 acc = _mm256_setzero_ps();
  4586. __m128 acc_m = _mm_setzero_ps();
  4587. for (int i = 0; i < nb; ++i) {
  4588. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4589. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4590. const uint8_t * restrict q4 = x[i].qs;
  4591. const int8_t * restrict q8 = y[i].qs;
  4592. memcpy(utmp, x[i].scales, 12);
  4593. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4594. const uint32_t uaux = utmp[1] & kmask1;
  4595. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4596. utmp[2] = uaux;
  4597. utmp[0] &= kmask1;
  4598. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  4599. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  4600. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  4601. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  4602. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  4603. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  4604. const __m128i prod = _mm_madd_epi16(mins, q8s);
  4605. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  4606. __m128i sumi_0 = _mm_setzero_si128();
  4607. __m128i sumi_1 = _mm_setzero_si128();
  4608. __m128i shuffle = _mm_set1_epi16(0x0100);
  4609. for (int j = 0; j < QK_K/64; ++j) {
  4610. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  4611. shuffle = _mm_add_epi16(shuffle, m2);
  4612. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  4613. shuffle = _mm_add_epi16(shuffle, m2);
  4614. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4615. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  4616. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4617. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  4618. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  4619. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  4620. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4621. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  4622. p16l = _mm_madd_epi16(scale_l, p16l);
  4623. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  4624. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4625. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  4626. p16l = _mm_madd_epi16(scale_l, p16l);
  4627. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  4628. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4629. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  4630. p16h = _mm_madd_epi16(scale_h, p16h);
  4631. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  4632. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4633. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  4634. p16h = _mm_madd_epi16(scale_h, p16h);
  4635. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  4636. }
  4637. __m256 vd = _mm256_set1_ps(d);
  4638. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4639. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  4640. }
  4641. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  4642. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  4643. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  4644. #elif defined __riscv_v_intrinsic
  4645. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4646. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4647. float sumf = 0;
  4648. for (int i = 0; i < nb; ++i) {
  4649. size_t vl = 8;
  4650. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4651. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4652. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  4653. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  4654. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  4655. memcpy(utmp, x[i].scales, 12);
  4656. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4657. const uint32_t uaux = utmp[1] & kmask1;
  4658. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4659. utmp[2] = uaux;
  4660. utmp[0] &= kmask1;
  4661. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  4662. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  4663. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  4664. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4665. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  4666. const uint8_t * restrict q4 = x[i].qs;
  4667. const int8_t * restrict q8 = y[i].qs;
  4668. vl = 32;
  4669. int32_t sum_1 = 0;
  4670. int32_t sum_2 = 0;
  4671. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4672. for (int j = 0; j < QK_K/64; ++j) {
  4673. // load Q4
  4674. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  4675. // load Q8 and multiply it with lower Q4 nibble
  4676. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4677. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  4678. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  4679. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  4680. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  4681. // load Q8 and multiply it with upper Q4 nibble
  4682. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4683. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  4684. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  4685. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  4686. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  4687. q4 += 32; q8 += 64;
  4688. }
  4689. sumf += d*(sum_1 + sum_2);
  4690. }
  4691. *s = sumf;
  4692. #elif defined(__POWER9_VECTOR__)
  4693. const vector signed char lowMask = vec_splats((signed char)0xF);
  4694. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  4695. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  4696. const vector int v0 = vec_splats((int32_t)0);
  4697. const vector unsigned char v2 = vec_splats((uint8_t)2);
  4698. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  4699. vector float vsumf0 = vec_splats(0.0f);
  4700. vector float vsumf1 = vec_splats(0.0f);
  4701. vector float vsumf2 = vec_splats(0.0f);
  4702. vector float vsumf3 = vec_splats(0.0f);
  4703. for (int i = 0; i < nb; ++i) {
  4704. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  4705. vector float vyd = vec_splats(y[i].d);
  4706. vector float vd = vec_mul(vxd, vyd);
  4707. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  4708. vector float vdmin = vec_mul(vxmin, vyd);
  4709. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  4710. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  4711. UNUSED(kmask1);
  4712. UNUSED(kmask2);
  4713. UNUSED(kmask3);
  4714. UNUSED(utmp);
  4715. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  4716. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  4717. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  4718. vector signed char u3 = vec_sr(u2, v4);
  4719. vector signed char u30 = u1;
  4720. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  4721. u1 = vec_and(u0, lowMask1);
  4722. u2 = vec_or(u30, u31);
  4723. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  4724. vector signed short vscales = vec_unpackh(utmps);
  4725. vector signed short q4xmins = vec_unpackl(utmps);
  4726. vector signed short q4xmins0 = vec_mergeh(q4xmins, q4xmins);
  4727. vector signed short q4xmins1 = vec_mergel(q4xmins, q4xmins);
  4728. vector signed int prod0 = vec_mule(q4xmins0, q8ysums0);
  4729. vector signed int prod1 = vec_mule(q4xmins1, q8ysums1);
  4730. vector signed int prod2 = vec_mulo(q4xmins0, q8ysums0);
  4731. vector signed int prod3 = vec_mulo(q4xmins1, q8ysums1);
  4732. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  4733. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  4734. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  4735. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  4736. vector signed int vsumi0 = v0;
  4737. vector signed int vsumi1 = v0;
  4738. vector signed int vsumi2 = v0;
  4739. vector signed int vsumi3 = v0;
  4740. const uint8_t * restrict q4 = x[i].qs;
  4741. const int8_t * restrict q8 = y[i].qs;
  4742. for (int j = 0; j < QK_K/64; j+=2) {
  4743. __builtin_prefetch(q4, 0, 1);
  4744. __builtin_prefetch(q8, 0, 1);
  4745. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  4746. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  4747. vector signed char qxs2 = (vector signed char)vec_xl(32, q4);
  4748. vector signed char qxs3 = (vector signed char)vec_xl(48, q4);
  4749. q4 += 64;
  4750. vector unsigned char q4x00 = (vector unsigned char)vec_and(qxs0, lowMask);
  4751. vector unsigned char q4x01 = (vector unsigned char)vec_sr(qxs0, v4);
  4752. vector unsigned char q4x10 = (vector unsigned char)vec_and(qxs1, lowMask);
  4753. vector unsigned char q4x11 = (vector unsigned char)vec_sr(qxs1, v4);
  4754. vector unsigned char q4x20 = (vector unsigned char)vec_and(qxs2, lowMask);
  4755. vector unsigned char q4x21 = (vector unsigned char)vec_sr(qxs2, v4);
  4756. vector unsigned char q4x30 = (vector unsigned char)vec_and(qxs3, lowMask);
  4757. vector unsigned char q4x31 = (vector unsigned char)vec_sr(qxs3, v4);
  4758. vector signed char q8y00 = vec_xl( 0, q8);
  4759. vector signed char q8y10 = vec_xl( 16, q8);
  4760. vector signed char q8y01 = vec_xl( 32, q8);
  4761. vector signed char q8y11 = vec_xl( 48, q8);
  4762. vector signed char q8y20 = vec_xl( 64, q8);
  4763. vector signed char q8y30 = vec_xl( 80, q8);
  4764. vector signed char q8y21 = vec_xl( 96, q8);
  4765. vector signed char q8y31 = vec_xl(112, q8);
  4766. q8 += 128;
  4767. vector signed int qv00 = vec_msum(q8y00, q4x00, v0);
  4768. vector signed int qv01 = vec_msum(q8y01, q4x01, v0);
  4769. vector signed int qv10 = vec_msum(q8y10, q4x10, v0);
  4770. vector signed int qv11 = vec_msum(q8y11, q4x11, v0);
  4771. vector signed int qv20 = vec_msum(q8y20, q4x20, v0);
  4772. vector signed int qv21 = vec_msum(q8y21, q4x21, v0);
  4773. vector signed int qv30 = vec_msum(q8y30, q4x30, v0);
  4774. vector signed int qv31 = vec_msum(q8y31, q4x31, v0);
  4775. vector signed int vscales_h = vec_unpackh(vscales);
  4776. vector signed int vs0 = vec_splat(vscales_h, 0);
  4777. vector signed int vs1 = vec_splat(vscales_h, 1);
  4778. vector signed int vs2 = vec_splat(vscales_h, 2);
  4779. vector signed int vs3 = vec_splat(vscales_h, 3);
  4780. vscales = vec_sld(vscales, vscales, 8);
  4781. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  4782. vsumi1 = vec_add(vec_mul(qv01, vs1), vsumi1);
  4783. vsumi2 = vec_add(vec_mul(qv20, vs2), vsumi2);
  4784. vsumi3 = vec_add(vec_mul(qv21, vs3), vsumi3);
  4785. vsumi0 = vec_add(vec_mul(qv10, vs0), vsumi0);
  4786. vsumi1 = vec_add(vec_mul(qv11, vs1), vsumi1);
  4787. vsumi2 = vec_add(vec_mul(qv30, vs2), vsumi2);
  4788. vsumi3 = vec_add(vec_mul(qv31, vs3), vsumi3);
  4789. }
  4790. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  4791. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  4792. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  4793. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  4794. }
  4795. vsumf0 = vec_add(vsumf0, vsumf2);
  4796. vsumf1 = vec_add(vsumf1, vsumf3);
  4797. vsumf0 = vec_add(vsumf0, vsumf1);
  4798. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  4799. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  4800. *s = vec_extract(vsumf0, 0);
  4801. #elif defined __loongarch_asx
  4802. GGML_UNUSED(kmask1);
  4803. GGML_UNUSED(kmask2);
  4804. GGML_UNUSED(kmask3);
  4805. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  4806. __m256 acc = (__m256)__lasx_xvldi(0);
  4807. __m128 acc_m = (__m128)__lsx_vldi(0);
  4808. for (int i = 0; i < nb; ++i) {
  4809. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4810. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4811. memcpy(utmp, x[i].scales, 12);
  4812. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4813. const uint32_t uaux = utmp[1] & kmask1;
  4814. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4815. utmp[2] = uaux;
  4816. utmp[0] &= kmask1;
  4817. const uint8_t * restrict q4 = x[i].qs;
  4818. const int8_t * restrict q8 = y[i].qs;
  4819. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  4820. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  4821. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  4822. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  4823. acc_m = __lsx_vfmadd_s(__lsx_vreplfr2vr_s(dmin), __lsx_vffint_s_w(prod), acc_m);
  4824. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  4825. const __m256i scales = lasx_insertf128(sc128, sc128);
  4826. __m256i sumi = __lasx_xvldi(0);
  4827. for (int j = 0; j < QK_K/64; ++j) {
  4828. const __m256i scale_l = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  4829. const __m256i scale_h = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  4830. const __m256i q4bits = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  4831. const __m256i q4l = __lasx_xvand_v(q4bits, m4);
  4832. const __m256i q4h = __lasx_xvand_v(__lasx_xvsrli_h(q4bits, 4), m4);
  4833. const __m256i q8l = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4834. __m256i p16l = lasx_maddubs_h(q4l, q8l);
  4835. p16l = lasx_madd_h(scale_l, p16l);
  4836. const __m256i q8h = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  4837. __m256i p16h = lasx_maddubs_h(q4h, q8h);
  4838. p16h = lasx_madd_h(scale_h, p16h);
  4839. const __m256i sumj = __lasx_xvadd_w(p16l, p16h);
  4840. sumi = __lasx_xvadd_w(sumi, sumj);
  4841. }
  4842. __m256 vd = __lasx_xvreplfr2vr_s(d);
  4843. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  4844. }
  4845. acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
  4846. __m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
  4847. acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
  4848. ft_union fi;
  4849. fi.i = __lsx_vpickve2gr_w(acc_m, 0);
  4850. *s = hsum_float_8(acc) + fi.f ;
  4851. #else
  4852. const uint8_t * scales = (const uint8_t*)&utmp[0];
  4853. const uint8_t * mins = (const uint8_t*)&utmp[2];
  4854. int8_t aux8[QK_K];
  4855. int16_t aux16[8];
  4856. float sums [8];
  4857. int32_t aux32[8];
  4858. memset(sums, 0, 8*sizeof(float));
  4859. float sumf = 0;
  4860. for (int i = 0; i < nb; ++i) {
  4861. const uint8_t * restrict q4 = x[i].qs;
  4862. const int8_t * restrict q8 = y[i].qs;
  4863. memset(aux32, 0, 8*sizeof(int32_t));
  4864. int8_t * restrict a = aux8;
  4865. for (int j = 0; j < QK_K/64; ++j) {
  4866. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  4867. a += 32;
  4868. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  4869. a += 32; q4 += 32;
  4870. }
  4871. memcpy(utmp, x[i].scales, 12);
  4872. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4873. const uint32_t uaux = utmp[1] & kmask1;
  4874. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4875. utmp[2] = uaux;
  4876. utmp[0] &= kmask1;
  4877. int sumi = 0;
  4878. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  4879. a = aux8;
  4880. int is = 0;
  4881. for (int j = 0; j < QK_K/32; ++j) {
  4882. int32_t scale = scales[is++];
  4883. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4884. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4885. q8 += 8; a += 8;
  4886. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4887. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4888. q8 += 8; a += 8;
  4889. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4890. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4891. q8 += 8; a += 8;
  4892. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  4893. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  4894. q8 += 8; a += 8;
  4895. }
  4896. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  4897. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  4898. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  4899. sumf -= dmin * sumi;
  4900. }
  4901. for (int l = 0; l < 8; ++l) sumf += sums[l];
  4902. *s = sumf;
  4903. #endif
  4904. }
  4905. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4906. assert(n % QK_K == 0);
  4907. assert(nrc == 1);
  4908. UNUSED(nrc);
  4909. UNUSED(bx);
  4910. UNUSED(by);
  4911. UNUSED(bs);
  4912. const block_q5_K * restrict x = vx;
  4913. const block_q8_K * restrict y = vy;
  4914. const int nb = n / QK_K;
  4915. static const uint32_t kmask1 = 0x3f3f3f3f;
  4916. static const uint32_t kmask2 = 0x0f0f0f0f;
  4917. static const uint32_t kmask3 = 0x03030303;
  4918. uint32_t utmp[4];
  4919. #ifdef __ARM_NEON
  4920. const uint8x16_t m4b = vdupq_n_u8(0xf);
  4921. const uint8x16_t mone = vdupq_n_u8(1);
  4922. const uint8x16_t mtwo = vdupq_n_u8(2);
  4923. const int32x4_t mzero = vdupq_n_s32(0);
  4924. ggml_int8x16x4_t q5bytes;
  4925. float sumf = 0;
  4926. for (int i = 0; i < nb; ++i) {
  4927. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4928. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4929. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  4930. memcpy(utmp, x[i].scales, 12);
  4931. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4932. const uint32_t uaux = utmp[1] & kmask1;
  4933. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4934. utmp[2] = uaux;
  4935. utmp[0] &= kmask1;
  4936. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  4937. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  4938. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  4939. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  4940. int32_t sumi_mins = vaddvq_s32(prod);
  4941. const uint8_t * scales = (const uint8_t *)utmp;
  4942. const uint8_t * restrict q5 = x[i].qs;
  4943. const uint8_t * restrict qh = x[i].qh;
  4944. const int8_t * restrict q8 = y[i].qs;
  4945. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  4946. ggml_uint8x16x4_t q5h;
  4947. int32_t sumi = 0;
  4948. for (int j = 0; j < QK_K/64; ++j) {
  4949. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  4950. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  4951. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  4952. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  4953. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  4954. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  4955. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  4956. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  4957. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  4958. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  4959. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  4960. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  4961. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  4962. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  4963. }
  4964. sumf += d * sumi - dmin * sumi_mins;
  4965. }
  4966. *s = sumf;
  4967. #elif defined __AVX2__
  4968. const __m256i m4 = _mm256_set1_epi8(0xF);
  4969. const __m128i mzero = _mm_setzero_si128();
  4970. const __m256i mone = _mm256_set1_epi8(1);
  4971. __m256 acc = _mm256_setzero_ps();
  4972. float summs = 0.f;
  4973. for (int i = 0; i < nb; ++i) {
  4974. const uint8_t * restrict q5 = x[i].qs;
  4975. const int8_t * restrict q8 = y[i].qs;
  4976. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4977. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4978. memcpy(utmp, x[i].scales, 12);
  4979. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  4980. const uint32_t uaux = utmp[1] & kmask1;
  4981. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  4982. utmp[2] = uaux;
  4983. utmp[0] &= kmask1;
  4984. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  4985. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  4986. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  4987. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  4988. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  4989. summs += dmin * _mm_extract_epi32(hsum, 0);
  4990. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  4991. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  4992. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  4993. __m256i hmask = mone;
  4994. __m256i sumi = _mm256_setzero_si256();
  4995. int bit = 0;
  4996. for (int j = 0; j < QK_K/64; ++j) {
  4997. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  4998. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  4999. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  5000. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  5001. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  5002. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  5003. hmask = _mm256_slli_epi16(hmask, 1);
  5004. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  5005. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  5006. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  5007. hmask = _mm256_slli_epi16(hmask, 1);
  5008. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5009. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5010. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  5011. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  5012. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5013. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5014. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5015. }
  5016. __m256 vd = _mm256_set1_ps(d);
  5017. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5018. }
  5019. *s = hsum_float_8(acc) + summs;
  5020. #elif defined __AVX__
  5021. const __m128i m4 = _mm_set1_epi8(0xF);
  5022. const __m128i mzero = _mm_setzero_si128();
  5023. const __m128i mone = _mm_set1_epi8(1);
  5024. const __m128i m2 = _mm_set1_epi8(2);
  5025. __m256 acc = _mm256_setzero_ps();
  5026. float summs = 0.f;
  5027. for (int i = 0; i < nb; ++i) {
  5028. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5029. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5030. const uint8_t * restrict q5 = x[i].qs;
  5031. const int8_t * restrict q8 = y[i].qs;
  5032. memcpy(utmp, x[i].scales, 12);
  5033. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5034. const uint32_t uaux = utmp[1] & kmask1;
  5035. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5036. utmp[2] = uaux;
  5037. utmp[0] &= kmask1;
  5038. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5039. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5040. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5041. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5042. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5043. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5044. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5045. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  5046. summs += dmin * _mm_extract_epi32(hsum, 0);
  5047. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  5048. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  5049. __m128i hmask = mone;
  5050. __m128i sumi_0 = _mm_setzero_si128();
  5051. __m128i sumi_1 = _mm_setzero_si128();
  5052. int bit = 0;
  5053. __m128i shuffle = _mm_set1_epi16(0x0100);
  5054. for (int j = 0; j < QK_K/64; ++j) {
  5055. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  5056. shuffle = _mm_add_epi16(shuffle, m2);
  5057. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  5058. shuffle = _mm_add_epi16(shuffle, m2);
  5059. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5060. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  5061. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  5062. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  5063. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5064. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5065. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5066. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5067. hmask = _mm_slli_epi16(hmask, 1);
  5068. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5069. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5070. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  5071. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  5072. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5073. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  5074. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  5075. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  5076. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  5077. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  5078. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  5079. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  5080. hmask = _mm_slli_epi16(hmask, 1);
  5081. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5082. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5083. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  5084. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  5085. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  5086. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  5087. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5088. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5089. }
  5090. __m256 vd = _mm256_set1_ps(d);
  5091. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5092. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5093. }
  5094. *s = hsum_float_8(acc) + summs;
  5095. #elif defined __riscv_v_intrinsic
  5096. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5097. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5098. float sumf = 0;
  5099. float sums = 0.0;
  5100. size_t vl;
  5101. for (int i = 0; i < nb; ++i) {
  5102. vl = 8;
  5103. const uint8_t * restrict q5 = x[i].qs;
  5104. const uint8_t * restrict hm = x[i].qh;
  5105. const int8_t * restrict q8 = y[i].qs;
  5106. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5107. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5108. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5109. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5110. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5111. memcpy(utmp, x[i].scales, 12);
  5112. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5113. const uint32_t uaux = utmp[1] & kmask1;
  5114. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5115. utmp[2] = uaux;
  5116. utmp[0] &= kmask1;
  5117. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5118. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5119. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5120. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5121. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5122. vl = 32;
  5123. int32_t aux32 = 0;
  5124. int is = 0;
  5125. uint8_t m = 1;
  5126. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5127. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  5128. for (int j = 0; j < QK_K/64; ++j) {
  5129. // load Q5 and Q8
  5130. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  5131. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  5132. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  5133. // compute mask for addition
  5134. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  5135. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5136. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  5137. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_mu(vmask_1, q5_a, q5_a, 16, vl);
  5138. m <<= 1;
  5139. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  5140. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5141. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  5142. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_mu(vmask_2, q5_l, q5_l, 16, vl);
  5143. m <<= 1;
  5144. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  5145. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  5146. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  5147. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  5148. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  5149. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  5150. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  5151. q5 += 32; q8 += 64;
  5152. }
  5153. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  5154. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  5155. }
  5156. *s = sumf+sums;
  5157. #elif defined(__POWER9_VECTOR__)
  5158. const vector signed char lowMask = vec_splats((signed char)0xF);
  5159. const vector signed char lowMask1 = vec_splats((int8_t)0x3f);
  5160. const vector signed char lowMask2 = vec_splats((int8_t)0x30);
  5161. const vector int v0 = vec_splats((int32_t)0);
  5162. const vector unsigned char v1 = vec_splats((unsigned char)0x1);
  5163. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5164. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5165. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5166. vector float vsumf0 = vec_splats(0.0f);
  5167. vector float vsumf1 = vec_splats(0.0f);
  5168. vector float vsumf2 = vec_splats(0.0f);
  5169. vector float vsumf3 = vec_splats(0.0f);
  5170. for (int i = 0; i < nb; ++i) {
  5171. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5172. vector float vyd = vec_splats(y[i].d);
  5173. vector float vd = vec_mul(vxd, vyd);
  5174. vector float vxmin = vec_splats(GGML_FP16_TO_FP32(x[i].dmin));
  5175. vector float vdmin = vec_mul(vxmin, vyd);
  5176. UNUSED(kmask1);
  5177. UNUSED(kmask2);
  5178. UNUSED(kmask3);
  5179. UNUSED(utmp);
  5180. vector signed char u0 = (vector signed char)vec_xl_len(x[i].scales, 8);
  5181. vector signed char u1 = vec_and(vec_sr(u0, v2), lowMask2);
  5182. vector signed char u2 = (vector signed char)vec_xl_len(x[i].scales + 8, 4);
  5183. vector signed char u3 = vec_sr(u2, v4);
  5184. vector signed char u30 = u1;
  5185. vector signed char u31 = (vector signed char)vec_mergeh((vector signed int)vec_and(u2, lowMask), (vector signed int)u3);
  5186. u1 = vec_and(u0, lowMask1);
  5187. u2 = vec_or(u30, u31);
  5188. vector signed char utmps = (vector signed char)vec_mergeh((vector signed int)u1, (vector signed int)u2);
  5189. vector signed short q8ysums0 = vec_xl( 0, y[i].bsums);
  5190. vector signed short q8ysums1 = vec_xl(16, y[i].bsums);
  5191. vector signed short vscales = vec_unpackh(utmps);
  5192. vector signed short q5xmins = vec_unpackl(utmps);
  5193. vector signed short q5xmins0 = vec_mergeh(q5xmins, q5xmins);
  5194. vector signed short q5xmins1 = vec_mergel(q5xmins, q5xmins);
  5195. vector signed int prod0 = vec_mule(q5xmins0, q8ysums0);
  5196. vector signed int prod1 = vec_mule(q5xmins1, q8ysums1);
  5197. vector signed int prod2 = vec_mulo(q5xmins0, q8ysums0);
  5198. vector signed int prod3 = vec_mulo(q5xmins1, q8ysums1);
  5199. vsumf0 = vec_nmsub(vec_ctf(prod0, 0), vdmin, vsumf0);
  5200. vsumf1 = vec_nmsub(vec_ctf(prod1, 0), vdmin, vsumf1);
  5201. vsumf2 = vec_nmsub(vec_ctf(prod2, 0), vdmin, vsumf2);
  5202. vsumf3 = vec_nmsub(vec_ctf(prod3, 0), vdmin, vsumf3);
  5203. vector signed char qxhs0 = (vector signed char)vec_xl( 0, x[i].qh);
  5204. vector signed char qxhs1 = (vector signed char)vec_xl(16, x[i].qh);
  5205. vector signed int vsumi0 = v0;
  5206. vector signed int vsumi1 = v0;
  5207. vector signed int vsumi2 = v0;
  5208. vector signed int vsumi3 = v0;
  5209. const uint8_t * restrict q5 = x[i].qs;
  5210. const int8_t * restrict q8 = y[i].qs;
  5211. for (int j = 0; j < QK_K/64; ++j) {
  5212. __builtin_prefetch(q5, 0, 1);
  5213. __builtin_prefetch(q8, 0, 1);
  5214. vector signed char qxs0 = (vector signed char)vec_xl( 0, q5);
  5215. vector signed char qxs1 = (vector signed char)vec_xl(16, q5);
  5216. q5 += 32;
  5217. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5218. vector signed char qxs01 = vec_sr(qxs0, v4);
  5219. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5220. vector signed char qxs11 = vec_sr(qxs1, v4);
  5221. vector signed char q5h00 = vec_sl(vec_and((vector signed char)v1, qxhs0), v4);
  5222. vector signed char q5h01 = vec_sl(vec_and((vector signed char)v2, qxhs0), v3);
  5223. vector signed char q5h10 = vec_sl(vec_and((vector signed char)v1, qxhs1), v4);
  5224. vector signed char q5h11 = vec_sl(vec_and((vector signed char)v2, qxhs1), v3);
  5225. qxhs0 = vec_sr(qxhs0, v2);
  5226. qxhs1 = vec_sr(qxhs1, v2);
  5227. vector unsigned char q5x00 = (vector unsigned char)vec_or(q5h00, qxs00);
  5228. vector unsigned char q5x01 = (vector unsigned char)vec_or(q5h01, qxs01);
  5229. vector unsigned char q5x10 = (vector unsigned char)vec_or(q5h10, qxs10);
  5230. vector unsigned char q5x11 = (vector unsigned char)vec_or(q5h11, qxs11);
  5231. vector signed char q8y00 = vec_xl( 0, q8);
  5232. vector signed char q8y10 = vec_xl(16, q8);
  5233. vector signed char q8y01 = vec_xl(32, q8);
  5234. vector signed char q8y11 = vec_xl(48, q8);
  5235. q8 += 64;
  5236. vector signed int qv00 = vec_msum(q8y00, q5x00, v0);
  5237. vector signed int qv01 = vec_msum(q8y01, q5x01, v0);
  5238. vector signed int qv10 = vec_msum(q8y10, q5x10, v0);
  5239. vector signed int qv11 = vec_msum(q8y11, q5x11, v0);
  5240. vector signed int vscales_h = vec_unpackh(vscales);
  5241. vector signed int vs0 = vec_splat(vscales_h, 0);
  5242. vector signed int vs1 = vec_splat(vscales_h, 1);
  5243. vscales = vec_sld(vscales, vscales, 12);
  5244. vsumi0 = vec_add(vec_mul(qv00, vs0), vsumi0);
  5245. vsumi1 = vec_add(vec_mul(qv10, vs0), vsumi1);
  5246. vsumi2 = vec_add(vec_mul(qv01, vs1), vsumi2);
  5247. vsumi3 = vec_add(vec_mul(qv11, vs1), vsumi3);
  5248. }
  5249. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5250. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5251. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5252. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5253. }
  5254. vsumf0 = vec_add(vsumf0, vsumf2);
  5255. vsumf1 = vec_add(vsumf1, vsumf3);
  5256. vsumf0 = vec_add(vsumf0, vsumf1);
  5257. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5258. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5259. *s = vec_extract(vsumf0, 0);
  5260. #elif defined __loongarch_asx
  5261. GGML_UNUSED(kmask1);
  5262. GGML_UNUSED(kmask2);
  5263. GGML_UNUSED(kmask3);
  5264. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5265. const __m128i mzero = __lsx_vldi(0);
  5266. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  5267. __m256 acc = (__m256)__lasx_xvldi(0);
  5268. float summs = 0.f;
  5269. for (int i = 0; i < nb; ++i) {
  5270. const uint8_t * restrict q5 = x[i].qs;
  5271. const int8_t * restrict q8 = y[i].qs;
  5272. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5273. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5274. memcpy(utmp, x[i].scales, 12);
  5275. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5276. const uint32_t uaux = utmp[1] & kmask1;
  5277. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5278. utmp[2] = uaux;
  5279. utmp[0] &= kmask1;
  5280. const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
  5281. const __m256i q8sums = __lasx_xvld((const __m256i*)y[i].bsums, 0);
  5282. const __m128i q8s = lsx_hadd_h(lasx_extracti128(q8sums, 0), lasx_extracti128(q8sums, 1));
  5283. const __m128i prod = lsx_madd_h(lasx_extracti128(mins_and_scales, 1), q8s);
  5284. const __m128i hsum = lsx_hadd_w(lsx_hadd_w(prod, mzero), mzero);
  5285. summs += dmin * __lsx_vpickve2gr_w(hsum, 0); //TODO check
  5286. const __m128i sc128 = lasx_extracti128(mins_and_scales, 0);
  5287. const __m256i scales = lasx_insertf128(sc128, sc128);
  5288. const __m256i hbits = __lasx_xvld((const __m256i*)x[i].qh, 0);
  5289. __m256i hmask = mone;
  5290. __m256i sumi = __lasx_xvldi(0);
  5291. int bit = 0;
  5292. __m256i xvbit;
  5293. for (int j = 0; j < QK_K/64; ++j) {
  5294. const __m256i scale_0 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+0));
  5295. const __m256i scale_1 = lasx_shuffle_b(scales, get_scale_shuffle_k4(2*j+1));
  5296. const __m256i q5bits = __lasx_xvld((const __m256i*)q5, 0); q5 += 32;
  5297. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5298. const __m256i q5l_0 = __lasx_xvand_v(q5bits, m4);
  5299. const __m256i q5h_0 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5300. const __m256i q5_0 = __lasx_xvadd_b(q5l_0, q5h_0);
  5301. hmask = __lasx_xvslli_h(hmask, 1);
  5302. xvbit = __lasx_xvreplgr2vr_h(bit++);
  5303. const __m256i q5l_1 = __lasx_xvand_v(__lasx_xvsrli_h(q5bits, 4), m4);
  5304. const __m256i q5h_1 = __lasx_xvslli_h(__lasx_xvsrl_h(__lasx_xvand_v(hbits, hmask), xvbit), 4);
  5305. const __m256i q5_1 = __lasx_xvadd_b(q5l_1, q5h_1);
  5306. hmask = __lasx_xvslli_h(hmask, 1);
  5307. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5308. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5309. __m256i p16_0 = lasx_maddubs_h(q5_0, q8_0);
  5310. __m256i p16_1 = lasx_maddubs_h(q5_1, q8_1);
  5311. p16_0 = lasx_madd_h(scale_0, p16_0);
  5312. p16_1 = lasx_madd_h(scale_1, p16_1);
  5313. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5314. }
  5315. __m256 vd = __lasx_xvreplfr2vr_s(d);
  5316. acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
  5317. }
  5318. *s = hsum_float_8(acc) + summs;
  5319. #else
  5320. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5321. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5322. int8_t aux8[QK_K];
  5323. int16_t aux16[8];
  5324. float sums [8];
  5325. int32_t aux32[8];
  5326. memset(sums, 0, 8*sizeof(float));
  5327. float sumf = 0;
  5328. for (int i = 0; i < nb; ++i) {
  5329. const uint8_t * restrict q4 = x[i].qs;
  5330. const uint8_t * restrict hm = x[i].qh;
  5331. const int8_t * restrict q8 = y[i].qs;
  5332. memset(aux32, 0, 8*sizeof(int32_t));
  5333. int8_t * restrict a = aux8;
  5334. uint8_t m = 1;
  5335. for (int j = 0; j < QK_K/64; ++j) {
  5336. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5337. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5338. a += 32; m <<= 1;
  5339. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5340. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  5341. a += 32; m <<= 1;
  5342. q4 += 32;
  5343. }
  5344. memcpy(utmp, x[i].scales, 12);
  5345. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5346. const uint32_t uaux = utmp[1] & kmask1;
  5347. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5348. utmp[2] = uaux;
  5349. utmp[0] &= kmask1;
  5350. int sumi = 0;
  5351. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5352. a = aux8;
  5353. int is = 0;
  5354. for (int j = 0; j < QK_K/32; ++j) {
  5355. int32_t scale = scales[is++];
  5356. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5357. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5358. q8 += 8; a += 8;
  5359. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5360. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5361. q8 += 8; a += 8;
  5362. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5363. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5364. q8 += 8; a += 8;
  5365. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5366. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5367. q8 += 8; a += 8;
  5368. }
  5369. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5370. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5371. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5372. sumf -= dmin * sumi;
  5373. }
  5374. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5375. *s = sumf;
  5376. #endif
  5377. }
  5378. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5379. assert(n % QK_K == 0);
  5380. assert(nrc == 1);
  5381. UNUSED(nrc);
  5382. UNUSED(bx);
  5383. UNUSED(by);
  5384. UNUSED(bs);
  5385. const block_q6_K * restrict x = vx;
  5386. const block_q8_K * restrict y = vy;
  5387. const int nb = n / QK_K;
  5388. #ifdef __ARM_NEON
  5389. float sum = 0;
  5390. const uint8x16_t m4b = vdupq_n_u8(0xF);
  5391. const int32x4_t vzero = vdupq_n_s32(0);
  5392. //const int8x16_t m32s = vdupq_n_s8(32);
  5393. const uint8x16_t mone = vdupq_n_u8(3);
  5394. ggml_int8x16x4_t q6bytes;
  5395. ggml_uint8x16x4_t q6h;
  5396. for (int i = 0; i < nb; ++i) {
  5397. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  5398. const uint8_t * restrict q6 = x[i].ql;
  5399. const uint8_t * restrict qh = x[i].qh;
  5400. const int8_t * restrict q8 = y[i].qs;
  5401. const int8_t * restrict scale = x[i].scales;
  5402. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  5403. const int8x16_t scales = vld1q_s8(scale);
  5404. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  5405. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  5406. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  5407. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  5408. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  5409. int32_t isum_mins = vaddvq_s32(prod);
  5410. int32_t isum = 0;
  5411. for (int j = 0; j < QK_K/128; ++j) {
  5412. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  5413. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  5414. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5415. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  5416. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  5417. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  5418. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5419. shifted = vshrq_n_u8(qhbits.val[1], 2);
  5420. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5421. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  5422. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  5423. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  5424. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  5425. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  5426. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  5427. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  5428. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  5429. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5430. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5431. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5432. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5433. scale += 4;
  5434. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  5435. shifted = vshrq_n_u8(qhbits.val[0], 4);
  5436. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5437. shifted = vshrq_n_u8(qhbits.val[1], 4);
  5438. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5439. shifted = vshrq_n_u8(qhbits.val[0], 6);
  5440. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5441. shifted = vshrq_n_u8(qhbits.val[1], 6);
  5442. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  5443. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  5444. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  5445. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  5446. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  5447. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  5448. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  5449. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  5450. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  5451. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  5452. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  5453. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  5454. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  5455. scale += 4;
  5456. }
  5457. //sum += isum * d_all * y[i].d;
  5458. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  5459. }
  5460. *s = sum;
  5461. #elif defined __AVX2__
  5462. const __m256i m4 = _mm256_set1_epi8(0xF);
  5463. const __m256i m2 = _mm256_set1_epi8(3);
  5464. const __m256i m32s = _mm256_set1_epi8(32);
  5465. __m256 acc = _mm256_setzero_ps();
  5466. for (int i = 0; i < nb; ++i) {
  5467. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5468. const uint8_t * restrict q4 = x[i].ql;
  5469. const uint8_t * restrict qh = x[i].qh;
  5470. const int8_t * restrict q8 = y[i].qs;
  5471. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5472. __m256i sumi = _mm256_setzero_si256();
  5473. int is = 0;
  5474. for (int j = 0; j < QK_K/128; ++j) {
  5475. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5476. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5477. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5478. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5479. is += 4;
  5480. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5481. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5482. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  5483. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  5484. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  5485. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  5486. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  5487. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  5488. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  5489. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  5490. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  5491. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5492. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5493. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5494. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5495. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  5496. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  5497. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  5498. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  5499. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  5500. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  5501. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  5502. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  5503. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5504. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5505. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5506. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5507. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  5508. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  5509. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  5510. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  5511. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  5512. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  5513. }
  5514. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5515. }
  5516. *s = hsum_float_8(acc);
  5517. #elif defined __AVX__
  5518. const __m128i m3 = _mm_set1_epi8(3);
  5519. const __m128i m15 = _mm_set1_epi8(15);
  5520. __m256 acc = _mm256_setzero_ps();
  5521. for (int i = 0; i < nb; ++i) {
  5522. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5523. const uint8_t * restrict q4 = x[i].ql;
  5524. const uint8_t * restrict qh = x[i].qh;
  5525. const int8_t * restrict q8 = y[i].qs;
  5526. // handle the q6_k -32 offset separately using bsums
  5527. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)y[i].bsums);
  5528. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)y[i].bsums + 1);
  5529. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  5530. const __m128i scales_16_0 = _mm_cvtepi8_epi16(scales);
  5531. const __m128i scales_16_1 = _mm_cvtepi8_epi16(_mm_bsrli_si128(scales, 8));
  5532. const __m128i q8sclsub_0 = _mm_slli_epi32(_mm_madd_epi16(q8sums_0, scales_16_0), 5);
  5533. const __m128i q8sclsub_1 = _mm_slli_epi32(_mm_madd_epi16(q8sums_1, scales_16_1), 5);
  5534. __m128i sumi_0 = _mm_setzero_si128();
  5535. __m128i sumi_1 = _mm_setzero_si128();
  5536. int is = 0;
  5537. for (int j = 0; j < QK_K/128; ++j) {
  5538. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5539. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  5540. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  5541. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  5542. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(12)), 2);
  5543. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(12)), 2);
  5544. const __m128i q4h_4 = _mm_and_si128(q4bitsH_0, _mm_set1_epi8(48));
  5545. const __m128i q4h_5 = _mm_and_si128(q4bitsH_1, _mm_set1_epi8(48));
  5546. const __m128i q4h_6 = _mm_srli_epi16(_mm_and_si128(q4bitsH_0, _mm_set1_epi8(-64)), 2);
  5547. const __m128i q4h_7 = _mm_srli_epi16(_mm_and_si128(q4bitsH_1, _mm_set1_epi8(-64)), 2);
  5548. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5549. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5550. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5551. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5552. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m15), q4h_0);
  5553. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m15), q4h_1);
  5554. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m15), q4h_2);
  5555. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m15), q4h_3);
  5556. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m15), q4h_4);
  5557. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m15), q4h_5);
  5558. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m15), q4h_6);
  5559. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m15), q4h_7);
  5560. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5561. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5562. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5563. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5564. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5565. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5566. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5567. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5568. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  5569. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  5570. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  5571. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  5572. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  5573. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  5574. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  5575. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  5576. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  5577. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  5578. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  5579. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  5580. is += 4;
  5581. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  5582. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_0, 8)), p16_1);
  5583. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  5584. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_1, 8)), p16_3);
  5585. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  5586. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_2, 8)), p16_5);
  5587. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  5588. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_bsrli_si128(scale_3, 8)), p16_7);
  5589. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5590. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  5591. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  5592. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  5593. }
  5594. sumi_0 = _mm_sub_epi32(sumi_0, q8sclsub_0);
  5595. sumi_1 = _mm_sub_epi32(sumi_1, q8sclsub_1);
  5596. const __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5597. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi)), acc);
  5598. }
  5599. *s = hsum_float_8(acc);
  5600. #elif defined __riscv_v_intrinsic
  5601. float sumf = 0;
  5602. for (int i = 0; i < nb; ++i) {
  5603. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5604. const uint8_t * restrict q6 = x[i].ql;
  5605. const uint8_t * restrict qh = x[i].qh;
  5606. const int8_t * restrict q8 = y[i].qs;
  5607. const int8_t * restrict scale = x[i].scales;
  5608. size_t vl;
  5609. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5610. int sum_t = 0;
  5611. int is = 0;
  5612. for (int j = 0; j < QK_K/128; ++j) {
  5613. vl = 32;
  5614. // load qh
  5615. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  5616. // load Q6
  5617. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  5618. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  5619. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  5620. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  5621. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  5622. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  5623. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  5624. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  5625. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  5626. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  5627. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  5628. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  5629. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  5630. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  5631. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  5632. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  5633. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  5634. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  5635. // load Q8 and take product
  5636. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5637. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5638. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5639. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5640. vl = 16;
  5641. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  5642. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  5643. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  5644. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  5645. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  5646. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  5647. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  5648. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  5649. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  5650. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  5651. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  5652. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  5653. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5654. q6 += 64; qh += 32; q8 += 128; is=8;
  5655. }
  5656. sumf += d * sum_t;
  5657. }
  5658. *s = sumf;
  5659. #elif defined(__POWER9_VECTOR__)
  5660. const vector signed char lowMask = vec_splats((signed char)0xF);
  5661. const vector int v0 = vec_splats((int32_t)0);
  5662. const vector unsigned char v2 = vec_splats((unsigned char)0x2);
  5663. const vector unsigned char v3 = vec_splats((unsigned char)0x3);
  5664. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  5665. const vector unsigned char v6 = vec_splats((unsigned char)0x6);
  5666. const vector signed char off = vec_splats((signed char)0x20);
  5667. vector float vsumf0 = vec_splats(0.0f);
  5668. vector float vsumf1 = vec_splats(0.0f);
  5669. vector float vsumf2 = vec_splats(0.0f);
  5670. vector float vsumf3 = vec_splats(0.0f);
  5671. for (int i = 0; i < nb; ++i) {
  5672. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  5673. vector float vyd = vec_splats(y[i].d);
  5674. vector float vd = vec_mul(vxd, vyd);
  5675. vector signed int vsumi0 = v0;
  5676. vector signed int vsumi1 = v0;
  5677. vector signed int vsumi2 = v0;
  5678. vector signed int vsumi3 = v0;
  5679. vector signed int vsumi4 = v0;
  5680. vector signed int vsumi5 = v0;
  5681. vector signed int vsumi6 = v0;
  5682. vector signed int vsumi7 = v0;
  5683. const uint8_t * restrict q6 = x[i].ql;
  5684. const uint8_t * restrict qh = x[i].qh;
  5685. const int8_t * restrict qs = x[i].scales;
  5686. const int8_t * restrict q8 = y[i].qs;
  5687. for (int j = 0; j < QK_K/128; ++j) {
  5688. __builtin_prefetch(q6, 0, 0);
  5689. __builtin_prefetch(qh, 0, 0);
  5690. __builtin_prefetch(q8, 0, 0);
  5691. vector signed char qxs0 = (vector signed char)vec_xl( 0, q6);
  5692. vector signed char qxs1 = (vector signed char)vec_xl(16, q6);
  5693. vector signed char qxs2 = (vector signed char)vec_xl(32, q6);
  5694. vector signed char qxs3 = (vector signed char)vec_xl(48, q6);
  5695. q6 += 64;
  5696. vector signed char qxs00 = vec_and(qxs0, lowMask);
  5697. vector signed char qxs01 = vec_sr(qxs0, v4);
  5698. vector signed char qxs10 = vec_and(qxs1, lowMask);
  5699. vector signed char qxs11 = vec_sr(qxs1, v4);
  5700. vector signed char qxs20 = vec_and(qxs2, lowMask);
  5701. vector signed char qxs21 = vec_sr(qxs2, v4);
  5702. vector signed char qxs30 = vec_and(qxs3, lowMask);
  5703. vector signed char qxs31 = vec_sr(qxs3, v4);
  5704. vector signed char qxhs0 = (vector signed char)vec_xl( 0, qh);
  5705. vector signed char qxhs1 = (vector signed char)vec_xl(16, qh);
  5706. qh += 32;
  5707. vector signed char qxh00 = vec_sl(vec_and((vector signed char)v3, qxhs0), v4);
  5708. vector signed char qxh01 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v4)), v4);
  5709. vector signed char qxh10 = vec_sl(vec_and((vector signed char)v3, qxhs1), v4);
  5710. vector signed char qxh11 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v4)), v4);
  5711. vector signed char qxh20 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v2)), v4);
  5712. vector signed char qxh21 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs0, v6)), v4);
  5713. vector signed char qxh30 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v2)), v4);
  5714. vector signed char qxh31 = vec_sl(vec_and((vector signed char)v3, vec_sr(qxhs1, v6)), v4);
  5715. vector signed char q6x00 = vec_sub(vec_or(qxh00, qxs00), off);
  5716. vector signed char q6x01 = vec_sub(vec_or(qxh01, qxs01), off);
  5717. vector signed char q6x10 = vec_sub(vec_or(qxh10, qxs10), off);
  5718. vector signed char q6x11 = vec_sub(vec_or(qxh11, qxs11), off);
  5719. vector signed char q6x20 = vec_sub(vec_or(qxh20, qxs20), off);
  5720. vector signed char q6x21 = vec_sub(vec_or(qxh21, qxs21), off);
  5721. vector signed char q6x30 = vec_sub(vec_or(qxh30, qxs30), off);
  5722. vector signed char q6x31 = vec_sub(vec_or(qxh31, qxs31), off);
  5723. vector signed char q8y00 = vec_xl( 0, q8);
  5724. vector signed char q8y10 = vec_xl( 16, q8);
  5725. vector signed char q8y20 = vec_xl( 32, q8);
  5726. vector signed char q8y30 = vec_xl( 48, q8);
  5727. vector signed char q8y01 = vec_xl( 64, q8);
  5728. vector signed char q8y11 = vec_xl( 80, q8);
  5729. vector signed char q8y21 = vec_xl( 96, q8);
  5730. vector signed char q8y31 = vec_xl(112, q8);
  5731. q8 += 128;
  5732. vector signed short qv00 = vec_add(vec_mule(q6x00, q8y00), vec_mulo(q6x00, q8y00));
  5733. vector signed short qv10 = vec_add(vec_mule(q6x10, q8y10), vec_mulo(q6x10, q8y10));
  5734. vector signed short qv20 = vec_add(vec_mule(q6x20, q8y20), vec_mulo(q6x20, q8y20));
  5735. vector signed short qv30 = vec_add(vec_mule(q6x30, q8y30), vec_mulo(q6x30, q8y30));
  5736. vector signed short qv01 = vec_add(vec_mule(q6x01, q8y01), vec_mulo(q6x01, q8y01));
  5737. vector signed short qv11 = vec_add(vec_mule(q6x11, q8y11), vec_mulo(q6x11, q8y11));
  5738. vector signed short qv21 = vec_add(vec_mule(q6x21, q8y21), vec_mulo(q6x21, q8y21));
  5739. vector signed short qv31 = vec_add(vec_mule(q6x31, q8y31), vec_mulo(q6x31, q8y31));
  5740. vector signed short vscales = vec_unpackh(vec_xl_len(qs, 8));
  5741. qs += 8;
  5742. vector signed short vs0 = vec_splat(vscales, 0);
  5743. vector signed short vs1 = vec_splat(vscales, 1);
  5744. vector signed short vs2 = vec_splat(vscales, 2);
  5745. vector signed short vs3 = vec_splat(vscales, 3);
  5746. vector signed short vs4 = vec_splat(vscales, 4);
  5747. vector signed short vs5 = vec_splat(vscales, 5);
  5748. vector signed short vs6 = vec_splat(vscales, 6);
  5749. vector signed short vs7 = vec_splat(vscales, 7);
  5750. vsumi0 = vec_msum(qv00, vs0, vsumi0);
  5751. vsumi1 = vec_msum(qv01, vs4, vsumi1);
  5752. vsumi2 = vec_msum(qv10, vs1, vsumi2);
  5753. vsumi3 = vec_msum(qv11, vs5, vsumi3);
  5754. vsumi4 = vec_msum(qv20, vs2, vsumi4);
  5755. vsumi5 = vec_msum(qv21, vs6, vsumi5);
  5756. vsumi6 = vec_msum(qv30, vs3, vsumi6);
  5757. vsumi7 = vec_msum(qv31, vs7, vsumi7);
  5758. }
  5759. vsumi0 = vec_add(vsumi0, vsumi4);
  5760. vsumi1 = vec_add(vsumi1, vsumi5);
  5761. vsumi2 = vec_add(vsumi2, vsumi6);
  5762. vsumi3 = vec_add(vsumi3, vsumi7);
  5763. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  5764. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  5765. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  5766. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  5767. }
  5768. vsumf0 = vec_add(vsumf0, vsumf2);
  5769. vsumf1 = vec_add(vsumf1, vsumf3);
  5770. vsumf0 = vec_add(vsumf0, vsumf1);
  5771. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  5772. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  5773. *s = vec_extract(vsumf0, 0);
  5774. #elif defined __loongarch_asx
  5775. const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
  5776. const __m256i m2 = __lasx_xvreplgr2vr_b(3);
  5777. const __m256i m32s = __lasx_xvreplgr2vr_b(32);
  5778. __m256 acc = (__m256)__lasx_xvldi(0);
  5779. for (int i = 0; i < nb; ++i) {
  5780. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5781. const uint8_t * restrict q4 = x[i].ql;
  5782. const uint8_t * restrict qh = x[i].qh;
  5783. const int8_t * restrict q8 = y[i].qs;
  5784. const __m128i scales = __lsx_vld((const __m128i*)x[i].scales, 0);
  5785. __m256i sumi = __lasx_xvldi(0);
  5786. int is = 0;
  5787. for (int j = 0; j < QK_K/128; ++j) {
  5788. const __m128i scale_0 = lsx_shuffle_b(scales, get_scale_shuffle(is + 0));
  5789. const __m128i scale_1 = lsx_shuffle_b(scales, get_scale_shuffle(is + 1));
  5790. const __m128i scale_2 = lsx_shuffle_b(scales, get_scale_shuffle(is + 2));
  5791. const __m128i scale_3 = lsx_shuffle_b(scales, get_scale_shuffle(is + 3));
  5792. is += 4;
  5793. const __m256i q4bits1 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5794. const __m256i q4bits2 = __lasx_xvld((const __m256i*)q4, 0); q4 += 32;
  5795. const __m256i q4bitsH = __lasx_xvld((const __m256i*)qh, 0); qh += 32;
  5796. const __m256i q4h_0 = __lasx_xvslli_h(__lasx_xvand_v(q4bitsH, m2), 4);
  5797. const __m256i q4h_1 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 2), m2), 4);
  5798. const __m256i q4h_2 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 4), m2), 4);
  5799. const __m256i q4h_3 = __lasx_xvslli_h(__lasx_xvand_v(__lasx_xvsrli_h(q4bitsH, 6), m2), 4);
  5800. const __m256i q4_0 = __lasx_xvor_v(__lasx_xvand_v(q4bits1, m4), q4h_0);
  5801. const __m256i q4_1 = __lasx_xvor_v(__lasx_xvand_v(q4bits2, m4), q4h_1);
  5802. const __m256i q4_2 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits1, 4), m4), q4h_2);
  5803. const __m256i q4_3 = __lasx_xvor_v(__lasx_xvand_v(__lasx_xvsrli_h(q4bits2, 4), m4), q4h_3);
  5804. const __m256i q8_0 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5805. const __m256i q8_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5806. const __m256i q8_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5807. const __m256i q8_3 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  5808. __m256i q8s_0 = lasx_maddubs_h(m32s, q8_0);
  5809. __m256i q8s_1 = lasx_maddubs_h(m32s, q8_1);
  5810. __m256i q8s_2 = lasx_maddubs_h(m32s, q8_2);
  5811. __m256i q8s_3 = lasx_maddubs_h(m32s, q8_3);
  5812. __m256i p16_0 = lasx_maddubs_h(q4_0, q8_0);
  5813. __m256i p16_1 = lasx_maddubs_h(q4_1, q8_1);
  5814. __m256i p16_2 = lasx_maddubs_h(q4_2, q8_2);
  5815. __m256i p16_3 = lasx_maddubs_h(q4_3, q8_3);
  5816. p16_0 = __lasx_xvsub_h(p16_0, q8s_0);
  5817. p16_1 = __lasx_xvsub_h(p16_1, q8s_1);
  5818. p16_2 = __lasx_xvsub_h(p16_2, q8s_2);
  5819. p16_3 = __lasx_xvsub_h(p16_3, q8s_3);
  5820. p16_0 = lasx_madd_h(lasx_ext8_16(scale_0), p16_0);
  5821. p16_1 = lasx_madd_h(lasx_ext8_16(scale_1), p16_1);
  5822. p16_2 = lasx_madd_h(lasx_ext8_16(scale_2), p16_2);
  5823. p16_3 = lasx_madd_h(lasx_ext8_16(scale_3), p16_3);
  5824. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
  5825. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_2, p16_3));
  5826. }
  5827. acc = __lasx_xvfmadd_s((__m256)__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), acc);
  5828. }
  5829. *s = hsum_float_8(acc);
  5830. #else
  5831. int8_t aux8[QK_K];
  5832. int16_t aux16[8];
  5833. float sums [8];
  5834. int32_t aux32[8];
  5835. memset(sums, 0, 8*sizeof(float));
  5836. float sumf = 0;
  5837. for (int i = 0; i < nb; ++i) {
  5838. const uint8_t * restrict q4 = x[i].ql;
  5839. const uint8_t * restrict qh = x[i].qh;
  5840. const int8_t * restrict q8 = y[i].qs;
  5841. memset(aux32, 0, 8*sizeof(int32_t));
  5842. int8_t * restrict a = aux8;
  5843. for (int j = 0; j < QK_K; j += 128) {
  5844. for (int l = 0; l < 32; ++l) {
  5845. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  5846. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  5847. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  5848. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  5849. }
  5850. a += 128;
  5851. q4 += 64;
  5852. qh += 32;
  5853. }
  5854. a = aux8;
  5855. int is = 0;
  5856. for (int j = 0; j < QK_K/16; ++j) {
  5857. int scale = x[i].scales[is++];
  5858. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5859. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5860. q8 += 8; a += 8;
  5861. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5862. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5863. q8 += 8; a += 8;
  5864. }
  5865. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5866. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5867. }
  5868. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5869. *s = sumf;
  5870. #endif
  5871. }
  5872. #if defined (__AVX__) || defined (__AVX2__) || defined (__ARM_NEON) || defined (__POWER9_VECTOR__) || defined(__loongarch_asx)
  5873. static const int8_t keven_signs_q2xs[1024] = {
  5874. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  5875. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  5876. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  5877. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  5878. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  5879. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  5880. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  5881. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  5882. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  5883. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  5884. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  5885. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  5886. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  5887. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  5888. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  5889. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  5890. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  5891. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  5892. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  5893. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  5894. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  5895. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  5896. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  5897. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  5898. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  5899. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  5900. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  5901. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  5902. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  5903. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  5904. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  5905. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  5906. };
  5907. #endif
  5908. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5909. assert(n % QK_K == 0);
  5910. assert(nrc == 1);
  5911. UNUSED(nrc);
  5912. UNUSED(bx);
  5913. UNUSED(by);
  5914. UNUSED(bs);
  5915. const block_iq2_xxs * restrict x = vx;
  5916. const block_q8_K * restrict y = vy;
  5917. const int nb = n / QK_K;
  5918. #if defined(__ARM_NEON)
  5919. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5920. uint32_t aux32[4];
  5921. const uint8_t * aux8 = (const uint8_t *)aux32;
  5922. ggml_int8x16x4_t q2u;
  5923. ggml_int8x16x4_t q2s;
  5924. ggml_int8x16x4_t q8b;
  5925. float sumf = 0;
  5926. for (int i = 0; i < nb; ++i) {
  5927. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5928. const uint16_t * restrict q2 = x[i].qs;
  5929. const int8_t * restrict q8 = y[i].qs;
  5930. float sumf1 = 0, sumf2 = 0;
  5931. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5932. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  5933. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5934. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  5935. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  5936. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  5937. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  5938. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  5939. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  5940. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  5941. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  5942. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  5943. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  5944. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  5945. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  5946. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  5947. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  5948. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  5949. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  5950. }
  5951. sumf += d*(sumf1 + sumf2);
  5952. }
  5953. *s = 0.25f * sumf;
  5954. #elif defined(__AVX2__)
  5955. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5956. uint32_t aux32[4];
  5957. const uint8_t * aux8 = (const uint8_t *)aux32;
  5958. __m256 accumf = _mm256_setzero_ps();
  5959. for (int i = 0; i < nb; ++i) {
  5960. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5961. const uint16_t * restrict q2 = x[i].qs;
  5962. const int8_t * restrict q8 = y[i].qs;
  5963. __m256i sumi1 = _mm256_setzero_si256();
  5964. __m256i sumi2 = _mm256_setzero_si256();
  5965. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  5966. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5967. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  5968. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  5969. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  5970. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  5971. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  5972. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  5973. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  5974. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  5975. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  5976. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  5977. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  5978. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  5979. const uint16_t ls1 = aux32[1] >> 28;
  5980. const uint16_t ls2 = aux32[3] >> 28;
  5981. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  5982. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  5983. sumi1 = _mm256_add_epi32(sumi1, p1);
  5984. sumi2 = _mm256_add_epi32(sumi2, p2);
  5985. }
  5986. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  5987. }
  5988. *s = 0.125f * hsum_float_8(accumf);
  5989. #elif defined(__AVX__)
  5990. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  5991. uint32_t aux32[4];
  5992. const uint8_t * aux8 = (const uint8_t *)aux32;
  5993. __m256 accumf = _mm256_setzero_ps();
  5994. for (int i = 0; i < nb; ++i) {
  5995. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5996. const uint16_t * restrict q2 = x[i].qs;
  5997. const int8_t * restrict q8 = y[i].qs;
  5998. __m128i sumi1_0 = _mm_setzero_si128();
  5999. __m128i sumi1_1 = _mm_setzero_si128();
  6000. __m128i sumi2_0 = _mm_setzero_si128();
  6001. __m128i sumi2_1 = _mm_setzero_si128();
  6002. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6003. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6004. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6005. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6006. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6007. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6008. const __m128i q2_1_0 = _mm_set_epi64x(iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6009. const __m128i q2_1_1 = _mm_set_epi64x(iq2xxs_grid[aux8[3]], iq2xxs_grid[aux8[2]]);
  6010. const __m128i q2_2_0 = _mm_set_epi64x(iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6011. const __m128i q2_2_1 = _mm_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]]);
  6012. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6013. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  6014. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6015. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127]);
  6016. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  6017. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  6018. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  6019. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  6020. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6021. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6022. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6023. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6024. const uint16_t ls1 = aux32[1] >> 28;
  6025. const uint16_t ls2 = aux32[3] >> 28;
  6026. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  6027. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  6028. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  6029. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  6030. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6031. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6032. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6033. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6034. }
  6035. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6036. }
  6037. *s = 0.125f * hsum_float_8(accumf);
  6038. #elif defined(__POWER9_VECTOR__)
  6039. const vector int v0 = vec_splats((int32_t)0);
  6040. vector float vsumf0 = vec_splats(0.0f);
  6041. vector float vsumf1 = vec_splats(0.0f);
  6042. vector float vsumf2 = vec_splats(0.0f);
  6043. vector float vsumf3 = vec_splats(0.0f);
  6044. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6045. for (int i = 0; i < nb; ++i) {
  6046. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6047. vector float vyd = vec_splats(y[i].d);
  6048. vector float vd = vec_mul(vxd, vyd);
  6049. vector signed int vsumi0 = v0;
  6050. vector signed int vsumi1 = v0;
  6051. vector signed int vsumi2 = v0;
  6052. vector signed int vsumi3 = v0;
  6053. const uint16_t * restrict q2 = x[i].qs;
  6054. const int8_t * restrict q8 = y[i].qs;
  6055. for (int j = 0; j < QK_K/32; j += 2) {
  6056. __builtin_prefetch(q2, 0, 1);
  6057. __builtin_prefetch(q8, 0, 1);
  6058. uint32_t aux32[4];
  6059. const uint8_t * aux8 = (const uint8_t *)aux32;
  6060. memcpy(aux32, q2, 4*sizeof(uint32_t));
  6061. q2 += 8;
  6062. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xxs_grid + aux8[ 0]), *(const int64_t *)(iq2xxs_grid + aux8[ 1])};
  6063. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xxs_grid + aux8[ 2]), *(const int64_t *)(iq2xxs_grid + aux8[ 3])};
  6064. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xxs_grid + aux8[ 8]), *(const int64_t *)(iq2xxs_grid + aux8[ 9])};
  6065. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xxs_grid + aux8[10]), *(const int64_t *)(iq2xxs_grid + aux8[11])};
  6066. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((aux32[1] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 7) & 127))};
  6067. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((aux32[1] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[1] >> 21) & 127))};
  6068. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((aux32[3] >> 0) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 7) & 127))};
  6069. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((aux32[3] >> 14) & 127)), *(const int64_t *)(signs64 + ((aux32[3] >> 21) & 127))};
  6070. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6071. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6072. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6073. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6074. vector signed char q8y0 = vec_xl( 0, q8);
  6075. vector signed char q8y1 = vec_xl(16, q8);
  6076. vector signed char q8y2 = vec_xl(32, q8);
  6077. vector signed char q8y3 = vec_xl(48, q8);
  6078. q8 += 64;
  6079. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6080. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6081. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6082. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6083. const uint16_t ls0 = aux32[1] >> 28;
  6084. const uint16_t ls1 = aux32[3] >> 28;
  6085. vector signed short vscales01 = vec_splats((int16_t)(2*ls0+1));
  6086. vector signed short vscales23 = vec_splats((int16_t)(2*ls1+1));
  6087. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  6088. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  6089. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  6090. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  6091. }
  6092. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6093. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6094. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6095. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6096. }
  6097. vsumf0 = vec_add(vsumf0, vsumf2);
  6098. vsumf1 = vec_add(vsumf1, vsumf3);
  6099. vsumf0 = vec_add(vsumf0, vsumf1);
  6100. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6101. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6102. *s = 0.125f * vec_extract(vsumf0, 0);
  6103. #elif defined(__loongarch_asx)
  6104. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6105. uint32_t aux32[4];
  6106. const uint8_t * aux8 = (const uint8_t *)aux32;
  6107. __m256 accumf = (__m256)__lasx_xvldi(0);
  6108. for (int i = 0; i < nb; ++i) {
  6109. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6110. const uint16_t * restrict q2 = x[i].qs;
  6111. const int8_t * restrict q8 = y[i].qs;
  6112. __m256i sumi1 = __lasx_xvldi(0);
  6113. __m256i sumi2 = __lasx_xvldi(0);
  6114. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6115. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6116. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6117. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  6118. const __m256i q2_1 = lasx_set_d(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  6119. const __m256i q2_2 = lasx_set_d(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  6120. const __m256i s2_1 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  6121. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  6122. const __m256i s2_2 = lasx_set_d(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  6123. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  6124. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  6125. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  6126. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6127. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6128. const uint16_t ls1 = aux32[1] >> 28;
  6129. const uint16_t ls2 = aux32[3] >> 28;
  6130. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  6131. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  6132. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6133. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6134. }
  6135. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6136. }
  6137. *s = 0.125f * hsum_float_8(accumf);
  6138. #else
  6139. uint32_t aux32[2];
  6140. const uint8_t * aux8 = (const uint8_t *)aux32;
  6141. float sumf = 0.f;
  6142. for (int i = 0; i < nb; ++i) {
  6143. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6144. const uint16_t * restrict q2 = x[i].qs;
  6145. const int8_t * restrict q8 = y[i].qs;
  6146. int32_t bsum = 0;
  6147. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6148. memcpy(aux32, q2, 2*sizeof(uint32_t));
  6149. q2 += 4;
  6150. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  6151. int32_t sumi = 0;
  6152. for (int l = 0; l < 4; ++l) {
  6153. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  6154. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  6155. for (int j = 0; j < 8; ++j) {
  6156. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6157. }
  6158. q8 += 8;
  6159. }
  6160. bsum += sumi * ls;
  6161. }
  6162. sumf += d * bsum;
  6163. }
  6164. *s = 0.125f * sumf;
  6165. #endif
  6166. }
  6167. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6168. assert(n % QK_K == 0);
  6169. assert(nrc == 1);
  6170. UNUSED(nrc);
  6171. UNUSED(bx);
  6172. UNUSED(by);
  6173. UNUSED(bs);
  6174. const block_iq2_xs * restrict x = vx;
  6175. const block_q8_K * restrict y = vy;
  6176. const int nb = n / QK_K;
  6177. #if defined(__ARM_NEON)
  6178. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6179. ggml_int8x16x4_t q2u;
  6180. ggml_int8x16x4_t q2s;
  6181. ggml_int8x16x4_t q8b;
  6182. int32x4x4_t scales32;
  6183. float sumf = 0;
  6184. for (int i = 0; i < nb; ++i) {
  6185. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6186. const uint16_t * restrict q2 = x[i].qs;
  6187. const int8_t * restrict q8 = y[i].qs;
  6188. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  6189. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  6190. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  6191. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  6192. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  6193. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  6194. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  6195. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  6196. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  6197. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  6198. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  6199. int32x4_t sumi = vdupq_n_s32(0);
  6200. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  6201. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6202. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  6203. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  6204. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  6205. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  6206. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  6207. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  6208. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  6209. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  6210. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  6211. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  6212. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  6213. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  6214. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  6215. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  6216. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  6217. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  6218. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  6219. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  6220. q2 += 8;
  6221. }
  6222. sumf += d*vaddvq_s32(sumi);
  6223. }
  6224. *s = 0.125f * sumf;
  6225. #elif defined(__AVX2__)
  6226. const __m256i mone = _mm256_set1_epi8(1);
  6227. static const char block_sign_shuffle_mask_1[32] = {
  6228. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6229. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6230. };
  6231. static const char block_sign_shuffle_mask_2[32] = {
  6232. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6233. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6234. };
  6235. static const uint8_t bit_selector_mask_bytes[32] = {
  6236. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6237. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6238. };
  6239. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  6240. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  6241. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  6242. static const uint8_t k_bit_helper[32] = {
  6243. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6244. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6245. };
  6246. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  6247. const __m256i m511 = _mm256_set1_epi16(511);
  6248. const __m128i m4 = _mm_set1_epi8(0xf);
  6249. const __m128i m1 = _mm_set1_epi8(1);
  6250. uint64_t aux64;
  6251. // somewhat hacky, but gives a significant boost in performance
  6252. __m256i aux_gindex;
  6253. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6254. __m256 accumf = _mm256_setzero_ps();
  6255. for (int i = 0; i < nb; ++i) {
  6256. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6257. const uint16_t * restrict q2 = x[i].qs;
  6258. const int8_t * restrict q8 = y[i].qs;
  6259. memcpy(&aux64, x[i].scales, 8);
  6260. __m128i stmp = _mm_set1_epi64x(aux64);
  6261. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6262. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6263. __m256i sumi1 = _mm256_setzero_si256();
  6264. __m256i sumi2 = _mm256_setzero_si256();
  6265. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6266. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  6267. aux_gindex = _mm256_and_si256(q2_data, m511);
  6268. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  6269. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  6270. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  6271. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  6272. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  6273. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6274. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6275. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6276. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6277. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6278. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6279. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6280. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6281. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6282. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6283. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6284. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6285. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  6286. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  6287. const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l);
  6288. const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h);
  6289. __m256i signs;
  6290. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  6291. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6292. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  6293. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  6294. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6295. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  6296. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  6297. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6298. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  6299. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  6300. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  6301. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  6302. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  6303. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  6304. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  6305. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  6306. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  6307. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  6308. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  6309. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  6310. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  6311. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  6312. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  6313. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  6314. }
  6315. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6316. }
  6317. *s = 0.125f * hsum_float_8(accumf);
  6318. #elif defined(__AVX__)
  6319. const __m128i mone = _mm_set1_epi8(1);
  6320. static const char block_sign_shuffle_mask_1[32] = {
  6321. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6322. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6323. };
  6324. static const char block_sign_shuffle_mask_2[32] = {
  6325. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6326. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6327. };
  6328. static const uint8_t bit_selector_mask_bytes[32] = {
  6329. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6330. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6331. };
  6332. const __m128i bit_selector_mask_0 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes);
  6333. const __m128i bit_selector_mask_1 = _mm_loadu_si128((const __m128i*)bit_selector_mask_bytes + 1);
  6334. const __m128i block_sign_shuffle_1_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1);
  6335. const __m128i block_sign_shuffle_1_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_1 + 1);
  6336. const __m128i block_sign_shuffle_2_0 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2);
  6337. const __m128i block_sign_shuffle_2_1 = _mm_loadu_si128((const __m128i*)block_sign_shuffle_mask_2 + 1);
  6338. static const uint8_t k_bit_helper[32] = {
  6339. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6340. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6341. };
  6342. const __m128i bit_helper_0 = _mm_loadu_si128((const __m128i*)k_bit_helper);
  6343. const __m128i bit_helper_1 = _mm_loadu_si128((const __m128i*)k_bit_helper + 1);
  6344. const __m128i m511 = _mm_set1_epi16(511);
  6345. const __m128i m4 = _mm_set1_epi8(0xf);
  6346. const __m128i m1 = _mm_set1_epi8(1);
  6347. uint64_t aux64;
  6348. // somewhat hacky, but gives a significant boost in performance
  6349. __m256i aux_gindex;
  6350. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6351. __m256 accumf = _mm256_setzero_ps();
  6352. for (int i = 0; i < nb; ++i) {
  6353. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6354. const uint16_t * restrict q2 = x[i].qs;
  6355. const int8_t * restrict q8 = y[i].qs;
  6356. memcpy(&aux64, x[i].scales, 8);
  6357. __m128i stmp = _mm_set1_epi64x(aux64);
  6358. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  6359. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  6360. __m128i sumi1_0 = _mm_setzero_si128();
  6361. __m128i sumi1_1 = _mm_setzero_si128();
  6362. __m128i sumi2_0 = _mm_setzero_si128();
  6363. __m128i sumi2_1 = _mm_setzero_si128();
  6364. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6365. const __m128i q2_data_0 = _mm_loadu_si128((const __m128i*)q2);
  6366. const __m128i q2_data_1 = _mm_loadu_si128((const __m128i*)q2 + 1); q2 += 16;
  6367. aux_gindex = MM256_SET_M128I(_mm_and_si128(q2_data_1, m511), _mm_and_si128(q2_data_0, m511));
  6368. const __m128i partial_sign_bits_0 = _mm_srli_epi16(q2_data_0, 9);
  6369. const __m128i partial_sign_bits_1 = _mm_srli_epi16(q2_data_1, 9);
  6370. const __m128i partial_sign_bits_upper_0 = _mm_srli_epi16(q2_data_0, 13);
  6371. const __m128i partial_sign_bits_upper_1 = _mm_srli_epi16(q2_data_1, 13);
  6372. const __m128i partial_sign_bits_for_counting_0 = _mm_xor_si128(partial_sign_bits_0, partial_sign_bits_upper_0);
  6373. const __m128i partial_sign_bits_for_counting_1 = _mm_xor_si128(partial_sign_bits_1, partial_sign_bits_upper_1);
  6374. const __m128i odd_bits_0 = _mm_shuffle_epi8(bit_helper_0, partial_sign_bits_for_counting_0);
  6375. const __m128i odd_bits_1 = _mm_shuffle_epi8(bit_helper_1, partial_sign_bits_for_counting_1);
  6376. const __m128i full_sign_bits_0 = _mm_or_si128(partial_sign_bits_0, odd_bits_0);
  6377. const __m128i full_sign_bits_1 = _mm_or_si128(partial_sign_bits_1, odd_bits_1);
  6378. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6379. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6380. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6381. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6382. const __m128i q8_3_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6383. const __m128i q8_3_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6384. const __m128i q8_4_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6385. const __m128i q8_4_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6386. const __m128i q2_1_0 = _mm_set_epi64x(iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
  6387. const __m128i q2_1_1 = _mm_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]]);
  6388. const __m128i q2_2_0 = _mm_set_epi64x(iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
  6389. const __m128i q2_2_1 = _mm_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]]);
  6390. const __m128i q2_3_0 = _mm_set_epi64x(iq2xs_grid[gindex[9]], iq2xs_grid[gindex[8]]);
  6391. const __m128i q2_3_1 = _mm_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]]);
  6392. const __m128i q2_4_0 = _mm_set_epi64x(iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6393. const __m128i q2_4_1 = _mm_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]]);
  6394. // AVX2 full_signs_1 is full_sign_bits_0 here
  6395. // AVX2 full_signs_2 is full_sign_bits_1 here
  6396. __m128i signs_0, signs_1;
  6397. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_0);
  6398. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_1_1);
  6399. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6400. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6401. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, _mm_or_si128(signs_0, mone));
  6402. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, _mm_or_si128(signs_1, mone));
  6403. signs_0 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_0);
  6404. signs_1 = _mm_shuffle_epi8(full_sign_bits_0, block_sign_shuffle_2_1);
  6405. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6406. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6407. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, _mm_or_si128(signs_0, mone));
  6408. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, _mm_or_si128(signs_1, mone));
  6409. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_0);
  6410. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_1_1);
  6411. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6412. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6413. const __m128i q8s_3_0 = _mm_sign_epi8(q8_3_0, _mm_or_si128(signs_0, mone));
  6414. const __m128i q8s_3_1 = _mm_sign_epi8(q8_3_1, _mm_or_si128(signs_1, mone));
  6415. signs_0 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_0);
  6416. signs_1 = _mm_shuffle_epi8(full_sign_bits_1, block_sign_shuffle_2_1);
  6417. signs_0 = _mm_cmpeq_epi8(_mm_and_si128(signs_0, bit_selector_mask_0), bit_selector_mask_0);
  6418. signs_1 = _mm_cmpeq_epi8(_mm_and_si128(signs_1, bit_selector_mask_1), bit_selector_mask_1);
  6419. const __m128i q8s_4_0 = _mm_sign_epi8(q8_4_0, _mm_or_si128(signs_0, mone));
  6420. const __m128i q8s_4_1 = _mm_sign_epi8(q8_4_1, _mm_or_si128(signs_1, mone));
  6421. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6422. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6423. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6424. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6425. const __m128i dot3_0 = _mm_maddubs_epi16(q2_3_0, q8s_3_0);
  6426. const __m128i dot3_1 = _mm_maddubs_epi16(q2_3_1, q8s_3_1);
  6427. const __m128i dot4_0 = _mm_maddubs_epi16(q2_4_0, q8s_4_0);
  6428. const __m128i dot4_1 = _mm_maddubs_epi16(q2_4_1, q8s_4_1);
  6429. __m128i sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0));
  6430. const __m128i sc1_0 = _mm_cvtepi8_epi16(sc_tmp);
  6431. const __m128i sc1_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6432. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1));
  6433. const __m128i sc2_0 = _mm_cvtepi8_epi16(sc_tmp);
  6434. const __m128i sc2_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6435. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2));
  6436. const __m128i sc3_0 = _mm_cvtepi8_epi16(sc_tmp);
  6437. const __m128i sc3_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6438. sc_tmp = _mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3));
  6439. const __m128i sc4_0 = _mm_cvtepi8_epi16(sc_tmp);
  6440. const __m128i sc4_1 = _mm_cvtepi8_epi16(_mm_srli_si128(sc_tmp, 8));
  6441. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot1_0, sc1_0));
  6442. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot1_1, sc1_1));
  6443. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot2_0, sc2_0));
  6444. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot2_1, sc2_1));
  6445. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_madd_epi16(dot3_0, sc3_0));
  6446. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_madd_epi16(dot3_1, sc3_1));
  6447. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_madd_epi16(dot4_0, sc4_0));
  6448. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_madd_epi16(dot4_1, sc4_1));
  6449. }
  6450. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6451. }
  6452. *s = 0.125f * hsum_float_8(accumf);
  6453. #elif defined(__loongarch_asx)
  6454. const __m256i mone = __lasx_xvreplgr2vr_b(1);
  6455. static const char block_sign_shuffle_mask_1[32] = {
  6456. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  6457. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  6458. };
  6459. static const char block_sign_shuffle_mask_2[32] = {
  6460. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  6461. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  6462. };
  6463. static const uint8_t bit_selector_mask_bytes[32] = {
  6464. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6465. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6466. };
  6467. const __m256i bit_selector_mask = __lasx_xvld((const __m256i*)bit_selector_mask_bytes, 0);
  6468. const __m256i block_sign_shuffle_1 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_1, 0);
  6469. const __m256i block_sign_shuffle_2 = __lasx_xvld((const __m256i*)block_sign_shuffle_mask_2, 0);
  6470. static const uint8_t k_bit_helper[32] = {
  6471. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6472. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  6473. };
  6474. const __m256i bit_helper = __lasx_xvld((const __m256i*)k_bit_helper, 0);
  6475. const __m256i m511 = __lasx_xvreplgr2vr_h(511);
  6476. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6477. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6478. uint64_t aux64;
  6479. // somewhat hacky, but gives a significant boost in performance
  6480. __m256i aux_gindex;
  6481. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  6482. __m256 accumf = (__m256)__lasx_xvldi(0);
  6483. for (int i = 0; i < nb; ++i) {
  6484. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6485. const uint16_t * restrict q2 = x[i].qs;
  6486. const int8_t * restrict q8 = y[i].qs;
  6487. memcpy(&aux64, x[i].scales, 8);
  6488. __m128i stmp = __lsx_vreplgr2vr_d(aux64);
  6489. stmp = __lsx_vilvl_b( __lsx_vand_v(__lsx_vsrli_h(stmp, 4), m4), __lsx_vand_v(stmp, m4));
  6490. const __m128i scales = __lsx_vadd_b(__lsx_vslli_h(stmp, 1), m1);
  6491. __m256i sumi1 = __lasx_xvldi(0);
  6492. __m256i sumi2 = __lasx_xvldi(0);
  6493. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  6494. const __m256i q2_data = __lasx_xvld((const __m256i*)q2, 0); q2 += 16;
  6495. aux_gindex = __lasx_xvand_v(q2_data, m511);
  6496. const __m256i partial_sign_bits = __lasx_xvsrli_h(q2_data, 9);
  6497. const __m256i partial_sign_bits_upper = __lasx_xvsrli_h(q2_data, 13);
  6498. const __m256i partial_sign_bits_for_counting = __lasx_xvxor_v(partial_sign_bits, partial_sign_bits_upper);
  6499. const __m256i odd_bits = lasx_shuffle_b(bit_helper, partial_sign_bits_for_counting);
  6500. const __m256i full_sign_bits = __lasx_xvor_v(partial_sign_bits, odd_bits);
  6501. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6502. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6503. const __m256i q8_3 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6504. const __m256i q8_4 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6505. const __m256i q2_1 = lasx_set_d(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  6506. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  6507. const __m256i q2_2 = lasx_set_d(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  6508. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  6509. const __m256i q2_3 = lasx_set_d(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  6510. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  6511. const __m256i q2_4 = lasx_set_d(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  6512. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  6513. const __m128i full_signs_l = lasx_extracti128(full_sign_bits, 0);
  6514. const __m128i full_signs_h = lasx_extracti128(full_sign_bits, 1);
  6515. const __m256i full_signs_1 = lasx_insertf128(full_signs_l, full_signs_l);
  6516. const __m256i full_signs_2 = lasx_insertf128(full_signs_h, full_signs_h);
  6517. __m256i signs;
  6518. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_1);
  6519. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6520. const __m256i q8s_1 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_1);
  6521. signs = lasx_shuffle_b(full_signs_1, block_sign_shuffle_2);
  6522. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6523. const __m256i q8s_2 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_2);
  6524. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_1);
  6525. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6526. const __m256i q8s_3 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_3);
  6527. signs = lasx_shuffle_b(full_signs_2, block_sign_shuffle_2);
  6528. signs = __lasx_xvseq_b(__lasx_xvand_v(signs, bit_selector_mask), bit_selector_mask);
  6529. const __m256i q8s_4 = __lasx_xvsigncov_b(__lasx_xvor_v(signs, mone), q8_4);
  6530. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  6531. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  6532. const __m256i dot3 = lasx_maddubs_h(q2_3, q8s_3);
  6533. const __m256i dot4 = lasx_maddubs_h(q2_4, q8s_4);
  6534. const __m256i sc1 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+0)));
  6535. const __m256i sc2 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+1)));
  6536. const __m256i sc3 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+2)));
  6537. const __m256i sc4 = lasx_ext8_16(lsx_shuffle_b(scales, get_scale_shuffle(ib32+3)));
  6538. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot1, sc1));
  6539. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot2, sc2));
  6540. sumi1 = __lasx_xvadd_w(sumi1, lasx_madd_h(dot3, sc3));
  6541. sumi2 = __lasx_xvadd_w(sumi2, lasx_madd_h(dot4, sc4));
  6542. }
  6543. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6544. }
  6545. *s = 0.125f * hsum_float_8(accumf);
  6546. #elif defined(__POWER9_VECTOR__)
  6547. const vector int v0 = vec_splats((int32_t)0);
  6548. vector float vsumf0 = vec_splats(0.0f);
  6549. vector float vsumf1 = vec_splats(0.0f);
  6550. vector float vsumf2 = vec_splats(0.0f);
  6551. vector float vsumf3 = vec_splats(0.0f);
  6552. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  6553. for (int i = 0; i < nb; ++i) {
  6554. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6555. vector float vyd = vec_splats(y[i].d);
  6556. vector float vd = vec_mul(vxd, vyd);
  6557. vector signed int vsumi0 = v0;
  6558. vector signed int vsumi1 = v0;
  6559. vector signed int vsumi2 = v0;
  6560. vector signed int vsumi3 = v0;
  6561. const uint16_t * restrict q2 = x[i].qs;
  6562. const uint8_t * restrict sc = x[i].scales;
  6563. const int8_t * restrict q8 = y[i].qs;
  6564. for (int j = 0; j < QK_K/64; ++j) {
  6565. __builtin_prefetch(q2, 0, 1);
  6566. __builtin_prefetch(q8, 0, 1);
  6567. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2xs_grid + (q2[0] & 511)), *(const int64_t *)(iq2xs_grid + (q2[1] & 511))};
  6568. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2xs_grid + (q2[2] & 511)), *(const int64_t *)(iq2xs_grid + (q2[3] & 511))};
  6569. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2xs_grid + (q2[4] & 511)), *(const int64_t *)(iq2xs_grid + (q2[5] & 511))};
  6570. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2xs_grid + (q2[6] & 511)), *(const int64_t *)(iq2xs_grid + (q2[7] & 511))};
  6571. vector signed long long vsigns0 = {*(const int64_t *)(signs64 + ((q2[0] >> 9))), *(const int64_t *)(signs64 + ((q2[1] >> 9)))};
  6572. vector signed long long vsigns1 = {*(const int64_t *)(signs64 + ((q2[2] >> 9))), *(const int64_t *)(signs64 + ((q2[3] >> 9)))};
  6573. vector signed long long vsigns2 = {*(const int64_t *)(signs64 + ((q2[4] >> 9))), *(const int64_t *)(signs64 + ((q2[5] >> 9)))};
  6574. vector signed long long vsigns3 = {*(const int64_t *)(signs64 + ((q2[6] >> 9))), *(const int64_t *)(signs64 + ((q2[7] >> 9)))};
  6575. q2 += 8;
  6576. vector signed char q2x0 = (vector signed char)vec_mul((vector signed char)vsigns0, (vector signed char)aux64x2_0);
  6577. vector signed char q2x1 = (vector signed char)vec_mul((vector signed char)vsigns1, (vector signed char)aux64x2_1);
  6578. vector signed char q2x2 = (vector signed char)vec_mul((vector signed char)vsigns2, (vector signed char)aux64x2_2);
  6579. vector signed char q2x3 = (vector signed char)vec_mul((vector signed char)vsigns3, (vector signed char)aux64x2_3);
  6580. vector signed char q8y0 = vec_xl( 0, q8);
  6581. vector signed char q8y1 = vec_xl(16, q8);
  6582. vector signed char q8y2 = vec_xl(32, q8);
  6583. vector signed char q8y3 = vec_xl(48, q8);
  6584. q8 += 64;
  6585. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6586. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6587. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6588. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6589. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6590. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6591. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6592. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6593. sc += 2;
  6594. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6595. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6596. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6597. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6598. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6599. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6600. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6601. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6602. }
  6603. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6604. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6605. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6606. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6607. }
  6608. vsumf0 = vec_add(vsumf0, vsumf2);
  6609. vsumf1 = vec_add(vsumf1, vsumf3);
  6610. vsumf0 = vec_add(vsumf0, vsumf1);
  6611. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6612. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6613. *s = 0.125f * vec_extract(vsumf0, 0);
  6614. #else
  6615. float sumf = 0.f;
  6616. for (int i = 0; i < nb; ++i) {
  6617. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6618. const uint16_t * restrict q2 = x[i].qs;
  6619. const uint8_t * restrict sc = x[i].scales;
  6620. const int8_t * restrict q8 = y[i].qs;
  6621. int32_t bsum = 0;
  6622. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  6623. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  6624. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  6625. int32_t sumi = 0;
  6626. for (int l = 0; l < 2; ++l) {
  6627. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6628. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6629. for (int j = 0; j < 8; ++j) {
  6630. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6631. }
  6632. q8 += 8;
  6633. }
  6634. bsum += sumi * ls1;
  6635. sumi = 0;
  6636. for (int l = 2; l < 4; ++l) {
  6637. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  6638. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  6639. for (int j = 0; j < 8; ++j) {
  6640. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  6641. }
  6642. q8 += 8;
  6643. }
  6644. bsum += sumi * ls2;
  6645. q2 += 4;
  6646. }
  6647. sumf += d * bsum;
  6648. }
  6649. *s = 0.125f * sumf;
  6650. #endif
  6651. }
  6652. void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6653. assert(n % QK_K == 0);
  6654. assert(nrc == 1);
  6655. UNUSED(nrc);
  6656. UNUSED(bx);
  6657. UNUSED(by);
  6658. UNUSED(bs);
  6659. const block_iq2_s * restrict x = vx;
  6660. const block_q8_K * restrict y = vy;
  6661. const int nb = n / QK_K;
  6662. #if defined(__ARM_NEON)
  6663. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6664. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6665. };
  6666. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6667. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  6668. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  6669. const uint8x16_t m1 = vdupq_n_u8(1);
  6670. const int32x4_t vzero = vdupq_n_s32(0);
  6671. uint8x16x2_t vs;
  6672. ggml_int8x16x4_t q2s;
  6673. ggml_int8x16x4_t q8b;
  6674. float sumf = 0;
  6675. for (int i = 0; i < nb; ++i) {
  6676. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6677. const uint8_t * restrict qs = x[i].qs;
  6678. const uint8_t * restrict qh = x[i].qh;
  6679. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6680. const int8_t * restrict q8 = y[i].qs;
  6681. int sumi1 = 0, sumi2 = 0;
  6682. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6683. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  6684. q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))),
  6685. vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300)))));
  6686. q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))),
  6687. vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300)))));
  6688. q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))),
  6689. vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300)))));
  6690. q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))),
  6691. vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300)))));
  6692. qs += 8;
  6693. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  6694. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6695. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6696. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6697. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6698. q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]);
  6699. q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]);
  6700. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  6701. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  6702. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  6703. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  6704. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  6705. signs += 4;
  6706. q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]);
  6707. q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]);
  6708. const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]);
  6709. const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]);
  6710. const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]);
  6711. const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]);
  6712. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf));
  6713. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4));
  6714. sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf));
  6715. sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4));
  6716. }
  6717. sumf += d*(sumi1 + sumi2);
  6718. }
  6719. *s = 0.125f * sumf;
  6720. #elif defined(__AVX2__)
  6721. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6722. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6723. };
  6724. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6725. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6726. };
  6727. const __m128i m4 = _mm_set1_epi8(0xf);
  6728. const __m128i m1 = _mm_set1_epi8(1);
  6729. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  6730. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  6731. uint64_t aux64;
  6732. __m256 accumf = _mm256_setzero_ps();
  6733. for (int i = 0; i < nb; ++i) {
  6734. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6735. const uint8_t * restrict qs = x[i].qs;
  6736. const uint8_t * restrict qh = x[i].qh;
  6737. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6738. const int8_t * restrict q8 = y[i].qs;
  6739. memcpy(&aux64, x[i].scales, 8);
  6740. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6741. const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6742. __m256i sumi1 = _mm256_setzero_si256();
  6743. __m256i sumi2 = _mm256_setzero_si256();
  6744. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6745. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6746. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  6747. const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6748. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6749. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6750. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6751. const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6752. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6753. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6754. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6755. qs += 8;
  6756. __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6757. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6758. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  6759. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  6760. aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6761. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  6762. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  6763. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  6764. signs += 4;
  6765. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6766. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6767. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0)));
  6768. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1)));
  6769. sumi1 = _mm256_add_epi32(sumi1, p1);
  6770. sumi2 = _mm256_add_epi32(sumi2, p2);
  6771. }
  6772. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  6773. }
  6774. *s = 0.125f * hsum_float_8(accumf);
  6775. #elif defined(__AVX__)
  6776. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6777. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6778. };
  6779. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6780. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6781. };
  6782. const __m128i m4 = _mm_set1_epi8(0xf);
  6783. const __m128i m1 = _mm_set1_epi8(1);
  6784. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  6785. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  6786. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  6787. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  6788. uint64_t aux64;
  6789. __m256 accumf = _mm256_setzero_ps();
  6790. for (int i = 0; i < nb; ++i) {
  6791. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6792. const uint8_t * restrict qs = x[i].qs;
  6793. const uint8_t * restrict qh = x[i].qh;
  6794. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6795. const int8_t * restrict q8 = y[i].qs;
  6796. memcpy(&aux64, x[i].scales, 8);
  6797. const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1);
  6798. const __m128i scales16_0 = _mm_cvtepi8_epi16(scales8);
  6799. const __m128i scales16_1 = _mm_cvtepi8_epi16(_mm_srli_si128(scales8, 8));
  6800. __m128i sumi1_0 = _mm_setzero_si128();
  6801. __m128i sumi1_1 = _mm_setzero_si128();
  6802. __m128i sumi2_0 = _mm_setzero_si128();
  6803. __m128i sumi2_1 = _mm_setzero_si128();
  6804. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6805. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6806. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6807. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6808. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  6809. const __m128i q2_1_0 = _mm_set_epi64x(iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6810. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6811. const __m128i q2_1_1 = _mm_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6812. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)]);
  6813. const __m128i q2_2_0 = _mm_set_epi64x(iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6814. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6815. const __m128i q2_2_1 = _mm_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6816. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)]);
  6817. qs += 8;
  6818. __m128i aux128_0 = _mm_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16));
  6819. __m128i aux128_1 = aux128_0;
  6820. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6821. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6822. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6823. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6824. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  6825. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  6826. aux128_0 = _mm_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16));
  6827. aux128_1 = aux128_0;
  6828. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  6829. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  6830. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  6831. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  6832. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  6833. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  6834. signs += 4;
  6835. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  6836. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  6837. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  6838. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  6839. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 0)));
  6840. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+0), 1)));
  6841. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_shuffle_epi8(scales16_0, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 0)));
  6842. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_shuffle_epi8(scales16_1, _mm256_extractf128_si256(get_scale_shuffle_k4(ib32+1), 1)));
  6843. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  6844. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  6845. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  6846. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  6847. }
  6848. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  6849. }
  6850. *s = 0.125f * hsum_float_8(accumf);
  6851. #elif defined(__POWER9_VECTOR__)
  6852. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6853. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6854. };
  6855. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  6856. const vector int v0 = vec_splats((int32_t)0);
  6857. vector float vsumf0 = vec_splats(0.0f);
  6858. vector float vsumf1 = vec_splats(0.0f);
  6859. vector float vsumf2 = vec_splats(0.0f);
  6860. vector float vsumf3 = vec_splats(0.0f);
  6861. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  6862. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  6863. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  6864. for (int i = 0; i < nb; ++i) {
  6865. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  6866. vector float vyd = vec_splats(y[i].d);
  6867. vector float vd = vec_mul(vxd, vyd);
  6868. vector signed int vsumi0 = v0;
  6869. vector signed int vsumi1 = v0;
  6870. vector signed int vsumi2 = v0;
  6871. vector signed int vsumi3 = v0;
  6872. const uint8_t * restrict q2 = x[i].qs;
  6873. const uint8_t * restrict qh = x[i].qh;
  6874. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6875. const uint8_t * restrict sc = x[i].scales;
  6876. const int8_t * restrict q8 = y[i].qs;
  6877. for (int j = 0; j < QK_K/32; j += 2) {
  6878. __builtin_prefetch(q2, 0, 1);
  6879. __builtin_prefetch(q8, 0, 1);
  6880. vector signed long long aux64x2_0 = {*(const int64_t *)(iq2s_grid + (q2[0] | ((qh[0] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[1] | ((qh[0] << 6) & 0x300)))};
  6881. vector signed long long aux64x2_1 = {*(const int64_t *)(iq2s_grid + (q2[2] | ((qh[0] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[3] | ((qh[0] << 2) & 0x300)))};
  6882. vector signed long long aux64x2_2 = {*(const int64_t *)(iq2s_grid + (q2[4] | ((qh[1] << 8) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[5] | ((qh[1] << 6) & 0x300)))};
  6883. vector signed long long aux64x2_3 = {*(const int64_t *)(iq2s_grid + (q2[6] | ((qh[1] << 4) & 0x300))), *(const int64_t *)(iq2s_grid + (q2[7] | ((qh[1] << 2) & 0x300)))};
  6884. q2 += 8;
  6885. qh += 2;
  6886. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  6887. vector signed char vsigns23 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  6888. signs += 4;
  6889. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  6890. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  6891. vector signed char vsigns2 = vec_perm(vsigns23, vsigns23, mask0);
  6892. vector signed char vsigns3 = vec_perm(vsigns23, vsigns23, mask1);
  6893. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  6894. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  6895. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  6896. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  6897. vector signed char q2x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux64x2_0), vsigns0);
  6898. vector signed char q2x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux64x2_1), vsigns1);
  6899. vector signed char q2x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux64x2_2), vsigns2);
  6900. vector signed char q2x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux64x2_3), vsigns3);
  6901. vector signed char q8y0 = vec_xl( 0, q8);
  6902. vector signed char q8y1 = vec_xl(16, q8);
  6903. vector signed char q8y2 = vec_xl(32, q8);
  6904. vector signed char q8y3 = vec_xl(48, q8);
  6905. q8 += 64;
  6906. vector signed short qv0 = vec_add(vec_mule(q2x0, q8y0), vec_mulo(q2x0, q8y0));
  6907. vector signed short qv1 = vec_add(vec_mule(q2x1, q8y1), vec_mulo(q2x1, q8y1));
  6908. vector signed short qv2 = vec_add(vec_mule(q2x2, q8y2), vec_mulo(q2x2, q8y2));
  6909. vector signed short qv3 = vec_add(vec_mule(q2x3, q8y3), vec_mulo(q2x3, q8y3));
  6910. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  6911. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  6912. const uint16_t ls2 = (uint16_t)(sc[1] & 0xf);
  6913. const uint16_t ls3 = (uint16_t)(sc[1] >> 4);
  6914. sc += 2;
  6915. vector signed short vscales0 = vec_splats((int16_t)(2*ls0+1));
  6916. vector signed short vscales1 = vec_splats((int16_t)(2*ls1+1));
  6917. vector signed short vscales2 = vec_splats((int16_t)(2*ls2+1));
  6918. vector signed short vscales3 = vec_splats((int16_t)(2*ls3+1));
  6919. vsumi0 = vec_msum(qv0, vscales0, vsumi0);
  6920. vsumi1 = vec_msum(qv1, vscales1, vsumi1);
  6921. vsumi2 = vec_msum(qv2, vscales2, vsumi2);
  6922. vsumi3 = vec_msum(qv3, vscales3, vsumi3);
  6923. }
  6924. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  6925. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  6926. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  6927. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  6928. }
  6929. vsumf0 = vec_add(vsumf0, vsumf2);
  6930. vsumf1 = vec_add(vsumf1, vsumf3);
  6931. vsumf0 = vec_add(vsumf0, vsumf1);
  6932. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  6933. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  6934. *s = 0.125f * vec_extract(vsumf0, 0);
  6935. #elif defined(__loongarch_asx)
  6936. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  6937. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  6938. };
  6939. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6940. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  6941. };
  6942. const __m128i m4 = __lsx_vreplgr2vr_b(0xf);
  6943. const __m128i m1 = __lsx_vreplgr2vr_b(1);
  6944. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  6945. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  6946. uint64_t aux64;
  6947. __m256 accumf = (__m256)__lasx_xvldi(0);
  6948. for (int i = 0; i < nb; ++i) {
  6949. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6950. const uint8_t * restrict qs = x[i].qs;
  6951. const uint8_t * restrict qh = x[i].qh;
  6952. const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8);
  6953. const int8_t * restrict q8 = y[i].qs;
  6954. __m128i tmp1;
  6955. memcpy(&aux64, x[i].scales, 8);
  6956. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64, 0);
  6957. tmp1 = __lsx_vinsgr2vr_d(tmp1, aux64 >> 4, 1);
  6958. const __m128i scales8 = __lsx_vadd_b(__lsx_vslli_h(__lsx_vand_v(tmp1, m4), 1), m1);
  6959. const __m256i scales16 = lasx_ext8_16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15
  6960. __m256i sumi1 = __lasx_xvldi(0);
  6961. __m256i sumi2 = __lasx_xvldi(0);
  6962. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  6963. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6964. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  6965. const __m256i q2_1 = lasx_set_d(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)],
  6966. iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)],
  6967. iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)],
  6968. iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]);
  6969. const __m256i q2_2 = lasx_set_d(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)],
  6970. iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)],
  6971. iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)],
  6972. iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]);
  6973. qs += 8;
  6974. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | ((uint32_t) signs[1] << 16));
  6975. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6976. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  6977. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  6978. aux256 = __lasx_xvreplgr2vr_w(signs[2] | ((uint32_t) signs[3] << 16));
  6979. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  6980. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  6981. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  6982. signs += 4;
  6983. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1
  6984. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3
  6985. const __m256i p1 = lasx_madd_h(dot1, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+0)));
  6986. const __m256i p2 = lasx_madd_h(dot2, lasx_shuffle_b(scales16, get_scale_shuffle_k4(ib32+1)));
  6987. sumi1 = __lasx_xvadd_w(sumi1, p1);
  6988. sumi2 = __lasx_xvadd_w(sumi2, p2);
  6989. }
  6990. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  6991. }
  6992. *s = 0.125f * hsum_float_8(accumf);
  6993. #else
  6994. float sumf = 0;
  6995. for (int i = 0; i < nb; i++) {
  6996. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6997. const int8_t * q8 = y[i].qs;
  6998. const uint8_t * qs = x[i].qs;
  6999. const uint8_t * qh = x[i].qh;
  7000. const uint8_t * signs = qs + QK_K/8;
  7001. int bsum = 0;
  7002. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7003. int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf);
  7004. int ls2 = 1 + 2*(x[i].scales[ib32] >> 4);
  7005. int sumi1 = 0, sumi2 = 0;
  7006. for (int l = 0; l < 2; ++l) {
  7007. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7008. for (int j = 0; j < 8; ++j) {
  7009. sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7010. }
  7011. q8 += 8;
  7012. }
  7013. for (int l = 2; l < 4; ++l) {
  7014. const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300)));
  7015. for (int j = 0; j < 8; ++j) {
  7016. sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1);
  7017. }
  7018. q8 += 8;
  7019. }
  7020. bsum += ls1 * sumi1 + ls2 * sumi2;
  7021. qs += 4;
  7022. signs += 4;
  7023. }
  7024. sumf += d * bsum;
  7025. }
  7026. *s = 0.125f * sumf;
  7027. #endif
  7028. }
  7029. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7030. assert(n % QK_K == 0);
  7031. assert(nrc == 1);
  7032. UNUSED(nrc);
  7033. UNUSED(bx);
  7034. UNUSED(by);
  7035. UNUSED(bs);
  7036. const block_iq3_xxs * restrict x = vx;
  7037. const block_q8_K * restrict y = vy;
  7038. const int nb = n / QK_K;
  7039. #if defined(__ARM_NEON)
  7040. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7041. uint32_t aux32[2];
  7042. ggml_int8x16x4_t q3s;
  7043. ggml_int8x16x4_t q8b;
  7044. float sumf = 0;
  7045. for (int i = 0; i < nb; ++i) {
  7046. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7047. const uint8_t * restrict q3 = x[i].qs;
  7048. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7049. const int8_t * restrict q8 = y[i].qs;
  7050. float sumf1 = 0, sumf2 = 0;
  7051. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7052. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7053. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7054. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7055. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7056. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7057. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7058. q3 += 16;
  7059. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7060. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7061. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7062. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7063. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7064. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7065. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7066. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7067. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7068. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7069. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7070. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7071. }
  7072. sumf += d*(sumf1 + sumf2);
  7073. }
  7074. *s = 0.5f * sumf;
  7075. #elif defined(__AVX2__)
  7076. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7077. uint32_t aux32[2];
  7078. __m256 accumf = _mm256_setzero_ps();
  7079. for (int i = 0; i < nb; ++i) {
  7080. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7081. const uint8_t * restrict q3 = x[i].qs;
  7082. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7083. const int8_t * restrict q8 = y[i].qs;
  7084. __m256i sumi1 = _mm256_setzero_si256();
  7085. __m256i sumi2 = _mm256_setzero_si256();
  7086. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7087. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7088. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7089. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7090. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7091. q3 += 8;
  7092. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7093. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7094. q3 += 8;
  7095. memcpy(aux32, gas, 8); gas += 8;
  7096. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7097. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7098. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7099. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7100. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7101. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7102. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7103. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7104. const uint16_t ls1 = aux32[0] >> 28;
  7105. const uint16_t ls2 = aux32[1] >> 28;
  7106. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7107. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7108. sumi1 = _mm256_add_epi32(sumi1, p1);
  7109. sumi2 = _mm256_add_epi32(sumi2, p2);
  7110. }
  7111. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7112. }
  7113. *s = 0.25f * hsum_float_8(accumf);
  7114. #elif defined(__AVX__)
  7115. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7116. uint32_t aux32[2];
  7117. __m256 accumf = _mm256_setzero_ps();
  7118. for (int i = 0; i < nb; ++i) {
  7119. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7120. const uint8_t * restrict q3 = x[i].qs;
  7121. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7122. const int8_t * restrict q8 = y[i].qs;
  7123. __m128i sumi1_0 = _mm_setzero_si128();
  7124. __m128i sumi1_1 = _mm_setzero_si128();
  7125. __m128i sumi2_0 = _mm_setzero_si128();
  7126. __m128i sumi2_1 = _mm_setzero_si128();
  7127. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7128. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7129. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7130. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7131. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7132. const __m128i q2_1_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7133. const __m128i q2_1_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7134. q3 += 8;
  7135. const __m128i q2_2_0 = _mm_set_epi32(iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7136. const __m128i q2_2_1 = _mm_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]]);
  7137. q3 += 8;
  7138. memcpy(aux32, gas, 8); gas += 8;
  7139. const __m128i s2_1_0 = _mm_set_epi64x(signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7140. const __m128i s2_1_1 = _mm_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127]);
  7141. const __m128i s2_2_0 = _mm_set_epi64x(signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7142. const __m128i s2_2_1 = _mm_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127]);
  7143. const __m128i q8s_1_0 = _mm_sign_epi8(q8_1_0, s2_1_0);
  7144. const __m128i q8s_1_1 = _mm_sign_epi8(q8_1_1, s2_1_1);
  7145. const __m128i q8s_2_0 = _mm_sign_epi8(q8_2_0, s2_2_0);
  7146. const __m128i q8s_2_1 = _mm_sign_epi8(q8_2_1, s2_2_1);
  7147. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7148. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7149. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7150. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7151. const uint16_t ls1 = aux32[0] >> 28;
  7152. const uint16_t ls2 = aux32[1] >> 28;
  7153. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7154. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7155. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7156. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7157. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7158. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7159. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7160. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7161. }
  7162. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7163. }
  7164. *s = 0.25f * hsum_float_8(accumf);
  7165. #elif defined(__POWER9_VECTOR__)
  7166. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7167. const vector int v0 = vec_splats((int32_t)0);
  7168. vector float vsumf0 = vec_splats(0.0f);
  7169. vector float vsumf1 = vec_splats(0.0f);
  7170. vector float vsumf2 = vec_splats(0.0f);
  7171. vector float vsumf3 = vec_splats(0.0f);
  7172. for (int i = 0; i < nb; ++i) {
  7173. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7174. vector float vyd = vec_splats(y[i].d);
  7175. vector float vd = vec_mul(vxd, vyd);
  7176. vector signed int vsumi0 = v0;
  7177. vector signed int vsumi1 = v0;
  7178. vector signed int vsumi2 = v0;
  7179. vector signed int vsumi3 = v0;
  7180. const uint8_t * restrict q3 = x[i].qs;
  7181. const uint32_t * restrict signs = (const uint32_t *)(x[i].qs + QK_K/4);
  7182. const int8_t * restrict q8 = y[i].qs;
  7183. #pragma GCC unroll 1
  7184. for (int j = 0; j < QK_K/32; j += 2) {
  7185. __builtin_prefetch(q3, 0, 1);
  7186. __builtin_prefetch(q8, 0, 1);
  7187. vector unsigned int aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
  7188. vector unsigned int aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
  7189. vector unsigned int aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
  7190. vector unsigned int aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
  7191. q3 += 16;
  7192. vector unsigned long long aux64x2_0 = {(uint64_t)(signs64[(signs[0] >> 0) & 127]), (uint64_t)(signs64[(signs[0] >> 7) & 127])};
  7193. vector unsigned long long aux64x2_1 = {(uint64_t)(signs64[(signs[0] >> 14) & 127]), (uint64_t)(signs64[(signs[0] >> 21) & 127])};
  7194. vector unsigned long long aux64x2_2 = {(uint64_t)(signs64[(signs[1] >> 0) & 127]), (uint64_t)(signs64[(signs[1] >> 7) & 127])};
  7195. vector unsigned long long aux64x2_3 = {(uint64_t)(signs64[(signs[1] >> 14) & 127]), (uint64_t)(signs64[(signs[1] >> 21) & 127])};
  7196. vector signed char q3x0 = vec_mul((vector signed char)aux64x2_0, (vector signed char)aux32x4_0);
  7197. vector signed char q3x1 = vec_mul((vector signed char)aux64x2_1, (vector signed char)aux32x4_1);
  7198. vector signed char q3x2 = vec_mul((vector signed char)aux64x2_2, (vector signed char)aux32x4_2);
  7199. vector signed char q3x3 = vec_mul((vector signed char)aux64x2_3, (vector signed char)aux32x4_3);
  7200. vector signed char q8y0 = vec_xl( 0, q8);
  7201. vector signed char q8y1 = vec_xl(16, q8);
  7202. vector signed char q8y2 = vec_xl(32, q8);
  7203. vector signed char q8y3 = vec_xl(48, q8);
  7204. q8 += 64;
  7205. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7206. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7207. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7208. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7209. const uint16_t ls0 = (uint16_t)(signs[0] >> 28);
  7210. const uint16_t ls1 = (uint16_t)(signs[1] >> 28);
  7211. signs += 2;
  7212. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7213. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7214. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7215. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7216. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7217. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7218. }
  7219. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7220. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7221. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7222. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7223. }
  7224. vsumf0 = vec_add(vsumf0, vsumf2);
  7225. vsumf1 = vec_add(vsumf1, vsumf3);
  7226. vsumf0 = vec_add(vsumf0, vsumf1);
  7227. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7228. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7229. *s = 0.25f * vec_extract(vsumf0, 0);
  7230. #elif defined(__loongarch_asx)
  7231. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7232. uint32_t aux32[2];
  7233. __m256 accumf = (__m256)__lasx_xvldi(0);
  7234. for (int i = 0; i < nb; ++i) {
  7235. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7236. const uint8_t * restrict q3 = x[i].qs;
  7237. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7238. const int8_t * restrict q8 = y[i].qs;
  7239. __m256i sumi1 = __lasx_xvldi(0);
  7240. __m256i sumi2 = __lasx_xvldi(0);
  7241. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7242. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7243. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7244. const __m256i q2_1 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7245. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7246. q3 += 8;
  7247. const __m256i q2_2 = lasx_set_w(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7248. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7249. q3 += 8;
  7250. memcpy(aux32, gas, 8); gas += 8;
  7251. const __m256i s2_1 = lasx_set_d(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7252. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7253. const __m256i s2_2 = lasx_set_d(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7254. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7255. const __m256i q8s_1 = __lasx_xvsigncov_b(s2_1, q8_1);
  7256. const __m256i q8s_2 = __lasx_xvsigncov_b(s2_2, q8_2);
  7257. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7258. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7259. const uint16_t ls1 = aux32[0] >> 28;
  7260. const uint16_t ls2 = aux32[1] >> 28;
  7261. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7262. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7263. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7264. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7265. }
  7266. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7267. }
  7268. *s = 0.25f * hsum_float_8(accumf);
  7269. #else
  7270. uint32_t aux32;
  7271. float sumf = 0.f;
  7272. for (int i = 0; i < nb; ++i) {
  7273. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7274. const uint8_t * restrict q3 = x[i].qs;
  7275. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7276. const int8_t * restrict q8 = y[i].qs;
  7277. int32_t bsum = 0;
  7278. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7279. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7280. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7281. int32_t sumi = 0;
  7282. for (int l = 0; l < 4; ++l) {
  7283. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7284. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7285. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7286. for (int j = 0; j < 4; ++j) {
  7287. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7288. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7289. }
  7290. q8 += 8;
  7291. }
  7292. q3 += 8;
  7293. bsum += sumi * ls;
  7294. }
  7295. sumf += d * bsum;
  7296. }
  7297. *s = 0.25f * sumf;
  7298. #endif
  7299. }
  7300. void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7301. assert(n % QK_K == 0);
  7302. assert(nrc == 1);
  7303. UNUSED(nrc);
  7304. UNUSED(bx);
  7305. UNUSED(by);
  7306. UNUSED(bs);
  7307. const block_iq3_s * restrict x = vx;
  7308. const block_q8_K * restrict y = vy;
  7309. const int nb = n / QK_K;
  7310. #if defined(__ARM_NEON)
  7311. typedef union {
  7312. uint16x8_t vec_index;
  7313. uint16_t index[8];
  7314. } vec_index_t;
  7315. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7316. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7317. };
  7318. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7319. static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1};
  7320. const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1);
  7321. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7322. const int16x8_t hshift = vld1q_s16(k_shift);
  7323. const uint16x8_t m256 = vdupq_n_u16(256);
  7324. const uint8x16_t m1 = vdupq_n_u8(1);
  7325. uint8x16x2_t vs;
  7326. ggml_int8x16x4_t q3s;
  7327. ggml_int8x16x4_t q8b;
  7328. vec_index_t idx;
  7329. uint32_t scales32[2];
  7330. const uint8_t * scales8 = (const uint8_t *)scales32;
  7331. float sumf = 0;
  7332. for (int i = 0; i < nb; ++i) {
  7333. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7334. const uint8_t * restrict qs = x[i].qs;
  7335. const uint8_t * restrict qh = x[i].qh;
  7336. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7337. const int8_t * restrict q8 = y[i].qs;
  7338. memcpy(scales32, x[i].scales, 4);
  7339. scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101;
  7340. scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101;
  7341. int sumi1 = 0, sumi2 = 0;
  7342. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7343. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7344. const uint8x16_t idx_l = vld1q_u8(qs); qs += 16;
  7345. idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256));
  7346. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7347. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7348. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7349. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7350. idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256));
  7351. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]],
  7352. iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]);
  7353. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]],
  7354. iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]);
  7355. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16)));
  7356. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7357. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7358. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7359. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7360. q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0));
  7361. q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1));
  7362. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16)));
  7363. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7364. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7365. vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1);
  7366. vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1);
  7367. signs += 4;
  7368. q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2));
  7369. q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3));
  7370. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7371. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7372. sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0];
  7373. sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4];
  7374. }
  7375. sumf += d*(sumi1 + sumi2);
  7376. }
  7377. *s = sumf;
  7378. #elif defined(__AVX2__)
  7379. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7380. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7381. };
  7382. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7383. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7384. };
  7385. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7386. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7387. const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8);
  7388. const __m256i idx_mask = _mm256_set1_epi32(256);
  7389. typedef union {
  7390. __m256i vec[2];
  7391. uint32_t index[16];
  7392. } index_t;
  7393. index_t idx;
  7394. __m256 accumf = _mm256_setzero_ps();
  7395. for (int i = 0; i < nb; ++i) {
  7396. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7397. const uint8_t * restrict qs = x[i].qs;
  7398. const uint8_t * restrict qh = x[i].qh;
  7399. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7400. const int8_t * restrict q8 = y[i].qs;
  7401. __m256i sumi1 = _mm256_setzero_si256();
  7402. __m256i sumi2 = _mm256_setzero_si256();
  7403. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7404. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7405. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7406. const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16;
  7407. idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]);
  7408. idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]);
  7409. idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask);
  7410. idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask);
  7411. idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l)));
  7412. idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1)));
  7413. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7414. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7415. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7416. const __m256i q2_1 = _mm256_set_epi32(
  7417. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7418. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7419. );
  7420. const __m256i q2_2 = _mm256_set_epi32(
  7421. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7422. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7423. );
  7424. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7425. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7426. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7427. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7428. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7429. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7430. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7431. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7432. signs += 4;
  7433. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7434. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7435. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7436. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7437. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7438. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7439. sumi1 = _mm256_add_epi32(sumi1, p1);
  7440. sumi2 = _mm256_add_epi32(sumi2, p2);
  7441. }
  7442. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7443. }
  7444. *s = hsum_float_8(accumf);
  7445. #elif defined(__AVX__)
  7446. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7447. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7448. };
  7449. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7450. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7451. };
  7452. const __m128i mask1_0 = _mm_loadu_si128((const __m128i*)k_mask1);
  7453. const __m128i mask1_1 = _mm_loadu_si128((const __m128i*)k_mask1 + 1);
  7454. const __m128i mask2_0 = _mm_loadu_si128((const __m128i*)k_mask2);
  7455. const __m128i mask2_1 = _mm_loadu_si128((const __m128i*)k_mask2 + 1);
  7456. const __m128i idx_mul_0 = _mm_set_epi32(32, 64, 128, 256);
  7457. const __m128i idx_mul_1 = _mm_set_epi32(2, 4, 8, 16);
  7458. const __m128i idx_mask = _mm_set1_epi32(256);
  7459. typedef union {
  7460. __m128i vec[4];
  7461. uint32_t index[16];
  7462. } index_t;
  7463. index_t idx;
  7464. __m256 accumf = _mm256_setzero_ps();
  7465. for (int i = 0; i < nb; ++i) {
  7466. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7467. const uint8_t * restrict qs = x[i].qs;
  7468. const uint8_t * restrict qh = x[i].qh;
  7469. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7470. const int8_t * restrict q8 = y[i].qs;
  7471. __m128i sumi1_0 = _mm_setzero_si128();
  7472. __m128i sumi1_1 = _mm_setzero_si128();
  7473. __m128i sumi2_0 = _mm_setzero_si128();
  7474. __m128i sumi2_1 = _mm_setzero_si128();
  7475. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7476. const __m128i q8_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7477. const __m128i q8_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7478. const __m128i q8_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7479. const __m128i q8_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7480. const __m128i qs_tmp = _mm_loadu_si128((const __m128i *)qs);
  7481. const __m128i idx_l_0 = _mm_cvtepu8_epi16(qs_tmp);
  7482. const __m128i idx_l_1 = _mm_cvtepu8_epi16(_mm_srli_si128(qs_tmp, 8)); qs += 16;
  7483. idx.vec[0] = _mm_set1_epi32(qh[ib32+0]);
  7484. idx.vec[1] = idx.vec[0];
  7485. idx.vec[2] = _mm_set1_epi32(qh[ib32+1]);
  7486. idx.vec[3] = idx.vec[2];
  7487. idx.vec[0] = _mm_and_si128(_mm_mullo_epi32(idx.vec[0], idx_mul_0), idx_mask);
  7488. idx.vec[1] = _mm_and_si128(_mm_mullo_epi32(idx.vec[1], idx_mul_1), idx_mask);
  7489. idx.vec[2] = _mm_and_si128(_mm_mullo_epi32(idx.vec[2], idx_mul_0), idx_mask);
  7490. idx.vec[3] = _mm_and_si128(_mm_mullo_epi32(idx.vec[3], idx_mul_1), idx_mask);
  7491. idx.vec[0] = _mm_or_si128(idx.vec[0], _mm_cvtepi16_epi32(idx_l_0));
  7492. idx.vec[1] = _mm_or_si128(idx.vec[1], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_0, 8)));
  7493. idx.vec[2] = _mm_or_si128(idx.vec[2], _mm_cvtepi16_epi32(idx_l_1));
  7494. idx.vec[3] = _mm_or_si128(idx.vec[3], _mm_cvtepi16_epi32(_mm_srli_si128(idx_l_1, 8)));
  7495. const __m128i q2_1_0 = _mm_set_epi32(iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]);
  7496. const __m128i q2_1_1 = _mm_set_epi32(iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]]);
  7497. const __m128i q2_2_0 = _mm_set_epi32(iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[9]], iq3s_grid[idx.index[8]]);
  7498. const __m128i q2_2_1 = _mm_set_epi32(iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]]);
  7499. __m128i aux128_0 = _mm_set1_epi32(signs[0] | (signs[1] << 16));
  7500. __m128i aux128_1 = aux128_0;
  7501. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7502. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7503. const __m128i s2_1_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7504. const __m128i s2_1_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7505. const __m128i q8s_1_0 = _mm_sub_epi8(_mm_xor_si128(s2_1_0, q8_1_0), s2_1_0);
  7506. const __m128i q8s_1_1 = _mm_sub_epi8(_mm_xor_si128(s2_1_1, q8_1_1), s2_1_1);
  7507. aux128_0 = _mm_set1_epi32(signs[2] | (signs[3] << 16));
  7508. aux128_1 = aux128_0;
  7509. aux128_0 = _mm_and_si128(_mm_shuffle_epi8(aux128_0,mask1_0), mask2_0);
  7510. aux128_1 = _mm_and_si128(_mm_shuffle_epi8(aux128_1,mask1_1), mask2_1);
  7511. const __m128i s2_2_0 = _mm_cmpeq_epi8(aux128_0, mask2_0);
  7512. const __m128i s2_2_1 = _mm_cmpeq_epi8(aux128_1, mask2_1);
  7513. const __m128i q8s_2_0 = _mm_sub_epi8(_mm_xor_si128(s2_2_0, q8_2_0), s2_2_0);
  7514. const __m128i q8s_2_1 = _mm_sub_epi8(_mm_xor_si128(s2_2_1, q8_2_1), s2_2_1);
  7515. signs += 4;
  7516. const __m128i dot1_0 = _mm_maddubs_epi16(q2_1_0, q8s_1_0);
  7517. const __m128i dot1_1 = _mm_maddubs_epi16(q2_1_1, q8s_1_1);
  7518. const __m128i dot2_0 = _mm_maddubs_epi16(q2_2_0, q8s_2_0);
  7519. const __m128i dot2_1 = _mm_maddubs_epi16(q2_2_1, q8s_2_1);
  7520. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7521. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7522. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(2*ls1+1));
  7523. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(2*ls1+1));
  7524. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(2*ls2+1));
  7525. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(2*ls2+1));
  7526. sumi1_0 = _mm_add_epi32(sumi1_0, p1_0);
  7527. sumi1_1 = _mm_add_epi32(sumi1_1, p1_1);
  7528. sumi2_0 = _mm_add_epi32(sumi2_0, p2_0);
  7529. sumi2_1 = _mm_add_epi32(sumi2_1, p2_1);
  7530. }
  7531. accumf = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_add_epi32(sumi1_1, sumi2_1), _mm_add_epi32(sumi1_0, sumi2_0)))), accumf);
  7532. }
  7533. *s = hsum_float_8(accumf);
  7534. #elif defined(__POWER9_VECTOR__)
  7535. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7536. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7537. };
  7538. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7539. const vector int v0 = vec_splats((int32_t)0);
  7540. vector float vsumf0 = vec_splats(0.0f);
  7541. vector float vsumf1 = vec_splats(0.0f);
  7542. vector float vsumf2 = vec_splats(0.0f);
  7543. vector float vsumf3 = vec_splats(0.0f);
  7544. const vector unsigned char mask0 = vec_xl( 0, k_mask1);
  7545. const vector unsigned char mask1 = vec_xl(16, k_mask1);
  7546. const vector signed char mask2 = (vector signed char)vec_xl( 0, k_mask2);
  7547. for (int i = 0; i < nb; ++i) {
  7548. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7549. vector float vyd = vec_splats(y[i].d);
  7550. vector float vd = vec_mul(vxd, vyd);
  7551. const uint8_t * restrict q3 = x[i].qs;
  7552. const uint8_t * restrict qh = x[i].qh;
  7553. const uint16_t * restrict signs = (const uint16_t *)(x[i].signs);
  7554. const uint8_t * restrict sc = x[i].scales;
  7555. const int8_t * restrict q8 = y[i].qs;
  7556. vector signed int vsumi0 = v0;
  7557. vector signed int vsumi1 = v0;
  7558. vector signed int vsumi2 = v0;
  7559. vector signed int vsumi3 = v0;
  7560. for (int j = 0; j < QK_K/32; j += 2) {
  7561. __builtin_prefetch(q3, 0, 1);
  7562. __builtin_prefetch(q8, 0, 1);
  7563. vector unsigned int aux32x4_0 = {iq3s_grid[q3[ 0] | ((qh[0] << 8) & 256)], iq3s_grid[q3[ 1] | ((qh[0] << 7) & 256)],
  7564. iq3s_grid[q3[ 2] | ((qh[0] << 6) & 256)], iq3s_grid[q3[ 3] | ((qh[0] << 5) & 256)]};
  7565. vector unsigned int aux32x4_1 = {iq3s_grid[q3[ 4] | ((qh[0] << 4) & 256)], iq3s_grid[q3[ 5] | ((qh[0] << 3) & 256)],
  7566. iq3s_grid[q3[ 6] | ((qh[0] << 2) & 256)], iq3s_grid[q3[ 7] | ((qh[0] << 1) & 256)]};
  7567. vector unsigned int aux32x4_2 = {iq3s_grid[q3[ 8] | ((qh[1] << 8) & 256)], iq3s_grid[q3[ 9] | ((qh[1] << 7) & 256)],
  7568. iq3s_grid[q3[10] | ((qh[1] << 6) & 256)], iq3s_grid[q3[11] | ((qh[1] << 5) & 256)]};
  7569. vector unsigned int aux32x4_3 = {iq3s_grid[q3[12] | ((qh[1] << 4) & 256)], iq3s_grid[q3[13] | ((qh[1] << 3) & 256)],
  7570. iq3s_grid[q3[14] | ((qh[1] << 2) & 256)], iq3s_grid[q3[15] | ((qh[1] << 1) & 256)]};
  7571. q3 += 16;
  7572. qh += 2;
  7573. vector signed char vsigns01 = (vector signed char)vec_splats(*(const uint32_t *)&signs[0]);
  7574. vector signed char vsigns02 = (vector signed char)vec_splats(*(const uint32_t *)&signs[2]);
  7575. signs += 4;
  7576. vector signed char vsigns0 = vec_perm(vsigns01, vsigns01, mask0);
  7577. vector signed char vsigns1 = vec_perm(vsigns01, vsigns01, mask1);
  7578. vector signed char vsigns2 = vec_perm(vsigns02, vsigns02, mask0);
  7579. vector signed char vsigns3 = vec_perm(vsigns02, vsigns02, mask1);
  7580. vsigns0 = (vector signed char)vec_cmpeq(vec_and(vsigns0, mask2), mask2);
  7581. vsigns1 = (vector signed char)vec_cmpeq(vec_and(vsigns1, mask2), mask2);
  7582. vsigns2 = (vector signed char)vec_cmpeq(vec_and(vsigns2, mask2), mask2);
  7583. vsigns3 = (vector signed char)vec_cmpeq(vec_and(vsigns3, mask2), mask2);
  7584. vector signed char q3x0 = vec_sub(vec_xor(vsigns0, (vector signed char)aux32x4_0), vsigns0);
  7585. vector signed char q3x1 = vec_sub(vec_xor(vsigns1, (vector signed char)aux32x4_1), vsigns1);
  7586. vector signed char q3x2 = vec_sub(vec_xor(vsigns2, (vector signed char)aux32x4_2), vsigns2);
  7587. vector signed char q3x3 = vec_sub(vec_xor(vsigns3, (vector signed char)aux32x4_3), vsigns3);
  7588. vector signed char q8y0 = vec_xl( 0, q8);
  7589. vector signed char q8y1 = vec_xl(16, q8);
  7590. vector signed char q8y2 = vec_xl(32, q8);
  7591. vector signed char q8y3 = vec_xl(48, q8);
  7592. q8 += 64;
  7593. vector signed short qv0 = vec_add(vec_mule(q3x0, q8y0), vec_mulo(q3x0, q8y0));
  7594. vector signed short qv1 = vec_add(vec_mule(q3x1, q8y1), vec_mulo(q3x1, q8y1));
  7595. vector signed short qv2 = vec_add(vec_mule(q3x2, q8y2), vec_mulo(q3x2, q8y2));
  7596. vector signed short qv3 = vec_add(vec_mule(q3x3, q8y3), vec_mulo(q3x3, q8y3));
  7597. const uint16_t ls0 = (uint16_t)(sc[0] & 0xf);
  7598. const uint16_t ls1 = (uint16_t)(sc[0] >> 4);
  7599. sc ++;
  7600. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7601. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7602. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7603. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7604. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7605. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7606. }
  7607. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7608. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7609. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7610. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7611. }
  7612. vsumf0 = vec_add(vsumf0, vsumf2);
  7613. vsumf1 = vec_add(vsumf1, vsumf3);
  7614. vsumf0 = vec_add(vsumf0, vsumf1);
  7615. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7616. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7617. *s = vec_extract(vsumf0, 0);
  7618. #elif defined(__loongarch_asx)
  7619. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7620. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7621. };
  7622. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7623. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7624. };
  7625. const __m256i mask1 = __lasx_xvld((const __m256i*)k_mask1, 0);
  7626. const __m256i mask2 = __lasx_xvld((const __m256i*)k_mask2, 0);
  7627. __m256i idx_shift = lasx_set_w(1, 2, 3, 4, 5, 6, 7, 8);
  7628. const __m256i idx_mask = __lasx_xvreplgr2vr_w(256);
  7629. typedef union {
  7630. __m256i vec[2];
  7631. uint32_t index[16];
  7632. } index_t;
  7633. index_t idx;
  7634. __m256 accumf = (__m256)__lasx_xvldi(0);
  7635. for (int i = 0; i < nb; ++i) {
  7636. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7637. const uint8_t * restrict qs = x[i].qs;
  7638. const uint8_t * restrict qh = x[i].qh;
  7639. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7640. const int8_t * restrict q8 = y[i].qs;
  7641. __m256i sumi1 = __lasx_xvldi(0);
  7642. __m256i sumi2 = __lasx_xvldi(0);
  7643. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7644. const __m256i q8_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7645. const __m256i q8_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  7646. const __m256i idx_l = lasx_extu8_16(__lsx_vld(qs, 0)); qs += 16;
  7647. idx.vec[0] = __lasx_xvreplgr2vr_w(qh[ib32+0]);
  7648. idx.vec[1] = __lasx_xvreplgr2vr_w(qh[ib32+1]);
  7649. idx.vec[0] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[0], idx_shift), idx_mask);
  7650. idx.vec[1] = __lasx_xvand_v(__lasx_xvsll_w(idx.vec[1], idx_shift), idx_mask);
  7651. idx.vec[0] = __lasx_xvor_v(idx.vec[0], lasx_ext16_32(lasx_extracti128(idx_l, 0)));
  7652. idx.vec[1] = __lasx_xvor_v(idx.vec[1], lasx_ext16_32(lasx_extracti128(idx_l, 1)));
  7653. // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange.
  7654. //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4);
  7655. //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4);
  7656. const __m256i q2_1 = lasx_set_w(
  7657. iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]],
  7658. iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]]
  7659. );
  7660. const __m256i q2_2 = lasx_set_w(
  7661. iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]],
  7662. iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]]
  7663. );
  7664. __m256i aux256 = __lasx_xvreplgr2vr_w(signs[0] | (signs[1] << 16));
  7665. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7666. const __m256i s2_1 = __lasx_xvseq_b(aux256, mask2);
  7667. const __m256i q8s_1 = __lasx_xvsub_b(__lasx_xvxor_v(s2_1, q8_1), s2_1);
  7668. aux256 = __lasx_xvreplgr2vr_w(signs[2] | (signs[3] << 16));
  7669. aux256 = __lasx_xvand_v(lasx_shuffle_b(aux256,mask1), mask2);
  7670. const __m256i s2_2 = __lasx_xvseq_b(aux256, mask2);
  7671. const __m256i q8s_2 = __lasx_xvsub_b(__lasx_xvxor_v(s2_2, q8_2), s2_2);
  7672. signs += 4;
  7673. const __m256i dot1 = lasx_maddubs_h(q2_1, q8s_1);
  7674. const __m256i dot2 = lasx_maddubs_h(q2_2, q8s_2);
  7675. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7676. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7677. const __m256i p1 = lasx_madd_h(dot1, __lasx_xvreplgr2vr_h(2*ls1+1));
  7678. const __m256i p2 = lasx_madd_h(dot2, __lasx_xvreplgr2vr_h(2*ls2+1));
  7679. sumi1 = __lasx_xvadd_w(sumi1, p1);
  7680. sumi2 = __lasx_xvadd_w(sumi2, p2);
  7681. }
  7682. accumf = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accumf);
  7683. }
  7684. *s = hsum_float_8(accumf);
  7685. #else
  7686. float sumf = 0.f;
  7687. for (int i = 0; i < nb; ++i) {
  7688. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7689. const uint8_t * restrict qs = x[i].qs;
  7690. const uint8_t * restrict qh = x[i].qh;
  7691. const uint8_t * restrict signs = x[i].signs;
  7692. const int8_t * restrict q8 = y[i].qs;
  7693. int32_t bsum = 0;
  7694. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7695. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7696. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7697. int32_t sumi = 0;
  7698. for (int l = 0; l < 4; ++l) {
  7699. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7700. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7701. for (int j = 0; j < 4; ++j) {
  7702. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7703. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7704. }
  7705. q8 += 8;
  7706. }
  7707. qs += 8;
  7708. signs += 4;
  7709. bsum += sumi * ls1;
  7710. sumi = 0;
  7711. for (int l = 0; l < 4; ++l) {
  7712. const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7713. const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7714. for (int j = 0; j < 4; ++j) {
  7715. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7716. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7717. }
  7718. q8 += 8;
  7719. }
  7720. qs += 8;
  7721. signs += 4;
  7722. bsum += sumi * ls2;
  7723. }
  7724. sumf += d * bsum;
  7725. }
  7726. *s = sumf;
  7727. #endif
  7728. }
  7729. #if defined(__AVX2__)
  7730. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7731. const __m256i ax = _mm256_sign_epi8(x, x);
  7732. const __m256i sy = _mm256_sign_epi8(y, x);
  7733. return _mm256_maddubs_epi16(ax, sy);
  7734. }
  7735. #elif defined(__loongarch_asx)
  7736. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7737. const __m256i ax = __lasx_xvsigncov_b(x, x);
  7738. const __m256i sy = __lasx_xvsigncov_b(x, y);
  7739. __m256i tmp1, tmp2, tmp3;
  7740. tmp1 = __lasx_xvmulwev_h_bu_b(ax, sy);
  7741. tmp2 = __lasx_xvmulwod_h_bu_b(ax, sy);
  7742. tmp3 = __lasx_xvadd_h(tmp1, tmp2);
  7743. return __lasx_xvsat_h(tmp3, 15);
  7744. }
  7745. #endif
  7746. void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7747. assert(n % QK_K == 0);
  7748. assert(nrc == 1);
  7749. UNUSED(nrc);
  7750. UNUSED(bx);
  7751. UNUSED(by);
  7752. UNUSED(bs);
  7753. const block_iq1_s * restrict x = vx;
  7754. const block_q8_K * restrict y = vy;
  7755. const int nb = n / QK_K;
  7756. #if defined __ARM_NEON
  7757. ggml_int8x16x4_t q1b;
  7758. ggml_int8x16x4_t q8b;
  7759. float sumf = 0;
  7760. for (int i = 0; i < nb; ++i) {
  7761. const int8_t * q8 = y[i].qs;
  7762. const uint8_t * qs = x[i].qs;
  7763. const uint16_t * qh = x[i].qh;
  7764. int sumi1 = 0, sumi2 = 0, sumi3 = 0;
  7765. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7766. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))),
  7767. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700)))));
  7768. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))),
  7769. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700)))));
  7770. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))),
  7771. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700)))));
  7772. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))),
  7773. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700)))));
  7774. qs += 8;
  7775. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7776. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]);
  7777. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]);
  7778. const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7779. const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7780. sumi1 += vaddvq_s32(p1) * ls1;
  7781. sumi2 += vaddvq_s32(p2) * ls2;
  7782. sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1)
  7783. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1);
  7784. }
  7785. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3);
  7786. }
  7787. *s = sumf;
  7788. #elif defined __AVX2__
  7789. __m256 accum = _mm256_setzero_ps();
  7790. float accum1 = 0;
  7791. for (int i = 0; i < nb; ++i) {
  7792. const int8_t * q8 = y[i].qs;
  7793. const uint8_t * qs = x[i].qs;
  7794. const uint16_t * qh = x[i].qh;
  7795. __m256i sumi = _mm256_setzero_si256();
  7796. int sumi1 = 0;
  7797. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7798. const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)],
  7799. iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7800. const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)],
  7801. iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7802. qs += 8;
  7803. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7804. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7805. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7806. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7807. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7808. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7809. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1));
  7810. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2));
  7811. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2));
  7812. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7813. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7814. }
  7815. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7816. accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum);
  7817. accum1 += d * sumi1;
  7818. }
  7819. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7820. #elif defined __AVX__
  7821. __m256 accum = _mm256_setzero_ps();
  7822. float accum1 = 0;
  7823. for (int i = 0; i < nb; ++i) {
  7824. const int8_t * q8 = y[i].qs;
  7825. const uint8_t * qs = x[i].qs;
  7826. const uint16_t * qh = x[i].qh;
  7827. __m128i sumi1_0 = _mm_setzero_si128();
  7828. __m128i sumi1_1 = _mm_setzero_si128();
  7829. int sumi1 = 0;
  7830. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7831. const __m128i q1b_1_0 = _mm_set_epi64x(iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]);
  7832. const __m128i q1b_1_1 = _mm_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)]);
  7833. const __m128i q1b_2_0 = _mm_set_epi64x(iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]);
  7834. const __m128i q1b_2_1 = _mm_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)]);
  7835. qs += 8;
  7836. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7837. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7838. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7839. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  7840. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  7841. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  7842. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  7843. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  7844. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7845. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7846. const __m128i p1_0 = _mm_madd_epi16(dot1_0, _mm_set1_epi16(ls1));
  7847. const __m128i p1_1 = _mm_madd_epi16(dot1_1, _mm_set1_epi16(ls1));
  7848. const __m128i p2_0 = _mm_madd_epi16(dot2_0, _mm_set1_epi16(ls2));
  7849. const __m128i p2_1 = _mm_madd_epi16(dot2_1, _mm_set1_epi16(ls2));
  7850. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  7851. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  7852. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7853. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7854. }
  7855. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7856. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum);
  7857. accum1 += d * sumi1;
  7858. }
  7859. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7860. #elif defined(__POWER9_VECTOR__)
  7861. const vector unsigned char v0 = vec_splats((unsigned char)0x0);
  7862. const vector unsigned short vsign = vec_splats((unsigned short)0x8000);
  7863. vector float vsumf0 = vec_splats(0.0f);
  7864. vector float vsumf1 = vec_splats(0.0f);
  7865. vector float vsumf2 = vec_splats(0.0f);
  7866. vector float vsumf3 = vec_splats(0.0f);
  7867. for (int i = 0; i < nb; ++i) {
  7868. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[i].d));
  7869. vector float vyd = vec_splats(y[i].d);
  7870. vector float vd = vec_mul(vxd, vyd);
  7871. vector signed int vsumi0 = vec_splats((int32_t)0);
  7872. vector signed int vsumi1 = vec_splats((int32_t)0);
  7873. vector signed int vsumi2 = vec_splats((int32_t)0);
  7874. vector signed int vsumi3 = vec_splats((int32_t)0);
  7875. vector signed int vsumi8 = vec_splats((int32_t)0);
  7876. const uint8_t * restrict q1 = x[i].qs;
  7877. const uint16_t * restrict qh = x[i].qh;
  7878. const int8_t * restrict q8 = y[i].qs;
  7879. const int16_t * restrict qs = y[i].bsums;
  7880. for (int j = 0; j < QK_K/32; j += 2) {
  7881. __builtin_prefetch(q1, 0, 1);
  7882. __builtin_prefetch(qh, 0, 1);
  7883. __builtin_prefetch(q8, 0, 1);
  7884. vector signed long long aux64x2_0 = {*(const int64_t *)(iq1s_grid + (q1[0] | ((qh[0] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[1] | ((qh[0] << 5) & 0x700)))};
  7885. vector signed long long aux64x2_1 = {*(const int64_t *)(iq1s_grid + (q1[2] | ((qh[0] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[3] | ((qh[0] >> 1) & 0x700)))};
  7886. vector signed long long aux64x2_2 = {*(const int64_t *)(iq1s_grid + (q1[4] | ((qh[1] << 8) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[5] | ((qh[1] << 5) & 0x700)))};
  7887. vector signed long long aux64x2_3 = {*(const int64_t *)(iq1s_grid + (q1[6] | ((qh[1] << 2) & 0x700))), *(const int64_t *)(iq1s_grid + (q1[7] | ((qh[1] >> 1) & 0x700)))};
  7888. q1 += 8;
  7889. vector signed char q1x0 = (vector signed char)aux64x2_0;
  7890. vector signed char q1x1 = (vector signed char)aux64x2_1;
  7891. vector signed char q1x2 = (vector signed char)aux64x2_2;
  7892. vector signed char q1x3 = (vector signed char)aux64x2_3;
  7893. vector signed char q8y0 = vec_xl( 0, q8);
  7894. vector signed char q8y1 = vec_xl(16, q8);
  7895. vector signed char q8y2 = vec_xl(32, q8);
  7896. vector signed char q8y3 = vec_xl(48, q8);
  7897. q8 += 64;
  7898. vector signed short qv0 = vec_add(vec_mule(q1x0, q8y0), vec_mulo(q1x0, q8y0));
  7899. vector signed short qv1 = vec_add(vec_mule(q1x1, q8y1), vec_mulo(q1x1, q8y1));
  7900. vector signed short qv2 = vec_add(vec_mule(q1x2, q8y2), vec_mulo(q1x2, q8y2));
  7901. vector signed short qv3 = vec_add(vec_mule(q1x3, q8y3), vec_mulo(q1x3, q8y3));
  7902. const uint16_t ls0 = (uint16_t)((qh[0] >> 12) & 7);
  7903. const uint16_t ls1 = (uint16_t)((qh[1] >> 12) & 7);
  7904. vector signed short vscales01 = (vector signed short)vec_splats((uint16_t)(2*ls0+1));
  7905. vector signed short vscales23 = (vector signed short)vec_splats((uint16_t)(2*ls1+1));
  7906. vector signed short vscales = vec_sld(vscales23, vscales01, 8);
  7907. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  7908. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  7909. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  7910. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  7911. vector signed short q8ysums = vec_xl_len(qs, 8);
  7912. qs += 4;
  7913. q8ysums = vec_mergeh(q8ysums, (vector signed short)v0);
  7914. vector signed short qxh = (vector signed short)vec_sld(vec_splats(qh[1]), vec_splats(qh[0]), 8);
  7915. qh += 2;
  7916. vector __bool short vsel = vec_cmpge(qxh, (vector signed short)v0);
  7917. vector signed short q8ysum = vec_sel((vector signed short)vec_xor((vector unsigned short)q8ysums, vsign), q8ysums, vsel);
  7918. vsumi8 = vec_add(vec_mule(q8ysum, vscales), vsumi8);
  7919. }
  7920. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  7921. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  7922. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  7923. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  7924. vsumf0 = vec_madd(vec_ctf(vsumi8, 0), vec_mul(vd, vec_splats(IQ1S_DELTA)), vsumf0);
  7925. }
  7926. vsumf0 = vec_add(vsumf0, vsumf2);
  7927. vsumf1 = vec_add(vsumf1, vsumf3);
  7928. vsumf0 = vec_add(vsumf0, vsumf1);
  7929. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  7930. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  7931. *s = vec_extract(vsumf0, 0);
  7932. #elif defined(__loongarch_asx)
  7933. __m256 accum = (__m256)__lasx_xvldi(0);
  7934. float accum1 = 0;
  7935. for (int i = 0; i < nb; ++i) {
  7936. const int8_t * q8 = y[i].qs;
  7937. const uint8_t * qs = x[i].qs;
  7938. const uint16_t * qh = x[i].qh;
  7939. __m256i sumi = __lasx_xvldi(0);
  7940. int sumi1 = 0;
  7941. for (int ib = 0; ib < QK_K/32; ib += 2) {
  7942. __m256i q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)], 0);
  7943. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], 1);
  7944. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], 2);
  7945. q1b_1 = __lasx_xvinsgr2vr_d(q1b_1, iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], 3);
  7946. __m256i q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)], 0);
  7947. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], 1);
  7948. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], 2);
  7949. q1b_2 = __lasx_xvinsgr2vr_d(q1b_2, iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], 3);
  7950. qs += 8;
  7951. const __m256i q8b_1 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7952. const __m256i q8b_2 = __lasx_xvld((const __m256i*)q8, 0); q8 += 32;
  7953. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  7954. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  7955. const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1;
  7956. const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1;
  7957. __m256i tmp1, tmp5, tmp6;
  7958. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  7959. tmp5 = __lasx_xvmulwev_w_h(dot1, tmp1);
  7960. tmp6 = __lasx_xvmulwod_w_h(dot1, tmp1);
  7961. const __m256i p1 = __lasx_xvadd_w(tmp5, tmp6);
  7962. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  7963. tmp5 = __lasx_xvmulwev_w_h(dot2, tmp1);
  7964. tmp6 = __lasx_xvmulwod_w_h(dot2, tmp1);
  7965. const __m256i p2 = __lasx_xvadd_w(tmp5, tmp6);
  7966. sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p1, p2));
  7967. sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1
  7968. + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2;
  7969. }
  7970. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  7971. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(d), __lasx_xvffint_s_w(sumi), accum);
  7972. accum1 += d * sumi1;
  7973. }
  7974. *s = hsum_float_8(accum) + IQ1S_DELTA * accum1;
  7975. #else
  7976. float sumf = 0;
  7977. for (int i = 0; i < nb; i++) {
  7978. const int8_t * q8 = y[i].qs;
  7979. const uint8_t * qs = x[i].qs;
  7980. const uint16_t * qh = x[i].qh;
  7981. int sumi = 0, sumi1 = 0;
  7982. for (int ib = 0; ib < QK_K/32; ++ib) {
  7983. const int ls = 2*((qh[ib] >> 12) & 7) + 1;
  7984. const int delta = qh[ib] & 0x8000 ? -1 : 1;
  7985. int lsum = 0;
  7986. for (int l = 0; l < 4; ++l) {
  7987. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8)));
  7988. for (int j = 0; j < 8; ++j) {
  7989. lsum += q8[j] * grid[j];
  7990. }
  7991. q8 += 8;
  7992. }
  7993. sumi += ls * lsum;
  7994. sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]);
  7995. qs += 4;
  7996. }
  7997. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1);
  7998. }
  7999. *s = sumf;
  8000. #endif
  8001. }
  8002. void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8003. assert(n % QK_K == 0);
  8004. assert(nrc == 1);
  8005. UNUSED(nrc);
  8006. UNUSED(bx);
  8007. UNUSED(by);
  8008. UNUSED(bs);
  8009. const block_iq1_m * restrict x = vx;
  8010. const block_q8_K * restrict y = vy;
  8011. const int nb = n / QK_K;
  8012. iq1m_scale_t scale;
  8013. #if defined __ARM_NEON
  8014. const int32x4_t mask = vdupq_n_s32(0x7);
  8015. const int32x4_t mone = vdupq_n_s32(1);
  8016. const int32x4_t mzero = vdupq_n_s32(0);
  8017. ggml_int8x16x4_t deltas;
  8018. deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1));
  8019. deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1));
  8020. deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1));
  8021. deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1));
  8022. ggml_int8x16x4_t q1b;
  8023. ggml_int8x16x4_t q8b;
  8024. uint32_t aux32;
  8025. const uint8_t * aux8 = (const uint8_t *)&aux32;
  8026. float sumf = 0;
  8027. for (int i = 0; i < nb; ++i) {
  8028. const int8_t * q8 = y[i].qs;
  8029. const uint8_t * qs = x[i].qs;
  8030. const uint8_t * qh = x[i].qh;
  8031. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8032. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8033. int32x4_t sumi1 = mzero;
  8034. int32x4_t sumi2 = mzero;
  8035. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8036. q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))),
  8037. vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700)))));
  8038. q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))),
  8039. vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700)))));
  8040. q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))),
  8041. vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700)))));
  8042. q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))),
  8043. vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700)))));
  8044. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8045. const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1]));
  8046. const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3]));
  8047. const int32x4_t p12 = vpaddq_s32(p1, p2);
  8048. const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that
  8049. aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202);
  8050. const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1]));
  8051. const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3]));
  8052. const int32x4_t p34 = vpaddq_s32(p3, p4);
  8053. int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9);
  8054. scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone);
  8055. sumi1 = vmlaq_s32(sumi1, scales_4, p12);
  8056. sumi2 = vmlaq_s32(sumi2, scales_4, p34);
  8057. qs += 8; qh += 4;
  8058. }
  8059. sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2));
  8060. }
  8061. *s = sumf;
  8062. #elif defined __AVX2__
  8063. const __m256i mask = _mm256_set1_epi16(0x7);
  8064. const __m256i mone = _mm256_set1_epi16(1);
  8065. __m256 accum1 = _mm256_setzero_ps();
  8066. __m256 accum2 = _mm256_setzero_ps();
  8067. for (int i = 0; i < nb; ++i) {
  8068. const int8_t * q8 = y[i].qs;
  8069. const uint8_t * qs = x[i].qs;
  8070. const uint8_t * qh = x[i].qh;
  8071. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8072. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8073. __m256i sumi1 = _mm256_setzero_si256();
  8074. __m256i sumi2 = _mm256_setzero_si256();
  8075. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8076. const __m256i q1b_1 = _mm256_set_epi64x(
  8077. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)],
  8078. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]
  8079. );
  8080. const __m256i q1b_2 = _mm256_set_epi64x(
  8081. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)],
  8082. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]
  8083. );
  8084. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8085. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  8086. const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1);
  8087. const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2);
  8088. const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8089. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8090. qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8091. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8092. const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8093. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101,
  8094. qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8095. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8096. const __m256i dot3 = mul_add_epi8(delta1, q8b_1);
  8097. const __m256i dot4 = mul_add_epi8(delta2, q8b_2);
  8098. __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0));
  8099. __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6));
  8100. scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone);
  8101. scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone);
  8102. const __m256i p1 = _mm256_madd_epi16(dot1, scale1);
  8103. const __m256i p2 = _mm256_madd_epi16(dot2, scale2);
  8104. const __m256i p3 = _mm256_madd_epi16(dot3, scale1);
  8105. const __m256i p4 = _mm256_madd_epi16(dot4, scale2);
  8106. sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2));
  8107. sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4));
  8108. qs += 8; qh += 4;
  8109. }
  8110. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8111. accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1);
  8112. accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2);
  8113. }
  8114. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8115. #elif defined __AVX__
  8116. const __m128i mask = _mm_set1_epi16(0x7);
  8117. const __m128i mone = _mm_set1_epi16(1);
  8118. __m256 accum1 = _mm256_setzero_ps();
  8119. __m256 accum2 = _mm256_setzero_ps();
  8120. for (int i = 0; i < nb; ++i) {
  8121. const int8_t * q8 = y[i].qs;
  8122. const uint8_t * qs = x[i].qs;
  8123. const uint8_t * qh = x[i].qh;
  8124. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8125. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8126. __m128i sumi1_0 = _mm_setzero_si128();
  8127. __m128i sumi1_1 = _mm_setzero_si128();
  8128. __m128i sumi2_0 = _mm_setzero_si128();
  8129. __m128i sumi2_1 = _mm_setzero_si128();
  8130. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8131. const __m128i q1b_1_0 = _mm_set_epi64x(
  8132. iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)]);
  8133. const __m128i q1b_1_1 = _mm_set_epi64x(
  8134. iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)]);
  8135. const __m128i q1b_2_0 = _mm_set_epi64x(
  8136. iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)]);
  8137. const __m128i q1b_2_1 = _mm_set_epi64x(
  8138. iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)]);
  8139. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8140. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8141. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8142. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8143. const __m128i dot1_0 = mul_add_epi8_sse(q1b_1_0, q8b_1_0);
  8144. const __m128i dot1_1 = mul_add_epi8_sse(q1b_1_1, q8b_1_1);
  8145. const __m128i dot2_0 = mul_add_epi8_sse(q1b_2_0, q8b_2_0);
  8146. const __m128i dot2_1 = mul_add_epi8_sse(q1b_2_1, q8b_2_1);
  8147. const __m128i delta1_0 = _mm_set_epi64x(qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8148. qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8149. const __m128i delta1_1 = _mm_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8150. qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8151. const __m128i delta2_0 = _mm_set_epi64x(qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8152. qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8153. const __m128i delta2_1 = _mm_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101,
  8154. qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101);
  8155. const __m128i dot3_0 = mul_add_epi8_sse(delta1_0, q8b_1_0);
  8156. const __m128i dot3_1 = mul_add_epi8_sse(delta1_1, q8b_1_1);
  8157. const __m128i dot4_0 = mul_add_epi8_sse(delta2_0, q8b_2_0);
  8158. const __m128i dot4_1 = mul_add_epi8_sse(delta2_1, q8b_2_1);
  8159. __m128i scale1_0 = _mm_set1_epi16(sc[ib/2] >> 0);
  8160. __m128i scale1_1 = _mm_set1_epi16(sc[ib/2] >> 3);
  8161. __m128i scale2_0 = _mm_set1_epi16(sc[ib/2] >> 6);
  8162. __m128i scale2_1 = _mm_set1_epi16(sc[ib/2] >> 9);
  8163. scale1_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_0, mask), 1), mone);
  8164. scale1_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale1_1, mask), 1), mone);
  8165. scale2_0 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_0, mask), 1), mone);
  8166. scale2_1 = _mm_add_epi16(_mm_slli_epi16(_mm_and_si128(scale2_1, mask), 1), mone);
  8167. const __m128i p1_0 = _mm_madd_epi16(dot1_0, scale1_0);
  8168. const __m128i p1_1 = _mm_madd_epi16(dot1_1, scale1_1);
  8169. const __m128i p2_0 = _mm_madd_epi16(dot2_0, scale2_0);
  8170. const __m128i p2_1 = _mm_madd_epi16(dot2_1, scale2_1);
  8171. const __m128i p3_0 = _mm_madd_epi16(dot3_0, scale1_0);
  8172. const __m128i p3_1 = _mm_madd_epi16(dot3_1, scale1_1);
  8173. const __m128i p4_0 = _mm_madd_epi16(dot4_0, scale2_0);
  8174. const __m128i p4_1 = _mm_madd_epi16(dot4_1, scale2_1);
  8175. sumi1_0 = _mm_add_epi32(sumi1_0, _mm_add_epi32(p1_0, p2_0));
  8176. sumi1_1 = _mm_add_epi32(sumi1_1, _mm_add_epi32(p1_1, p2_1));
  8177. sumi2_0 = _mm_add_epi32(sumi2_0, _mm_add_epi32(p3_0, p4_0));
  8178. sumi2_1 = _mm_add_epi32(sumi2_1, _mm_add_epi32(p3_1, p4_1));
  8179. qs += 8; qh += 4;
  8180. }
  8181. const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16));
  8182. accum1 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi1_1, sumi1_0))), accum1);
  8183. accum2 = _mm256_add_ps(_mm256_mul_ps(d, _mm256_cvtepi32_ps(MM256_SET_M128I(sumi2_1, sumi2_0))), accum2);
  8184. }
  8185. *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2);
  8186. #else
  8187. int sum1[2], sum2[2], delta[4];
  8188. float sumf = 0;
  8189. for (int i = 0; i < nb; i++) {
  8190. const int8_t * q8 = y[i].qs;
  8191. const uint8_t * qs = x[i].qs;
  8192. const uint8_t * qh = x[i].qh;
  8193. const uint16_t * sc = (const uint16_t *)x[i].scales;
  8194. scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
  8195. int sumi1 = 0, sumi2 = 0;
  8196. for (int ib = 0; ib < QK_K/32; ++ib) {
  8197. delta[0] = qh[0] & 0x08 ? -1 : 1;
  8198. delta[1] = qh[0] & 0x80 ? -1 : 1;
  8199. delta[2] = qh[1] & 0x08 ? -1 : 1;
  8200. delta[3] = qh[1] & 0x80 ? -1 : 1;
  8201. sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0;
  8202. for (int l = 0; l < 4; ++l) {
  8203. const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700)));
  8204. int lsum1 = 0, lsum2 = 0;
  8205. for (int j = 0; j < 8; ++j) {
  8206. lsum1 += q8[j] * grid[j];
  8207. lsum2 += q8[j];
  8208. }
  8209. q8 += 8;
  8210. sum1[l/2] += lsum1;
  8211. sum2[l/2] += lsum2*delta[l];
  8212. }
  8213. const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1;
  8214. const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1;
  8215. sumi1 += sum1[0] * ls1 + sum1[1] * ls2;
  8216. sumi2 += sum2[0] * ls1 + sum2[1] * ls2;
  8217. qs += 4;
  8218. qh += 2;
  8219. }
  8220. sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2);
  8221. }
  8222. *s = sumf;
  8223. #endif
  8224. }
  8225. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8226. assert(nrc == 1);
  8227. UNUSED(nrc);
  8228. UNUSED(bx);
  8229. UNUSED(by);
  8230. UNUSED(bs);
  8231. assert(n % QK4_NL == 0);
  8232. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  8233. const block_iq4_nl * restrict x = vx;
  8234. const block_q8_0 * restrict y = vy;
  8235. const int nb = n / QK4_NL;
  8236. int ib = 0;
  8237. float sumf = 0;
  8238. #if defined __ARM_NEON
  8239. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8240. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8241. uint8x16x2_t q4bits;
  8242. int8x16x4_t q4b;
  8243. int8x16x4_t q8b;
  8244. int32x4_t prod_1, prod_2;
  8245. for (; ib + 1 < nb; ib += 2) {
  8246. q4bits.val[0] = vld1q_u8(x[ib + 0].qs);
  8247. q4bits.val[1] = vld1q_u8(x[ib + 1].qs);
  8248. q8b.val[0] = vld1q_s8(y[ib + 0].qs);
  8249. q8b.val[1] = vld1q_s8(y[ib + 0].qs + 16);
  8250. q8b.val[2] = vld1q_s8(y[ib + 1].qs);
  8251. q8b.val[3] = vld1q_s8(y[ib + 1].qs + 16);
  8252. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8253. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8254. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8255. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8256. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8257. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8258. sumf +=
  8259. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib + 0].d) * vaddvq_s32(prod_1) +
  8260. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib + 1].d) * vaddvq_s32(prod_2);
  8261. }
  8262. #elif defined __AVX2__
  8263. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8264. const __m128i m4b = _mm_set1_epi8(0x0f);
  8265. const __m256i mone = _mm256_set1_epi16(1);
  8266. __m256 accum1 = _mm256_setzero_ps();
  8267. __m256 accum2 = _mm256_setzero_ps();
  8268. for (; ib + 1 < nb; ib += 2) {
  8269. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
  8270. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
  8271. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[ib + 0].qs);
  8272. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[ib + 1].qs);
  8273. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8274. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8275. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8276. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8277. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8278. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8279. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  8280. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  8281. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8282. _mm256_cvtepi32_ps(p_1), accum1);
  8283. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8284. _mm256_cvtepi32_ps(p_2), accum2);
  8285. }
  8286. sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
  8287. #elif defined __AVX__
  8288. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8289. const __m128i m4b = _mm_set1_epi8(0x0f);
  8290. __m256 accum = _mm256_setzero_ps();
  8291. for (; ib + 1 < nb; ib += 2) {
  8292. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)x[ib + 0].qs);
  8293. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)x[ib + 1].qs);
  8294. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs);
  8295. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)y[ib + 0].qs + 1);
  8296. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs);
  8297. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)y[ib + 1].qs + 1);
  8298. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8299. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8300. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8301. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8302. const __m256 p = mul_sum_i8_quad_float(q4b_1_0, q4b_1_1, q4b_2_0, q4b_2_1, q8b_1_0, q8b_1_1, q8b_2_0, q8b_2_1);
  8303. const __m256 deltas = quad_fp16_delta_float(x[ib].d, y[ib].d, x[ib + 1].d, y[ib + 1].d);
  8304. accum = _mm256_add_ps(_mm256_mul_ps(deltas, p), accum);
  8305. }
  8306. sumf = hsum_float_8(accum);
  8307. #elif defined(__POWER9_VECTOR__)
  8308. const vector signed char lowMask = vec_splats((signed char)0xF);
  8309. const vector signed int v0 = vec_splats((int32_t)0);
  8310. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8311. vector float vsumf0 = vec_splats(0.0f);
  8312. vector float vsumf1 = vec_splats(0.0f);
  8313. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8314. #pragma GCC unroll 4
  8315. for (; ib < nb; ++ib) {
  8316. __builtin_prefetch(x[ib].qs, 0, 1);
  8317. __builtin_prefetch(y[ib].qs, 0, 1);
  8318. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ib].d));
  8319. vector float vyd = vec_splats(GGML_FP16_TO_FP32(y[ib].d));
  8320. vector float vd = vec_mul(vxd, vyd);
  8321. vector signed char qxs = (vector signed char)vec_xl( 0, x[ib].qs);
  8322. vector signed char q4x0 = vec_and(qxs, lowMask);
  8323. vector signed char q4x1 = vec_sr(qxs, v4);
  8324. q4x0 = vec_perm(values, values, (vector unsigned char)q4x0);
  8325. q4x1 = vec_perm(values, values, (vector unsigned char)q4x1);
  8326. vector signed char q8y0 = vec_xl( 0, y[ib].qs);
  8327. vector signed char q8y1 = vec_xl(16, y[ib].qs);
  8328. vector signed short qv0 = vec_add(vec_mule(q4x0, q8y0), vec_mulo(q4x0, q8y0));
  8329. vector signed short qv1 = vec_add(vec_mule(q4x1, q8y1), vec_mulo(q4x1, q8y1));
  8330. vector signed int vsumi0 = v0;
  8331. vector signed int vsumi1 = v0;
  8332. vsumi0 = vec_sum4s(qv0, vsumi0);
  8333. vsumi1 = vec_sum4s(qv1, vsumi1);
  8334. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8335. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8336. }
  8337. vsumf0 = vec_add(vsumf0, vsumf1);
  8338. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8339. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8340. sumf = vec_extract(vsumf0, 0);
  8341. #elif defined (__loongarch_asx)
  8342. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8343. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8344. const __m256i mone = __lasx_xvreplgr2vr_h(1);
  8345. __m256 accum1 = (__m256)__lasx_xvldi(0);
  8346. __m256 accum2 = (__m256)__lasx_xvldi(0);
  8347. for (; ib + 1 < nb; ib += 2) {
  8348. const __m128i q4bits_1 = __lsx_vld((const __m128i*)x[ib + 0].qs, 0);
  8349. const __m128i q4bits_2 = __lsx_vld((const __m128i*)x[ib + 1].qs, 0);
  8350. const __m256i q8b_1 = __lasx_xvld((const __m256i *)y[ib + 0].qs, 0);
  8351. const __m256i q8b_2 = __lasx_xvld((const __m256i *)y[ib + 1].qs, 0);
  8352. const __m256i q4b_1 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b)),
  8353. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_1, m4b)));
  8354. const __m256i q4b_2 = lasx_insertf128(lsx_shuffle_b(values128, __lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b)),
  8355. lsx_shuffle_b(values128, __lsx_vand_v(q4bits_2, m4b)));
  8356. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8357. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8358. const __m256i p_1 = lasx_madd_h(p16_1, mone);
  8359. const __m256i p_2 = lasx_madd_h(p16_2, mone);
  8360. accum1 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 0].d)*GGML_FP16_TO_FP32(x[ib + 0].d)),
  8361. __lasx_xvffint_s_w(p_1), accum1);
  8362. accum2 = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(y[ib + 1].d)*GGML_FP16_TO_FP32(x[ib + 1].d)),
  8363. __lasx_xvffint_s_w(p_2), accum2);
  8364. }
  8365. sumf = hsum_float_8(__lasx_xvfadd_s(accum1, accum2));
  8366. #endif
  8367. for (; ib < nb; ++ib) {
  8368. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  8369. int sumi1 = 0, sumi2 = 0;
  8370. for (int j = 0; j < QK4_NL/2; ++j) {
  8371. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  8372. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  8373. }
  8374. sumf += d * (sumi1 + sumi2);
  8375. }
  8376. *s = sumf;
  8377. }
  8378. void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  8379. assert(nrc == 1);
  8380. UNUSED(nrc);
  8381. UNUSED(bx);
  8382. UNUSED(by);
  8383. UNUSED(bs);
  8384. assert(n % QK_K == 0);
  8385. const block_iq4_xs * restrict x = vx;
  8386. const block_q8_K * restrict y = vy;
  8387. const int nb = n / QK_K;
  8388. #if defined __ARM_NEON
  8389. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  8390. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  8391. ggml_uint8x16x2_t q4bits;
  8392. ggml_int8x16x4_t q4b;
  8393. ggml_int8x16x4_t q8b;
  8394. int32x4_t prod_1, prod_2;
  8395. float sumf = 0;
  8396. for (int ibl = 0; ibl < nb; ++ibl) {
  8397. const int8_t * q8 = y[ibl].qs;
  8398. const uint8_t * q4 = x[ibl].qs;
  8399. uint16_t h = x[ibl].scales_h;
  8400. int sumi1 = 0, sumi2 = 0;
  8401. for (int ib = 0; ib < QK_K/64; ++ib) {
  8402. q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  8403. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  8404. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  8405. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  8406. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  8407. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  8408. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  8409. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  8410. int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32;
  8411. int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32;
  8412. h >>= 4;
  8413. sumi1 += vaddvq_s32(prod_1) * ls1;
  8414. sumi2 += vaddvq_s32(prod_2) * ls2;
  8415. }
  8416. sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2);
  8417. }
  8418. *s = sumf;
  8419. #elif defined __AVX2__
  8420. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8421. const __m128i m4b = _mm_set1_epi8(0x0f);
  8422. __m256 accum = _mm256_setzero_ps();
  8423. for (int ibl = 0; ibl < nb; ++ibl) {
  8424. const uint8_t * qs = x[ibl].qs;
  8425. const int8_t * q8 = y[ibl].qs;
  8426. uint16_t sh = x[ibl].scales_h;
  8427. __m256i sumi1 = _mm256_setzero_si256();
  8428. __m256i sumi2 = _mm256_setzero_si256();
  8429. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8430. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8431. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  8432. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8433. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  8434. const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  8435. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  8436. const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  8437. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  8438. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8439. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8440. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8441. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8442. sh >>= 4;
  8443. const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1));
  8444. const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2));
  8445. sumi1 = _mm256_add_epi32(p_1, sumi1);
  8446. sumi2 = _mm256_add_epi32(p_2, sumi2);
  8447. }
  8448. accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8449. _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum);
  8450. }
  8451. *s = hsum_float_8(accum);
  8452. #elif defined __AVX__
  8453. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  8454. const __m128i m4b = _mm_set1_epi8(0x0f);
  8455. __m256 accum = _mm256_setzero_ps();
  8456. for (int ibl = 0; ibl < nb; ++ibl) {
  8457. const uint8_t * qs = x[ibl].qs;
  8458. const int8_t * q8 = y[ibl].qs;
  8459. uint16_t sh = x[ibl].scales_h;
  8460. __m128i sumi1_0 = _mm_setzero_si128();
  8461. __m128i sumi1_1 = _mm_setzero_si128();
  8462. __m128i sumi2_0 = _mm_setzero_si128();
  8463. __m128i sumi2_1 = _mm_setzero_si128();
  8464. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8465. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8466. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i *)qs); qs += 16;
  8467. const __m128i q8b_1_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8468. const __m128i q8b_1_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8469. const __m128i q8b_2_0 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8470. const __m128i q8b_2_1 = _mm_loadu_si128((const __m128i *)q8); q8 += 16;
  8471. const __m128i q4b_1_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b));
  8472. const __m128i q4b_1_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b));
  8473. const __m128i q4b_2_0 = _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b));
  8474. const __m128i q4b_2_1 = _mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b));
  8475. const __m128i p16_1_0 = mul_add_epi8_sse(q4b_1_0, q8b_1_0);
  8476. const __m128i p16_1_1 = mul_add_epi8_sse(q4b_1_1, q8b_1_1);
  8477. const __m128i p16_2_0 = mul_add_epi8_sse(q4b_2_0, q8b_2_0);
  8478. const __m128i p16_2_1 = mul_add_epi8_sse(q4b_2_1, q8b_2_1);
  8479. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8480. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8481. sh >>= 4;
  8482. const __m128i p_1_0 = _mm_madd_epi16(p16_1_0, _mm_set1_epi16(ls1));
  8483. const __m128i p_1_1 = _mm_madd_epi16(p16_1_1, _mm_set1_epi16(ls1));
  8484. const __m128i p_2_0 = _mm_madd_epi16(p16_2_0, _mm_set1_epi16(ls2));
  8485. const __m128i p_2_1 = _mm_madd_epi16(p16_2_1, _mm_set1_epi16(ls2));
  8486. sumi1_0 = _mm_add_epi32(p_1_0, sumi1_0);
  8487. sumi1_1 = _mm_add_epi32(p_1_1, sumi1_1);
  8488. sumi2_0 = _mm_add_epi32(p_2_0, sumi2_0);
  8489. sumi2_1 = _mm_add_epi32(p_2_1, sumi2_1);
  8490. }
  8491. __m128i sumi12_0 = _mm_add_epi32(sumi1_0, sumi2_0);
  8492. __m128i sumi12_1 = _mm_add_epi32(sumi1_1, sumi2_1);
  8493. accum = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8494. _mm256_cvtepi32_ps(MM256_SET_M128I(sumi12_1, sumi12_0))), accum);
  8495. }
  8496. *s = hsum_float_8(accum);
  8497. #elif defined(__POWER9_VECTOR__)
  8498. const vector signed char lowMask = vec_splats((signed char)0xF);
  8499. const vector int v0 = vec_splats((int32_t)0);
  8500. const vector unsigned char v4 = vec_splats((unsigned char)0x4);
  8501. vector float vsumf0 = vec_splats(0.0f);
  8502. vector float vsumf1 = vec_splats(0.0f);
  8503. vector float vsumf2 = vec_splats(0.0f);
  8504. vector float vsumf3 = vec_splats(0.0f);
  8505. const vector signed char values = vec_xl( 0, kvalues_iq4nl);
  8506. for (int ibl = 0; ibl < nb; ++ibl) {
  8507. vector float vxd = vec_splats(GGML_FP16_TO_FP32(x[ibl].d));
  8508. vector float vyd = vec_splats(y[ibl].d);
  8509. vector float vd = vec_mul(vxd, vyd);
  8510. vector signed int vsumi0 = v0;
  8511. vector signed int vsumi1 = v0;
  8512. vector signed int vsumi2 = v0;
  8513. vector signed int vsumi3 = v0;
  8514. uint16_t h = x[ibl].scales_h;
  8515. const uint8_t * restrict q4 = x[ibl].qs;
  8516. const uint8_t * restrict sc = x[ibl].scales_l;
  8517. const int8_t * restrict q8 = y[ibl].qs;
  8518. for (int ib = 0; ib < QK_K/64; ib ++ ) {
  8519. __builtin_prefetch(q4, 0, 1);
  8520. __builtin_prefetch(q8, 0, 1);
  8521. vector signed char qxs0 = (vector signed char)vec_xl( 0, q4);
  8522. vector signed char qxs1 = (vector signed char)vec_xl(16, q4);
  8523. q4 += 32;
  8524. vector signed char q4x00 = (vector signed char)vec_and(qxs0, lowMask);
  8525. vector signed char q4x01 = (vector signed char)vec_sr(qxs0, v4);
  8526. vector signed char q4x10 = (vector signed char)vec_and(qxs1, lowMask);
  8527. vector signed char q4x11 = (vector signed char)vec_sr(qxs1, v4);
  8528. q4x00 = vec_perm(values, values, (vector unsigned char)q4x00);
  8529. q4x01 = vec_perm(values, values, (vector unsigned char)q4x01);
  8530. q4x10 = vec_perm(values, values, (vector unsigned char)q4x10);
  8531. q4x11 = vec_perm(values, values, (vector unsigned char)q4x11);
  8532. vector signed char q8y0 = vec_xl( 0, q8);
  8533. vector signed char q8y1 = vec_xl(16, q8);
  8534. vector signed char q8y2 = vec_xl(32, q8);
  8535. vector signed char q8y3 = vec_xl(48, q8);
  8536. q8 += 64;
  8537. vector signed short qv0 = vec_add(vec_mule(q4x00, q8y0), vec_mulo(q4x00, q8y0));
  8538. vector signed short qv1 = vec_add(vec_mule(q4x01, q8y1), vec_mulo(q4x01, q8y1));
  8539. vector signed short qv2 = vec_add(vec_mule(q4x10, q8y2), vec_mulo(q4x10, q8y2));
  8540. vector signed short qv3 = vec_add(vec_mule(q4x11, q8y3), vec_mulo(q4x11, q8y3));
  8541. const uint16_t ls0 = (uint16_t)(((sc[0] & 0xf) | ((h << 4) & 0x30)) - 32);
  8542. const uint16_t ls1 = (uint16_t)(((sc[0] >> 4) | ((h << 2) & 0x30)) - 32);
  8543. h >>= 4;
  8544. sc ++;
  8545. vector signed short vscales01 = vec_splats((int16_t)ls0);
  8546. vector signed short vscales23 = vec_splats((int16_t)ls1);
  8547. vsumi0 = vec_msum(qv0, vscales01, vsumi0);
  8548. vsumi1 = vec_msum(qv1, vscales01, vsumi1);
  8549. vsumi2 = vec_msum(qv2, vscales23, vsumi2);
  8550. vsumi3 = vec_msum(qv3, vscales23, vsumi3);
  8551. }
  8552. vsumf0 = vec_madd(vec_ctf(vsumi0, 0), vd, vsumf0);
  8553. vsumf1 = vec_madd(vec_ctf(vsumi1, 0), vd, vsumf1);
  8554. vsumf2 = vec_madd(vec_ctf(vsumi2, 0), vd, vsumf2);
  8555. vsumf3 = vec_madd(vec_ctf(vsumi3, 0), vd, vsumf3);
  8556. }
  8557. vsumf0 = vec_add(vsumf0, vsumf2);
  8558. vsumf1 = vec_add(vsumf1, vsumf3);
  8559. vsumf0 = vec_add(vsumf0, vsumf1);
  8560. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 4));
  8561. vsumf0 = vec_add(vsumf0, vec_sld(vsumf0, vsumf0, 8));
  8562. *s = vec_extract(vsumf0, 0);
  8563. #elif defined(__loongarch_asx)
  8564. const __m128i values128 = __lsx_vld((const __m128i*)kvalues_iq4nl, 0);
  8565. const __m128i m4b = __lsx_vreplgr2vr_b(0x0f);
  8566. __m256 accum = (__m256)__lasx_xvldi(0);
  8567. __m256i tmp1;
  8568. __m128i tmp0, tmp2, tmp3, tmp4, mask_8f, mask;
  8569. mask_8f = __lsx_vreplgr2vr_b(0x8f);
  8570. for (int ibl = 0; ibl < nb; ++ibl) {
  8571. const uint8_t * qs = x[ibl].qs;
  8572. const int8_t * q8 = y[ibl].qs;
  8573. uint16_t sh = x[ibl].scales_h;
  8574. __m256i sumi1 = __lasx_xvldi(0);
  8575. __m256i sumi2 = __lasx_xvldi(0);
  8576. __m128i zero = __lsx_vldi(0);
  8577. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8578. const __m128i q4bits_1 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8579. const __m128i q4bits_2 = __lsx_vld((const __m128i*)qs, 0); qs += 16;
  8580. const __m256i q8b_1 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8581. const __m256i q8b_2 = __lasx_xvld((const __m256i *)q8, 0); q8 += 32;
  8582. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_1, 4), m4b), mask_8f);
  8583. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8584. mask = __lsx_vsle_b(zero, tmp2);
  8585. tmp3 = __lsx_vand_v(tmp0, mask);
  8586. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8587. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_1, m4b), mask_8f);
  8588. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8589. mask = __lsx_vsle_b(zero, tmp2);
  8590. tmp4 = __lsx_vand_v(tmp0, mask);
  8591. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8592. const __m256i q4b_1 = lasx_insertf128(tmp3, tmp4);
  8593. tmp2 = __lsx_vand_v(__lsx_vand_v(__lsx_vsrli_h(q4bits_2, 4), m4b), mask_8f);
  8594. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8595. mask = __lsx_vsle_b(zero, tmp2);
  8596. tmp3 = __lsx_vand_v(tmp0, mask);
  8597. tmp3 = __lsx_vshuf_b(values128, zero, tmp3);
  8598. tmp2 = __lsx_vand_v(__lsx_vand_v(q4bits_2, m4b), mask_8f);
  8599. tmp0 = __lsx_vori_b(tmp2, 0x10);
  8600. mask = __lsx_vsle_b(zero, tmp2);
  8601. tmp4 = __lsx_vand_v(tmp0, mask);
  8602. tmp4 = __lsx_vshuf_b(values128, zero, tmp4);
  8603. const __m256i q4b_2 = lasx_insertf128(tmp3, tmp4);
  8604. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  8605. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  8606. const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32;
  8607. const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32;
  8608. sh >>= 4;
  8609. __m256i tmp5, tmp6;
  8610. tmp1 = __lasx_xvreplgr2vr_h(ls1);
  8611. tmp5 = __lasx_xvmulwev_w_h(p16_1, tmp1);
  8612. tmp6 = __lasx_xvmulwod_w_h(p16_1, tmp1);
  8613. const __m256i p_1 = __lasx_xvadd_w(tmp5, tmp6);
  8614. tmp1 = __lasx_xvreplgr2vr_h(ls2);
  8615. tmp5 = __lasx_xvmulwev_w_h(p16_2, tmp1);
  8616. tmp6 = __lasx_xvmulwod_w_h(p16_2, tmp1);
  8617. const __m256i p_2 = __lasx_xvadd_w(tmp5, tmp6);
  8618. sumi1 = __lasx_xvadd_w(p_1, sumi1);
  8619. sumi2 = __lasx_xvadd_w(p_2, sumi2);
  8620. }
  8621. accum = __lasx_xvfmadd_s(__lasx_xvreplfr2vr_s(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d),
  8622. __lasx_xvffint_s_w(__lasx_xvadd_w(sumi1, sumi2)), accum);
  8623. }
  8624. *s = hsum_float_8(accum);
  8625. #else
  8626. float sumf = 0;
  8627. for (int ibl = 0; ibl < nb; ++ibl) {
  8628. const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d;
  8629. uint16_t h = x[ibl].scales_h;
  8630. const uint8_t * qs = x[ibl].qs;
  8631. const int8_t * q8 = y[ibl].qs;
  8632. for (int ib = 0; ib < QK_K/32; ib += 2) {
  8633. const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30);
  8634. const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30);
  8635. h >>= 4;
  8636. const float d1 = d4d8*(ls1 - 32);
  8637. const float d2 = d4d8*(ls2 - 32);
  8638. int sumi1 = 0, sumi2 = 0;
  8639. for (int j = 0; j < 16; ++j) {
  8640. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8641. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8642. }
  8643. sumf += d1 * (sumi1 + sumi2);
  8644. qs += 16;
  8645. q8 += 32;
  8646. sumi1 = sumi2 = 0;
  8647. for (int j = 0; j < 16; ++j) {
  8648. sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf];
  8649. sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4];
  8650. }
  8651. sumf += d2 * (sumi1 + sumi2);
  8652. qs += 16;
  8653. q8 += 32;
  8654. }
  8655. }
  8656. *s = sumf;
  8657. #endif
  8658. }
  8659. // ============================ 4-bit non-linear quants
  8660. void quantize_row_iq4_nl(const float * restrict x, void * restrict y, int64_t k) {
  8661. assert(k % QK4_NL == 0);
  8662. quantize_row_iq4_nl_ref(x, y, k);
  8663. }
  8664. void quantize_row_iq4_xs(const float * restrict x, void * restrict y, int64_t k) {
  8665. assert(k % QK_K == 0);
  8666. quantize_iq4_xs(x, y, 1, k, NULL);
  8667. }