123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-hparams.h"
- #include "ggml.h"
- #include <algorithm>
- uint32_t llama_hparams::n_head(uint32_t il) const {
- if (il < n_layer) {
- return n_head_arr[il];
- }
- GGML_ABORT("fatal error");
- }
- uint32_t llama_hparams::n_head_kv(uint32_t il) const {
- if (il < n_layer) {
- return n_head_kv_arr[il];
- }
- GGML_ABORT("fatal error");
- }
- uint32_t llama_hparams::n_ff(uint32_t il) const {
- if (il < n_layer) {
- return n_ff_arr[il];
- }
- GGML_ABORT("fatal error");
- }
- uint32_t llama_hparams::n_gqa(uint32_t il) const {
- const uint32_t n_head = this->n_head(il);
- const uint32_t n_head_kv = this->n_head_kv(il);
- if (n_head_kv == 0) {
- return 0;
- }
- return n_head/n_head_kv;
- }
- uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
- const uint32_t n_head_kv = this->n_head_kv(il);
- return n_embd_head_k * n_head_kv;
- }
- uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
- const uint32_t n_head_kv = this->n_head_kv(il);
- return n_embd_head_v * n_head_kv;
- }
- uint32_t llama_hparams::n_embd_k_s() const {
- if (wkv_head_size != 0) {
- // for RWKV models
- return 2 * n_embd;
- }
- // TODO: maybe support other convolution strides than 1
- // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
- return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
- }
- uint32_t llama_hparams::n_embd_v_s() const {
- if (wkv_head_size != 0) {
- // corresponds to RWKV's wkv_states size
- return n_embd * wkv_head_size;
- }
- // corresponds to Mamba's ssm_states size
- return ssm_d_state * ssm_d_inner;
- }
- bool llama_hparams::n_bskcn(uint32_t n, uint32_t il) const {
- if (il < n_layer) {
- return n_bskcn_arr[n][il] > 0;
- }
- GGML_ABORT("fatal error");
- }
- bool llama_hparams::cross_attention_layers(uint32_t il) const {
- return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
- }
|