123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-kv-cache.h"
- #include "llama-impl.h"
- #include "llama-batch.h"
- #include "llama-cparams.h"
- #include "llama-model.h"
- #include <algorithm>
- #include <limits>
- #include <map>
- static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};
- uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
- // the FA kernels require padding to avoid extra runtime boundary checks
- return cparams.flash_attn ? 256u : 32u;
- }
- bool llama_kv_cache_init(
- struct llama_kv_cache & cache,
- const llama_model & model,
- const llama_cparams & cparams,
- ggml_type type_k,
- ggml_type type_v,
- uint32_t kv_size,
- bool offload) {
- const struct llama_hparams & hparams = model.hparams;
- const int32_t n_layer = hparams.n_layer;
- cache.has_shift = false;
- cache.recurrent = llama_model_is_recurrent(&model);
- cache.v_trans = !cache.recurrent && !cparams.flash_attn;
- cache.can_shift = !cache.recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
- LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
- __func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, cache.can_shift);
- cache.head = 0;
- cache.size = kv_size;
- cache.used = 0;
- cache.type_k = type_k;
- cache.type_v = type_v;
- cache.cells.clear();
- cache.cells.resize(kv_size);
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- struct ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- cache.ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- cache.k_l.reserve(n_layer);
- cache.v_l.reserve(n_layer);
- for (int i = 0; i < n_layer; i++) {
- // for cross attention layers
- if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
- const llama_model::buft_list_t * buft_list;
- if (offload) {
- buft_list = model.dev_layer.at(i).buft_list;
- } else {
- buft_list = &model.cpu_buft_list;
- }
- ggml_backend_buffer_type_t buft = select_buft(*buft_list,
- [&](ggml_context * ctx) {
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- if (hparams.rope_type == LLAMA_ROPE_TYPE_NONE) {
- return k;
- }
- ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- return ggml_rope(ctx, k, p, hparams.n_rot, hparams.rope_type);
- });
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
- return false;
- }
- ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
- ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- cache.k_l.push_back(k);
- cache.v_l.push_back(v);
- continue;
- }
- const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
- const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
- LLAMA_LOG_DEBUG("%s: layer %d: n_embd_k_gqa = %d, n_embd_v_gqa = %d\n", __func__, i, n_embd_k_gqa, n_embd_v_gqa);
- ggml_backend_buffer_type_t buft;
- if (offload) {
- auto * dev = model.dev_layer.at(i).dev;
- buft = ggml_backend_dev_buffer_type(dev);
- } else {
- buft = ggml_backend_cpu_buffer_type();
- }
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to create ggml context for kv cache\n", __func__);
- return false;
- }
- ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
- ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
- ggml_format_name(k, "cache_k_l%d", i);
- ggml_format_name(v, "cache_v_l%d", i);
- cache.k_l.push_back(k);
- cache.v_l.push_back(v);
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- cache.bufs.emplace_back(buf);
- }
- return true;
- }
- struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
- struct llama_kv_cache & cache,
- const struct llama_ubatch & batch) {
- const uint32_t n_tokens = batch.n_tokens;
- const uint32_t n_seqs = batch.n_seqs;
- const uint32_t n_seq_tokens = batch.n_seq_tokens;
- if (cache.recurrent) {
- // For recurrent state architectures (like Mamba or RWKV),
- // each cache cell can store the state for a whole sequence.
- // A slot should be always be contiguous.
- // can only process batches with an equal number of new tokens in each sequence
- GGML_ASSERT(batch.equal_seqs);
- int32_t min = cache.size - 1;
- int32_t max = 0;
- // everything should fit if all seq_ids are smaller than the max
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t n_seq_id = batch.n_seq_id[s];
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- const llama_seq_id seq_id = batch.seq_id[s][j];
- if (seq_id < 0 || (uint32_t) seq_id >= cache.size) {
- // too big seq_id
- // TODO: would it be possible to resize the cache instead?
- LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
- return llama_kv_cache_slot_info_failed;
- }
- if (j > 0) {
- llama_kv_cell & seq = cache.cells[seq_id];
- if (seq.tail >= 0) {
- llama_kv_cell & cell = cache.cells[seq.tail];
- // clear cells from seq_ids that become shared
- // (should not normally happen, but let's handle it anyway)
- cell.seq_id.erase(seq_id);
- seq.tail = -1;
- if (cell.seq_id.empty()) {
- cell.pos = -1;
- cell.src = -1;
- cache.used -= 1;
- }
- }
- }
- }
- }
- #ifndef NDEBUG
- {
- std::vector<int32_t> tails_verif;
- tails_verif.assign(cache.size, -1);
- for (uint32_t i = 0; i < cache.size; ++i) {
- llama_kv_cell & cell = cache.cells[i];
- for (llama_seq_id seq_id : cell.seq_id) {
- if (tails_verif[seq_id] != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
- }
- tails_verif[seq_id] = i;
- }
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (tails_verif[i] != cache.cells[i].tail) {
- LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cache.cells[i].tail, tails_verif[i]);
- }
- }
- }
- #endif
- // find next empty cell
- uint32_t next_empty_cell = cache.head;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
- llama_kv_cell & cell = cache.cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- // find usable cell range
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_seq_id seq_id = batch.seq_id[s][0];
- llama_kv_cell & seq_meta = cache.cells[seq_id];
- bool has_cell = false;
- if (seq_meta.tail >= 0) {
- llama_kv_cell & cell = cache.cells[seq_meta.tail];
- GGML_ASSERT(cell.has_seq_id(seq_id));
- // does this seq_id "own" the cell?
- if (cell.seq_id.size() == 1) { has_cell = true; }
- }
- if (!has_cell) {
- llama_kv_cell & empty_cell = cache.cells[next_empty_cell];
- GGML_ASSERT(empty_cell.is_empty());
- // copy old tail into the empty cell
- if (seq_meta.tail >= 0) {
- llama_kv_cell & orig_cell = cache.cells[seq_meta.tail];
- empty_cell.pos = orig_cell.pos;
- empty_cell.src = orig_cell.src;
- orig_cell.seq_id.erase(seq_id);
- empty_cell.seq_id.insert(seq_id); // will be overwritten
- }
- seq_meta.tail = next_empty_cell;
- // find next empty cell
- if (s + 1 < n_seqs) {
- next_empty_cell += 1;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (next_empty_cell >= cache.size) { next_empty_cell -= cache.size; }
- llama_kv_cell & cell = cache.cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- }
- }
- if (min > seq_meta.tail) { min = seq_meta.tail; }
- if (max < seq_meta.tail) { max = seq_meta.tail; }
- }
- // gather and re-order
- for (uint32_t s = 0; s < n_seqs; ++s) {
- int32_t dst_id = s + min;
- int32_t src_id = cache.cells[batch.seq_id[s][0]].tail;
- if (dst_id != src_id) {
- llama_kv_cell & dst_cell = cache.cells[dst_id];
- llama_kv_cell & src_cell = cache.cells[src_id];
- std::swap(dst_cell.pos, src_cell.pos);
- std::swap(dst_cell.src, src_cell.src);
- std::swap(dst_cell.seq_id, src_cell.seq_id);
- // swap tails (assuming they NEVER overlap)
- for (const llama_seq_id seq_id : src_cell.seq_id) {
- cache.cells[seq_id].tail = src_id;
- }
- for (const llama_seq_id seq_id : dst_cell.seq_id) {
- cache.cells[seq_id].tail = dst_id;
- }
- }
- }
- // update the pos of the used seqs
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const llama_pos last_pos = batch.pos[n_seq_tokens * s + n_seq_tokens - 1];
- int32_t cell_id = s + min;
- llama_kv_cell & cell = cache.cells[cell_id];
- if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
- // What should happen when the pos backtracks or skips a value?
- // Clearing the state mid-batch would require special-casing which isn't done.
- LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
- __func__, last_pos, cell.pos, batch.seq_id[s][0], n_seq_tokens);
- }
- cell.pos = last_pos;
- cell.seq_id.clear();
- for (int32_t j = 0; j < batch.n_seq_id[s]; ++j) {
- const llama_seq_id seq_id = batch.seq_id[s][j];
- cell.seq_id.insert(seq_id);
- cache.cells[seq_id].tail = cell_id;
- }
- }
- // allow getting the range of used cells, from head to head + n
- cache.head = min;
- cache.n = max - min + 1;
- cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
- [](const llama_kv_cell& cell){ return !cell.is_empty(); });
- // sanity check
- return llama_kv_cache_slot_info(cache.n >= n_seqs);
- }
- // otherwise, one cell per token.
- if (n_tokens > cache.size) {
- LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
- return llama_kv_cache_slot_info_failed;
- }
- uint32_t n_tested = 0;
- while (true) {
- if (cache.head + n_tokens > cache.size) {
- n_tested += cache.size - cache.head;
- cache.head = 0;
- continue;
- }
- bool found = true;
- for (uint32_t i = 0; i < n_tokens; i++) {
- if (cache.cells[cache.head + i].pos >= 0) {
- found = false;
- cache.head += i + 1;
- n_tested += i + 1;
- break;
- }
- }
- if (found) {
- break;
- }
- if (n_tested >= cache.size) {
- //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
- return llama_kv_cache_slot_info_failed;
- }
- }
- for (uint32_t s = 0; s < n_seqs; s++) {
- for (uint32_t i = 0; i < n_seq_tokens; ++i) {
- uint32_t k = s*n_seq_tokens + i;
- cache.cells[cache.head + k].pos = batch.pos[k];
- for (int32_t j = 0; j < batch.n_seq_id[s]; j++) {
- cache.cells[cache.head + k].seq_id.insert(batch.seq_id[s][j]);
- }
- }
- }
- cache.used += n_tokens;
- return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
- }
- uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
- for (uint32_t i = cache.size; i > 0; --i) {
- const llama_kv_cell & cell = cache.cells[i - 1];
- if (cell.pos >= 0 && !cell.is_empty()) {
- return i;
- }
- }
- return 0;
- }
- void llama_kv_cache_clear(struct llama_kv_cache & cache) {
- for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- cache.cells[i].src = -1;
- cache.cells[i].tail = -1;
- }
- cache.head = 0;
- cache.used = 0;
- for (auto & buf : cache.bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- bool llama_kv_cache_seq_rm(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- // models like Mamba or RWKV can't have a state partially erased
- if (cache.recurrent) {
- if (seq_id >= (int64_t) cache.size) {
- // could be fatal
- return false;
- }
- if (0 <= seq_id) {
- int32_t & tail_id = cache.cells[seq_id].tail;
- if (tail_id >= 0) {
- const llama_kv_cell & cell = cache.cells[tail_id];
- // partial intersection is invalid
- if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
- return false;
- }
- // invalidate tails which will be cleared
- if (p0 <= cell.pos && cell.pos < p1) {
- tail_id = -1;
- }
- }
- } else {
- // seq_id is negative, then the range should include everything or nothing
- if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
- return false;
- }
- }
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- if (seq_id < 0) {
- cache.cells[i].seq_id.clear();
- } else if (cache.cells[i].has_seq_id(seq_id)) {
- cache.cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cache.cells[i].is_empty()) {
- // keep count of the number of used cells
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].src = -1;
- if (new_head == cache.size) new_head = i;
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- return true;
- }
- void llama_kv_cache_seq_cp(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id_src,
- llama_seq_id seq_id_dst,
- llama_pos p0,
- llama_pos p1) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- if (cache.recurrent) {
- if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
- llama_kv_cell & tail_src = cache.cells[seq_id_src];
- llama_kv_cell & tail_dst = cache.cells[seq_id_dst];
- if (tail_dst.tail >= 0) {
- // clear destination seq_id if it wasn't empty
- llama_kv_cell & cell_dst = cache.cells[tail_dst.tail];
- cell_dst.seq_id.erase(seq_id_dst);
- tail_dst.tail = -1;
- if (cell_dst.seq_id.empty()) {
- cell_dst.pos = -1;
- cell_dst.delta = -1;
- cell_dst.src = -1;
- cache.used -= 1;
- }
- }
- if (tail_src.tail >= 0) {
- llama_kv_cell & cell_src = cache.cells[tail_src.tail];
- cell_src.seq_id.insert(seq_id_dst);
- tail_dst.tail = tail_src.tail;
- }
- }
- return;
- }
- // otherwise, this is the KV cache of a Transformer-like model
- cache.head = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.cells[i].seq_id.insert(seq_id_dst);
- }
- }
- }
- void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- uint32_t new_head = cache.size;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.recurrent && (llama_seq_id) i != seq_id) {
- cache.cells[i].tail = -1;
- }
- if (!cache.cells[i].has_seq_id(seq_id)) {
- if (cache.cells[i].pos >= 0) cache.used--;
- cache.cells[i].pos = -1;
- cache.cells[i].src = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) new_head = i;
- } else {
- cache.cells[i].seq_id.clear();
- cache.cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
- }
- void llama_kv_cache_seq_add(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- llama_pos delta) {
- uint32_t new_head = cache.size;
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) return;
- if (cache.recurrent) {
- // for Mamba-like or RWKV models, only the pos needs to be shifted
- if (0 <= seq_id && seq_id < (int64_t) cache.size) {
- const int32_t tail_id = cache.cells[seq_id].tail;
- if (tail_id >= 0) {
- llama_kv_cell & cell = cache.cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos += delta;
- }
- }
- }
- return;
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- cache.cells[i].pos += delta;
- cache.cells[i].delta += delta;
- if (cache.cells[i].pos < 0) {
- if (!cache.cells[i].is_empty()) {
- cache.used--;
- }
- cache.cells[i].pos = -1;
- cache.cells[i].seq_id.clear();
- if (new_head == cache.size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- // Otherwise we just start the next search from the beginning.
- cache.head = new_head != cache.size ? new_head : 0;
- }
- void llama_kv_cache_seq_div(
- struct llama_kv_cache & cache,
- llama_seq_id seq_id,
- llama_pos p0,
- llama_pos p1,
- int d) {
- if (p0 < 0) p0 = 0;
- if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) return;
- if (cache.recurrent) {
- // for Mamba-like or RWKV models, only the pos needs to be changed
- if (0 <= seq_id && seq_id < (int64_t) cache.size) {
- const int32_t tail_id = cache.cells[seq_id].tail;
- if (tail_id >= 0) {
- llama_kv_cell & cell = cache.cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos /= d;
- }
- }
- }
- return;
- }
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
- cache.has_shift = true;
- {
- llama_pos p_old = cache.cells[i].pos;
- cache.cells[i].pos /= d;
- cache.cells[i].delta += cache.cells[i].pos - p_old;
- }
- }
- }
- }
- llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
- llama_pos result = 0;
- for (uint32_t i = 0; i < cache.size; ++i) {
- if (cache.cells[i].has_seq_id(seq_id)) {
- result = std::max(result, cache.cells[i].pos);
- }
- }
- return result;
- }
- void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
- if (!cache.recurrent) {
- cache.do_defrag = true;
- }
- }
- int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv) {
- int result = 0;
- for (uint32_t i = 0; i < kv.size; i++) {
- result += kv.cells[i].seq_id.size();
- }
- return result;
- }
- int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv) {
- return kv.used;
- }
- bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv) {
- return kv.can_shift;
- }
- //
- // kv cache view
- //
- struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max) {
- struct llama_kv_cache_view result = {
- /*.n_cells = */ 0,
- /*.n_seq_max = */ n_seq_max,
- /*.token_count = */ 0,
- /*.used_cells = */ llama_get_kv_cache_used_cells(kv),
- /*.max_contiguous = */ 0,
- /*.max_contiguous_idx = */ -1,
- /*.cells = */ nullptr,
- /*.cells_sequences = */ nullptr,
- };
- return result;
- }
- void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
- if (view->cells != nullptr) {
- free(view->cells);
- view->cells = nullptr;
- }
- if (view->cells_sequences != nullptr) {
- free(view->cells_sequences);
- view->cells_sequences = nullptr;
- }
- }
- void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv) {
- if (uint32_t(view->n_cells) < kv.size || view->cells == nullptr) {
- view->n_cells = int32_t(kv.size);
- void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
- view->cells = (struct llama_kv_cache_view_cell *)p;
- p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
- GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
- view->cells_sequences = (llama_seq_id *)p;
- }
- const std::vector<llama_kv_cell> & kv_cells = kv.cells;
- llama_kv_cache_view_cell * c_curr = view->cells;
- llama_seq_id * cs_curr = view->cells_sequences;
- int32_t used_cells = 0;
- int32_t token_count = 0;
- int32_t curr_contig_idx = -1;
- uint32_t max_contig = 0;
- int32_t max_contig_idx = -1;
- for (int32_t i = 0; i < int32_t(kv.size); i++, c_curr++, cs_curr += view->n_seq_max) {
- const size_t curr_size = kv_cells[i].seq_id.size();
- token_count += curr_size;
- c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
- if (curr_size > 0) {
- if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
- max_contig = i - curr_contig_idx;
- max_contig_idx = curr_contig_idx;
- }
- curr_contig_idx = -1;
- } else if (curr_contig_idx < 0) {
- curr_contig_idx = i;
- }
- int seq_idx = 0;
- for (const llama_seq_id it : kv_cells[i].seq_id) {
- if (seq_idx >= view->n_seq_max) {
- break;
- }
- cs_curr[seq_idx] = it;
- seq_idx++;
- }
- if (seq_idx != 0) {
- used_cells++;
- }
- for (; seq_idx < view->n_seq_max; seq_idx++) {
- cs_curr[seq_idx] = -1;
- }
- }
- if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
- max_contig_idx = curr_contig_idx;
- max_contig = kv_cells.size() - curr_contig_idx;
- }
- view->max_contiguous = max_contig;
- view->max_contiguous_idx = max_contig_idx;
- view->token_count = token_count;
- view->used_cells = used_cells;
- if (uint32_t(used_cells) != kv.used) {
- LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
- __func__, kv.used, used_cells);
- }
- }
|