123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- package gemma3
- import (
- "math"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- "github.com/ollama/ollama/model/input"
- )
- type TextOptions struct {
- hiddenSize, numHeads, numKVHeads int
- attnKeyLen, attnValLen int
- eps, ropeScale float32
- ropeLocalBase, ropeGlobalBase float32
- largeModelScaling bool
- }
- type TextModel struct {
- model.Base
- model.SentencePieceModel
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
- Layers []TextLayer `gguf:"blk"`
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
- Output *nn.Linear `gguf:"output,alt:token_embd"`
- *TextOptions
- }
- const (
- gemmaGlobalCacheCount = 6
- gemma27BLayerCount = 62
- )
- const (
- cacheTypeSWA = iota
- cacheTypeCausal
- )
- func newTextModel(c ml.Config) *TextModel {
- numBlocks := int(c.Uint("block_count"))
- m := TextModel{
- SentencePieceModel: model.NewSentencePieceModel(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Scores: c.Floats("tokenizer.ggml.scores"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
- },
- ),
- Layers: make([]TextLayer, numBlocks),
- TextOptions: &TextOptions{
- hiddenSize: int(c.Uint("embedding_length")),
- numHeads: int(c.Uint("attention.head_count")),
- numKVHeads: int(c.Uint("attention.head_count_kv")),
- attnKeyLen: int(c.Uint("attention.key_length", 256)),
- attnValLen: int(c.Uint("attention.value_length", 256)),
- eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
- ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
- ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
- ropeScale: c.Float("rope.freq_scale", 1.0),
- },
- }
- if numBlocks == gemma27BLayerCount {
- m.largeModelScaling = true
- }
- return &m
- }
- type TextSelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
- Key *nn.Linear `gguf:"attn_k"`
- KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_output"`
- }
- func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- ropeType := uint32(2)
- ropeBase := opts.ropeLocalBase
- if (layer+1)%gemmaGlobalCacheCount == 0 {
- ropeBase = opts.ropeGlobalBase
- }
- q := sa.Query.Forward(ctx, hiddenState)
- q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
- q = sa.QueryNorm.Forward(ctx, q, opts.eps)
- q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
- if opts.largeModelScaling {
- q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
- } else {
- q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
- }
- k := sa.Key.Forward(ctx, hiddenState)
- k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
- k = sa.KeyNorm.Forward(ctx, k, opts.eps)
- k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, ropeBase, opts.ropeScale)
- v := sa.Value.Forward(ctx, hiddenState)
- v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
- scaleFactor := 1.0
- kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
- kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)
- return sa.Output.Forward(ctx, kqv)
- }
- func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
- ropeBase := m.TextOptions.ropeLocalBase
- if (layer+1)%gemmaGlobalCacheCount == 0 {
- ropeBase = m.TextOptions.ropeGlobalBase
- }
- return key.RoPE(ctx, shift, nil, uint32(m.TextOptions.attnKeyLen), uint32(2), ropeBase, m.TextOptions.ropeScale), nil
- }
- type TextMLP struct {
- Up *nn.Linear `gguf:"ffn_up"`
- Down *nn.Linear `gguf:"ffn_down"`
- Gate *nn.Linear `gguf:"ffn_gate"`
- }
- func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
- return mlp.Down.Forward(ctx, hiddenState)
- }
- type TextLayer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- SelfAttention *TextSelfAttention
- PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *TextMLP
- PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"`
- }
- func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
- residual := hiddenState
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.SelfAttention.Forward(ctx, layer, hiddenState, positionIDs, cache, opts)
- hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
- // In the final layer (outputs != nil), optimize by pruning to just the token positions
- // we need logits for.
- if outputs != nil {
- hiddenState = hiddenState.Rows(ctx, outputs)
- residual = residual.Rows(ctx, outputs)
- }
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
- hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
- return hiddenState.Add(ctx, residual)
- }
- func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, opts input.Options, cache kvcache.Cache) ml.Tensor {
- hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
- hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
- // set image embeddings
- var except []int
- for _, image := range opts.Multimodal {
- visionOutputs := image.Multimodal.(ml.Tensor)
- ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
- for i := range visionOutputs.Dim(1) {
- except = append(except, image.Index+i)
- }
- }
- for i, layer := range m.Layers {
- // gemma alternates between the sliding window (local) and causal (global)
- // kv cache every 6 layers
- cacheType := cacheTypeSWA
- if (i+1)%gemmaGlobalCacheCount == 0 {
- cacheType = cacheTypeCausal
- }
- cache.SetLayer(i)
- wc := cache.(*kvcache.WrapperCache)
- wc.SetLayerType(cacheType)
- if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
- causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
- }
- var lastLayerOutputs ml.Tensor
- if i == len(m.Layers)-1 {
- lastLayerOutputs = outputs
- }
- hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextOptions)
- }
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
- return m.Output.Forward(ctx, hiddenState)
- }
|