clip.cpp 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // NOTE: This is modified from clip.cpp only for LLaVA,
  27. // so there might be still unnecessary artifacts hanging around
  28. // I'll gradually clean and extend it
  29. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  30. #include "clip.h"
  31. #include "log.h"
  32. #include "ggml.h"
  33. #include "ggml-alloc.h"
  34. #include "ggml-backend.h"
  35. #ifdef GGML_USE_CUDA
  36. #include "ggml-cuda.h"
  37. #endif
  38. #ifdef GGML_USE_METAL
  39. #include "ggml-metal.h"
  40. #endif
  41. #ifdef GGML_USE_CANN
  42. #include "ggml-cann.h"
  43. #endif
  44. #ifdef GGML_USE_VULKAN
  45. #include "ggml-vulkan.h"
  46. #endif
  47. #define STB_IMAGE_IMPLEMENTATION
  48. #include "stb_image.h"
  49. #include <cassert>
  50. #include <cmath>
  51. #include <cstdlib>
  52. #include <cstring>
  53. #include <fstream>
  54. #include <map>
  55. #include <regex>
  56. #include <stdexcept>
  57. #include <vector>
  58. #include <sstream>
  59. #include <cinttypes>
  60. #include <limits>
  61. #if defined(_WIN32)
  62. #define WIN32_LEAN_AND_MEAN
  63. #ifndef NOMINMAX
  64. #define NOMINMAX
  65. #endif
  66. #include <windows.h>
  67. #if __GLIBCXX__
  68. #include <cstdio>
  69. #include <ext/stdio_filebuf.h>
  70. #include <fcntl.h>
  71. #endif
  72. #endif
  73. //#define CLIP_DEBUG_FUNCTIONS
  74. // RGB uint8 image
  75. struct clip_image_u8 {
  76. int nx;
  77. int ny;
  78. std::vector<uint8_t> buf;
  79. };
  80. // RGB float32 image (NHWC)
  81. // Memory layout: RGBRGBRGB...
  82. struct clip_image_f32 {
  83. int nx;
  84. int ny;
  85. std::vector<float> buf;
  86. };
  87. static std::string format(const char * fmt, ...) {
  88. va_list ap;
  89. va_list ap2;
  90. va_start(ap, fmt);
  91. va_copy(ap2, ap);
  92. int size = vsnprintf(NULL, 0, fmt, ap);
  93. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  94. std::vector<char> buf(size + 1);
  95. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  96. GGML_ASSERT(size2 == size);
  97. va_end(ap2);
  98. va_end(ap);
  99. return std::string(buf.data(), buf.size());
  100. }
  101. //
  102. // key constants
  103. //
  104. #define KEY_FTYPE "general.file_type"
  105. #define KEY_NAME "general.name"
  106. #define KEY_DESCRIPTION "general.description"
  107. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  108. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  109. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  110. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  111. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  112. #define KEY_USE_GELU "clip.use_gelu"
  113. #define KEY_N_EMBD "clip.%s.embedding_length"
  114. #define KEY_N_FF "clip.%s.feed_forward_length"
  115. #define KEY_N_BLOCK "clip.%s.block_count"
  116. #define KEY_N_HEAD "clip.%s.attention.head_count"
  117. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  118. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  119. #define KEY_TOKENS "tokenizer.ggml.tokens"
  120. #define KEY_N_POSITIONS "clip.text.context_length"
  121. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  122. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  123. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  124. #define KEY_IMAGE_STD "clip.vision.image_std"
  125. #define KEY_PROJ_TYPE "clip.projector_type"
  126. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  127. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  128. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  129. //
  130. // tensor name constants
  131. //
  132. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  133. #define TN_POS_EMBD "%s.position_embd.weight"
  134. #define TN_CLASS_EMBD "v.class_embd"
  135. #define TN_PATCH_EMBD "v.patch_embd.weight"
  136. #define TN_PATCH_BIAS "v.patch_embd.bias"
  137. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  138. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  139. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  140. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  141. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  142. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  143. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  144. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  145. #define TN_LN_PRE "%s.pre_ln.%s"
  146. #define TN_LN_POST "%s.post_ln.%s"
  147. #define TN_TEXT_PROJ "text_projection.weight"
  148. #define TN_VIS_PROJ "visual_projection.weight"
  149. #define TN_LLAVA_PROJ "mm.%d.%s"
  150. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  151. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  152. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  153. #define TN_IMAGE_NEWLINE "model.image_newline"
  154. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  155. #define TN_MINICPMV_QUERY "resampler.query"
  156. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  157. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  158. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  159. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  160. enum projector_type {
  161. PROJECTOR_TYPE_MLP,
  162. PROJECTOR_TYPE_MLP_NORM,
  163. PROJECTOR_TYPE_LDP,
  164. PROJECTOR_TYPE_LDPV2,
  165. PROJECTOR_TYPE_RESAMPLER,
  166. PROJECTOR_TYPE_UNKNOWN,
  167. };
  168. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  169. { PROJECTOR_TYPE_MLP, "mlp" },
  170. { PROJECTOR_TYPE_LDP, "ldp" },
  171. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  172. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  173. };
  174. //
  175. // utilities to get data from a gguf file
  176. //
  177. static int get_key_idx(const gguf_context * ctx, const char * key) {
  178. int i = gguf_find_key(ctx, key);
  179. if (i == -1) {
  180. LOG_TEE("key %s not found in file\n", key);
  181. throw std::runtime_error(format("Missing required key: %s", key));
  182. }
  183. return i;
  184. }
  185. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  186. const int i = get_key_idx(ctx, key.c_str());
  187. return gguf_get_val_u32(ctx, i);
  188. }
  189. static float get_f32(const gguf_context * ctx, const std::string & key) {
  190. const int i = get_key_idx(ctx, key.c_str());
  191. return gguf_get_val_f32(ctx, i);
  192. }
  193. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  194. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  195. if (!cur) {
  196. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  197. }
  198. return cur;
  199. }
  200. static std::string get_ftype(int ftype) {
  201. return ggml_type_name(static_cast<ggml_type>(ftype));
  202. }
  203. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  204. switch (type) {
  205. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  206. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  207. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  208. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  209. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  210. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  211. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  212. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  213. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  214. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  215. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  216. default: return format("unknown type %d", type);
  217. }
  218. }
  219. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  220. if (search.empty()) {
  221. return;
  222. }
  223. std::string builder;
  224. builder.reserve(s.length());
  225. size_t pos = 0;
  226. size_t last_pos = 0;
  227. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  228. builder.append(s, last_pos, pos - last_pos);
  229. builder.append(replace);
  230. last_pos = pos + search.length();
  231. }
  232. builder.append(s, last_pos, std::string::npos);
  233. s = std::move(builder);
  234. }
  235. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  236. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  237. switch (type) {
  238. case GGUF_TYPE_STRING:
  239. return gguf_get_val_str(ctx_gguf, i);
  240. case GGUF_TYPE_ARRAY:
  241. {
  242. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  243. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  244. const void * data = gguf_get_arr_data(ctx_gguf, i);
  245. std::stringstream ss;
  246. ss << "[";
  247. for (int j = 0; j < arr_n; j++) {
  248. if (arr_type == GGUF_TYPE_STRING) {
  249. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  250. // escape quotes
  251. replace_all(val, "\\", "\\\\");
  252. replace_all(val, "\"", "\\\"");
  253. ss << '"' << val << '"';
  254. } else if (arr_type == GGUF_TYPE_ARRAY) {
  255. ss << "???";
  256. } else {
  257. ss << gguf_data_to_str(arr_type, data, j);
  258. }
  259. if (j < arr_n - 1) {
  260. ss << ", ";
  261. }
  262. }
  263. ss << "]";
  264. return ss.str();
  265. }
  266. default:
  267. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  268. }
  269. }
  270. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  271. size_t tensor_size = ggml_nbytes(tensor);
  272. LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  273. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  274. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  275. }
  276. static projector_type clip_projector_type_from_string(const std::string & name) {
  277. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  278. if (kv.second == name) {
  279. return kv.first;
  280. }
  281. }
  282. return PROJECTOR_TYPE_UNKNOWN;
  283. }
  284. #ifdef CLIP_DEBUG_FUNCTIONS
  285. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  286. std::ofstream file(filename, std::ios::binary);
  287. if (!file.is_open()) {
  288. LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
  289. return;
  290. }
  291. // PPM header: P6 format, width, height, and max color value
  292. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  293. // Write pixel data
  294. for (size_t i = 0; i < img.buf.size(); i += 3) {
  295. // PPM expects binary data in RGB format, which matches our image buffer
  296. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  297. }
  298. file.close();
  299. }
  300. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  301. std::ofstream file(filename, std::ios::binary);
  302. if (!file.is_open()) {
  303. LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
  304. return;
  305. }
  306. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  307. int bytesPerPixel = 3;
  308. int widthInBytes = img.nx * bytesPerPixel;
  309. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  310. int stride = widthInBytes + paddingAmount;
  311. // Bitmap file header
  312. unsigned char fileHeader[14] = {
  313. 'B','M', // Signature
  314. 0,0,0,0, // Image file size in bytes
  315. 0,0,0,0, // Reserved
  316. 54,0,0,0 // Start of pixel array
  317. };
  318. // Total file size
  319. fileSize = 54 + (stride * img.ny);
  320. fileHeader[2] = (unsigned char)(fileSize);
  321. fileHeader[3] = (unsigned char)(fileSize >> 8);
  322. fileHeader[4] = (unsigned char)(fileSize >> 16);
  323. fileHeader[5] = (unsigned char)(fileSize >> 24);
  324. // Bitmap information header (BITMAPINFOHEADER)
  325. unsigned char infoHeader[40] = {
  326. 40,0,0,0, // Size of this header (40 bytes)
  327. 0,0,0,0, // Image width
  328. 0,0,0,0, // Image height
  329. 1,0, // Number of color planes
  330. 24,0, // Bits per pixel
  331. 0,0,0,0, // No compression
  332. 0,0,0,0, // Image size (can be 0 for no compression)
  333. 0,0,0,0, // X pixels per meter (not specified)
  334. 0,0,0,0, // Y pixels per meter (not specified)
  335. 0,0,0,0, // Total colors (color table not used)
  336. 0,0,0,0 // Important colors (all are important)
  337. };
  338. // Width and height in the information header
  339. infoHeader[4] = (unsigned char)(img.nx);
  340. infoHeader[5] = (unsigned char)(img.nx >> 8);
  341. infoHeader[6] = (unsigned char)(img.nx >> 16);
  342. infoHeader[7] = (unsigned char)(img.nx >> 24);
  343. infoHeader[8] = (unsigned char)(img.ny);
  344. infoHeader[9] = (unsigned char)(img.ny >> 8);
  345. infoHeader[10] = (unsigned char)(img.ny >> 16);
  346. infoHeader[11] = (unsigned char)(img.ny >> 24);
  347. // Write file headers
  348. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  349. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  350. // Pixel data
  351. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  352. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  353. for (int x = 0; x < img.nx; ++x) {
  354. // Each pixel
  355. size_t pixelIndex = (y * img.nx + x) * 3;
  356. unsigned char pixel[3] = {
  357. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  358. img.buf[pixelIndex + 1],
  359. img.buf[pixelIndex]
  360. };
  361. file.write(reinterpret_cast<char*>(pixel), 3);
  362. }
  363. // Write padding for the row
  364. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  365. }
  366. file.close();
  367. }
  368. // debug function to convert f32 to u8
  369. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  370. dst.nx = src.nx;
  371. dst.ny = src.ny;
  372. dst.buf.resize(3 * src.nx * src.ny);
  373. for (size_t i = 0; i < src.buf.size(); ++i) {
  374. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  375. }
  376. }
  377. #endif
  378. //
  379. // clip layers
  380. //
  381. struct clip_hparams {
  382. int32_t image_size;
  383. int32_t patch_size;
  384. int32_t hidden_size;
  385. int32_t n_intermediate;
  386. int32_t projection_dim;
  387. int32_t n_head;
  388. int32_t n_layer;
  389. float eps;
  390. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  391. int32_t image_grid_pinpoints[32];
  392. int32_t image_crop_resolution;
  393. };
  394. struct clip_layer {
  395. // attention
  396. struct ggml_tensor * k_w;
  397. struct ggml_tensor * k_b;
  398. struct ggml_tensor * q_w;
  399. struct ggml_tensor * q_b;
  400. struct ggml_tensor * v_w;
  401. struct ggml_tensor * v_b;
  402. struct ggml_tensor * o_w;
  403. struct ggml_tensor * o_b;
  404. // layernorm 1
  405. struct ggml_tensor * ln_1_w;
  406. struct ggml_tensor * ln_1_b;
  407. // ff
  408. struct ggml_tensor * ff_i_w;
  409. struct ggml_tensor * ff_i_b;
  410. struct ggml_tensor * ff_o_w;
  411. struct ggml_tensor * ff_o_b;
  412. // layernorm 2
  413. struct ggml_tensor * ln_2_w;
  414. struct ggml_tensor * ln_2_b;
  415. };
  416. struct clip_vision_model {
  417. struct clip_hparams hparams;
  418. // embeddings
  419. struct ggml_tensor * class_embedding;
  420. struct ggml_tensor * patch_embeddings;
  421. struct ggml_tensor * patch_bias;
  422. struct ggml_tensor * position_embeddings;
  423. struct ggml_tensor * pre_ln_w;
  424. struct ggml_tensor * pre_ln_b;
  425. std::vector<clip_layer> layers;
  426. struct ggml_tensor * post_ln_w;
  427. struct ggml_tensor * post_ln_b;
  428. struct ggml_tensor * projection;
  429. // LLaVA projection
  430. struct ggml_tensor * mm_0_w = NULL;
  431. struct ggml_tensor * mm_0_b = NULL;
  432. struct ggml_tensor * mm_2_w = NULL;
  433. struct ggml_tensor * mm_2_b = NULL;
  434. struct ggml_tensor * image_newline = NULL;
  435. // Yi type models with mlp+normalization projection
  436. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  437. struct ggml_tensor * mm_1_b = NULL;
  438. struct ggml_tensor * mm_3_w = NULL;
  439. struct ggml_tensor * mm_3_b = NULL;
  440. struct ggml_tensor * mm_4_w = NULL;
  441. struct ggml_tensor * mm_4_b = NULL;
  442. // MobileVLM projection
  443. struct ggml_tensor * mm_model_mlp_1_w;
  444. struct ggml_tensor * mm_model_mlp_1_b;
  445. struct ggml_tensor * mm_model_mlp_3_w;
  446. struct ggml_tensor * mm_model_mlp_3_b;
  447. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  448. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  449. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  450. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  451. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  452. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  453. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  454. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  455. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  456. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  457. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  458. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  459. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  460. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  461. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  462. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  463. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  464. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  465. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  466. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  467. // MobileVLM_V2 projection
  468. struct ggml_tensor * mm_model_mlp_0_w;
  469. struct ggml_tensor * mm_model_mlp_0_b;
  470. struct ggml_tensor * mm_model_mlp_2_w;
  471. struct ggml_tensor * mm_model_mlp_2_b;
  472. struct ggml_tensor * mm_model_peg_0_w;
  473. struct ggml_tensor * mm_model_peg_0_b;
  474. // MINICPMV projection
  475. struct ggml_tensor * mm_model_pos_embed_k;
  476. struct ggml_tensor * mm_model_query;
  477. struct ggml_tensor * mm_model_proj;
  478. struct ggml_tensor * mm_model_kv_proj;
  479. struct ggml_tensor * mm_model_attn_q_w;
  480. struct ggml_tensor * mm_model_attn_q_b;
  481. struct ggml_tensor * mm_model_attn_k_w;
  482. struct ggml_tensor * mm_model_attn_k_b;
  483. struct ggml_tensor * mm_model_attn_v_w;
  484. struct ggml_tensor * mm_model_attn_v_b;
  485. struct ggml_tensor * mm_model_attn_o_w;
  486. struct ggml_tensor * mm_model_attn_o_b;
  487. struct ggml_tensor * mm_model_ln_q_w;
  488. struct ggml_tensor * mm_model_ln_q_b;
  489. struct ggml_tensor * mm_model_ln_kv_w;
  490. struct ggml_tensor * mm_model_ln_kv_b;
  491. struct ggml_tensor * mm_model_ln_post_w;
  492. struct ggml_tensor * mm_model_ln_post_b;
  493. };
  494. struct clip_ctx {
  495. bool has_text_encoder = false;
  496. bool has_vision_encoder = false;
  497. bool has_llava_projector = false;
  498. bool has_minicpmv_projector = false;
  499. int minicpmv_version = 2;
  500. struct clip_vision_model vision_model;
  501. projector_type proj_type = PROJECTOR_TYPE_MLP;
  502. float image_mean[3];
  503. float image_std[3];
  504. bool use_gelu = false;
  505. int32_t ftype = 1;
  506. bool has_class_embedding = true;
  507. bool has_pre_norm = true;
  508. bool has_post_norm = false;
  509. bool has_patch_bias = false;
  510. struct gguf_context * ctx_gguf;
  511. struct ggml_context * ctx_data;
  512. std::vector<uint8_t> buf_compute_meta;
  513. // memory buffers to evaluate the model
  514. ggml_backend_buffer_t params_buffer = NULL;
  515. ggml_backend_t backend = NULL;
  516. ggml_gallocr_t compute_alloc = NULL;
  517. struct clip_image_size * load_image_size;
  518. };
  519. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  520. if (!ctx->has_vision_encoder) {
  521. LOG_TEE("This gguf file seems to have no vision encoder\n");
  522. return nullptr;
  523. }
  524. const auto & model = ctx->vision_model;
  525. const auto & hparams = model.hparams;
  526. const int image_size = hparams.image_size;
  527. int image_size_width = image_size;
  528. int image_size_height = image_size;
  529. if (ctx->has_minicpmv_projector) {
  530. if (load_image_size == nullptr) {
  531. load_image_size = clip_image_size_init();
  532. }
  533. LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  534. image_size_width = load_image_size->width;
  535. image_size_height = load_image_size->height;
  536. if (is_inf) {
  537. image_size_width = imgs->data->nx;
  538. image_size_height = imgs->data->ny;
  539. }
  540. }
  541. const int patch_size = hparams.patch_size;
  542. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  543. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  544. const int hidden_size = hparams.hidden_size;
  545. const int n_head = hparams.n_head;
  546. const int d_head = hidden_size / n_head;
  547. int n_layer = hparams.n_layer;
  548. const float eps = hparams.eps;
  549. const int batch_size = imgs->size;
  550. if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
  551. GGML_ASSERT(batch_size == 1);
  552. }
  553. struct ggml_init_params params = {
  554. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  555. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  556. /*.no_alloc =*/ true,
  557. };
  558. struct ggml_context * ctx0 = ggml_init(params);
  559. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  560. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  561. ggml_set_name(inp_raw, "inp_raw");
  562. ggml_set_input(inp_raw);
  563. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  564. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  565. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  566. if (ctx->has_patch_bias) {
  567. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  568. inp = ggml_add(ctx0, inp, model.patch_bias);
  569. }
  570. struct ggml_tensor * embeddings = inp;
  571. struct ggml_tensor * pos_embed = nullptr;
  572. if (ctx->has_llava_projector) {
  573. // concat class_embeddings and patch_embeddings
  574. if (ctx->has_class_embedding) {
  575. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  576. ggml_set_name(embeddings, "embeddings");
  577. ggml_set_input(embeddings);
  578. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  579. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  580. embeddings = ggml_acc(ctx0, embeddings, inp,
  581. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  582. }
  583. }
  584. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
  585. ggml_set_name(positions, "positions");
  586. ggml_set_input(positions);
  587. embeddings =
  588. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  589. if (ctx->has_minicpmv_projector) {
  590. int pos_w = image_size_width/patch_size;
  591. int pos_h = image_size_height/patch_size;
  592. if (ctx->minicpmv_version == 2) {
  593. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  594. }
  595. else if (ctx->minicpmv_version == 3) {
  596. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  597. }
  598. ggml_set_name(pos_embed, "pos_embed");
  599. ggml_set_input(pos_embed);
  600. }
  601. // pre-layernorm
  602. if (ctx->has_pre_norm) {
  603. embeddings = ggml_norm(ctx0, embeddings, eps);
  604. ggml_set_name(embeddings, "pre_ln");
  605. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  606. }
  607. // loop over layers
  608. if (ctx->has_minicpmv_projector) {
  609. n_layer += 1;
  610. }
  611. for (int il = 0; il < n_layer - 1; il++) {
  612. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  613. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  614. // layernorm1
  615. {
  616. cur = ggml_norm(ctx0, cur, eps);
  617. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  618. model.layers[il].ln_1_b);
  619. }
  620. // self-attention
  621. {
  622. struct ggml_tensor * Q =
  623. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  624. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  625. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  626. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  627. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  628. struct ggml_tensor * K =
  629. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  630. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  631. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  632. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  633. struct ggml_tensor * V =
  634. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  635. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  636. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  637. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  638. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  639. KQ = ggml_soft_max_inplace(ctx0, KQ);
  640. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  641. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  642. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  643. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  644. }
  645. // attention output
  646. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  647. // re-add the layer input, e.g., residual
  648. cur = ggml_add(ctx0, cur, embeddings);
  649. embeddings = cur; // embeddings = residual, cur = hidden_states
  650. // layernorm2
  651. {
  652. cur = ggml_norm(ctx0, cur, eps);
  653. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  654. }
  655. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  656. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  657. if (ctx->use_gelu) {
  658. cur = ggml_gelu_inplace(ctx0, cur);
  659. } else {
  660. cur = ggml_gelu_quick_inplace(ctx0, cur);
  661. }
  662. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  663. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  664. // residual 2
  665. cur = ggml_add(ctx0, embeddings, cur);
  666. embeddings = cur;
  667. }
  668. // post-layernorm
  669. if (ctx->has_post_norm) {
  670. embeddings = ggml_norm(ctx0, embeddings, eps);
  671. ggml_set_name(embeddings, "post_ln");
  672. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  673. }
  674. // llava projector
  675. if (ctx->has_llava_projector) {
  676. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  677. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  678. ggml_set_name(patches, "patches");
  679. ggml_set_input(patches);
  680. // shape [1, 576, 1024]
  681. // ne is whcn, ne = [1024, 576, 1, 1]
  682. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  683. // print_tensor_info(embeddings, "embeddings");
  684. // llava projector
  685. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  686. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  687. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  688. embeddings = ggml_gelu(ctx0, embeddings);
  689. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  690. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  691. }
  692. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  693. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  694. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  695. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  696. // First LayerNorm
  697. embeddings = ggml_norm(ctx0, embeddings, eps);
  698. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  699. model.mm_1_b);
  700. // GELU activation
  701. embeddings = ggml_gelu(ctx0, embeddings);
  702. // Second linear layer
  703. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  704. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  705. // Second LayerNorm
  706. embeddings = ggml_norm(ctx0, embeddings, eps);
  707. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  708. model.mm_4_b);
  709. }
  710. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  711. // MobileVLM projector
  712. int n_patch = 24;
  713. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  714. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  715. mlp_1 = ggml_gelu(ctx0, mlp_1);
  716. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  717. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  718. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  719. // block 1
  720. struct ggml_tensor * block_1 = nullptr;
  721. {
  722. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  723. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  724. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  725. // stride = 1, padding = 1, bias is nullptr
  726. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  727. // layer norm
  728. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  729. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  730. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  731. block_1 = ggml_norm(ctx0, block_1, eps);
  732. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  733. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  734. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  735. // hardswish
  736. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  737. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  738. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  739. // pointwise conv
  740. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  741. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  742. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  743. block_1 = ggml_relu(ctx0, block_1);
  744. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  745. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  746. block_1 = ggml_hardsigmoid(ctx0, block_1);
  747. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  748. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  749. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  750. int w = block_1->ne[0], h = block_1->ne[1];
  751. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  752. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  753. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  754. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  755. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  756. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  757. block_1 = ggml_norm(ctx0, block_1, eps);
  758. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  759. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  760. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  761. // residual
  762. block_1 = ggml_add(ctx0, mlp_3, block_1);
  763. }
  764. // block_2
  765. {
  766. // stride = 2
  767. block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  768. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  769. // layer norm
  770. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  771. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  772. block_1 = ggml_norm(ctx0, block_1, eps);
  773. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  774. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  775. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  776. // hardswish
  777. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  778. // not sure the parameters is right for globalAvgPooling
  779. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  780. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  781. // pointwise conv
  782. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  783. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  784. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  785. block_1 = ggml_relu(ctx0, block_1);
  786. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  787. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  788. block_1 = ggml_hardsigmoid(ctx0, block_1);
  789. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  790. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  791. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  792. int w = block_1->ne[0], h = block_1->ne[1];
  793. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  794. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  795. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  796. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  797. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  798. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  799. block_1 = ggml_norm(ctx0, block_1, eps);
  800. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  801. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  802. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  803. }
  804. embeddings = block_1;
  805. }
  806. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  807. {
  808. int n_patch = 24;
  809. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  810. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  811. mlp_0 = ggml_gelu(ctx0, mlp_0);
  812. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  813. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  814. // mlp_2 ne = [2048, 576, 1, 1]
  815. // // AVG Pool Layer 2*2, strides = 2
  816. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  817. // mlp_2 ne = [576, 2048, 1, 1]
  818. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  819. // mlp_2 ne [24, 24, 2048, 1]
  820. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  821. // weight ne = [3, 3, 2048, 1]
  822. struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  823. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  824. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  825. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  826. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  827. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  828. embeddings = peg_0;
  829. }
  830. else {
  831. GGML_ABORT("fatal error");
  832. }
  833. }
  834. // minicpmv projector
  835. else if (ctx->has_minicpmv_projector)
  836. {
  837. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  838. struct ggml_tensor * q = model.mm_model_query;
  839. { // layernorm
  840. q = ggml_norm(ctx0, q, eps);
  841. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  842. }
  843. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  844. { // layernorm
  845. v = ggml_norm(ctx0, v, eps);
  846. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  847. }
  848. struct ggml_tensor * k;
  849. { // position
  850. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  851. k = ggml_add(ctx0, v, pos_embed);
  852. }
  853. { // attention
  854. int hidden_size = 4096;
  855. const int d_head = 128;
  856. int n_head = hidden_size/d_head;
  857. int num_query = 96;
  858. if (ctx->minicpmv_version == 2) {
  859. hidden_size = 4096;
  860. n_head = hidden_size/d_head;
  861. num_query = 96;
  862. }
  863. else if (ctx->minicpmv_version == 3) {
  864. hidden_size = 3584;
  865. n_head = hidden_size/d_head;
  866. num_query = 64;
  867. }
  868. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  869. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  870. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  871. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  872. // permute
  873. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  874. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  875. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  876. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  877. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  878. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  879. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  880. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  881. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  882. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  883. KQ = ggml_soft_max_inplace(ctx0, KQ);
  884. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  885. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  886. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  887. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  888. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  889. }
  890. { // layernorm
  891. embeddings = ggml_norm(ctx0, embeddings, eps);
  892. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  893. }
  894. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  895. }
  896. else {
  897. GGML_ASSERT(false);
  898. }
  899. }
  900. // build the graph
  901. ggml_build_forward_expand(gf, embeddings);
  902. ggml_free(ctx0);
  903. return gf;
  904. }
  905. // read and create ggml_context containing the tensors and their data
  906. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  907. struct ggml_context * meta = NULL;
  908. struct gguf_init_params params = {
  909. /*.no_alloc = */ true,
  910. /*.ctx = */ &meta,
  911. };
  912. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  913. if (!ctx) {
  914. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  915. }
  916. if (verbosity >= 1) {
  917. const int n_tensors = gguf_get_n_tensors(ctx);
  918. const int n_kv = gguf_get_n_kv(ctx);
  919. const int ftype = get_u32(ctx, KEY_FTYPE);
  920. const std::string ftype_str = get_ftype(ftype);
  921. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  922. const std::string description = gguf_get_val_str(ctx, idx_desc);
  923. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  924. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  925. const std::string name = gguf_get_val_str(ctx, idx_name);
  926. LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
  927. }
  928. LOG_TEE("%s: description: %s\n", __func__, description.c_str());
  929. LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  930. LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  931. LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
  932. LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
  933. LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
  934. LOG_TEE("\n");
  935. }
  936. const int n_tensors = gguf_get_n_tensors(ctx);
  937. // kv
  938. const int n_kv = gguf_get_n_kv(ctx);
  939. LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  940. __func__, n_kv, n_tensors, fname);
  941. {
  942. std::map<enum ggml_type, uint32_t> n_type;
  943. for (int i = 0; i < n_tensors; i++) {
  944. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  945. n_type[type]++;
  946. }
  947. LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  948. for (int i = 0; i < n_kv; i++) {
  949. const char * name = gguf_get_key(ctx, i);
  950. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  951. const std::string type_name =
  952. type == GGUF_TYPE_ARRAY
  953. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  954. : gguf_type_name(type);
  955. std::string value = gguf_kv_to_str(ctx, i);
  956. const size_t MAX_VALUE_LEN = 40;
  957. if (value.size() > MAX_VALUE_LEN) {
  958. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  959. }
  960. replace_all(value, "\n", "\\n");
  961. LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  962. }
  963. // print type counts
  964. for (auto & kv : n_type) {
  965. if (kv.second == 0) {
  966. continue;
  967. }
  968. LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  969. }
  970. }
  971. // data
  972. size_t model_size = 0;
  973. {
  974. for (int i = 0; i < n_tensors; ++i) {
  975. const char * name = gguf_get_tensor_name(ctx, i);
  976. const size_t offset = gguf_get_tensor_offset(ctx, i);
  977. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  978. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  979. size_t tensor_size = ggml_nbytes(cur);
  980. model_size += tensor_size;
  981. if (verbosity >= 3) {
  982. LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  983. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  984. }
  985. }
  986. }
  987. clip_ctx * new_clip = new clip_ctx{};
  988. // update projector type
  989. {
  990. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  991. if (idx != -1) {
  992. const std::string proj_type = gguf_get_val_str(ctx, idx);
  993. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  994. } else {
  995. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  996. }
  997. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  998. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  999. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  1000. }
  1001. }
  1002. }
  1003. #ifdef GGML_USE_CUDA
  1004. new_clip->backend = ggml_backend_cuda_init(0);
  1005. LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
  1006. #endif
  1007. #ifdef GGML_USE_METAL
  1008. new_clip->backend = ggml_backend_metal_init();
  1009. LOG_TEE("%s: CLIP using Metal backend\n", __func__);
  1010. #endif
  1011. #ifdef GGML_USE_CANN
  1012. new_clip->backend = ggml_backend_cann_init(0);
  1013. LOG_TEE("%s: CLIP using CANN backend\n", __func__);
  1014. #endif
  1015. #ifdef GGML_USE_VULKAN
  1016. new_clip->backend = ggml_backend_vk_init(0);
  1017. LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
  1018. #endif
  1019. if (!new_clip->backend) {
  1020. new_clip->backend = ggml_backend_cpu_init();
  1021. LOG_TEE("%s: CLIP using CPU backend\n", __func__);
  1022. }
  1023. // model size and capabilities
  1024. {
  1025. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1026. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1027. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1028. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1029. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1030. if (idx != -1) {
  1031. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1032. }
  1033. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1034. if (idx != -1) {
  1035. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1036. }
  1037. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1038. if (idx != -1) {
  1039. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1040. }
  1041. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1042. GGML_ASSERT(new_clip->has_vision_encoder);
  1043. GGML_ASSERT(!new_clip->has_text_encoder);
  1044. idx = get_key_idx(ctx, KEY_USE_GELU);
  1045. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1046. if (verbosity >= 1) {
  1047. LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1048. LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1049. LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1050. LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1051. LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1052. LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1053. }
  1054. }
  1055. LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1056. // load tensors
  1057. {
  1058. std::vector<uint8_t> read_buf;
  1059. struct ggml_init_params params = {
  1060. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1061. /*.mem_buffer =*/ NULL,
  1062. /*.no_alloc =*/ true,
  1063. };
  1064. new_clip->ctx_data = ggml_init(params);
  1065. if (!new_clip->ctx_data) {
  1066. LOG_TEE("%s: ggml_init() failed\n", __func__);
  1067. clip_free(new_clip);
  1068. gguf_free(ctx);
  1069. return nullptr;
  1070. }
  1071. #ifdef _WIN32
  1072. int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
  1073. if (!wlen) {
  1074. return NULL;
  1075. }
  1076. wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
  1077. wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
  1078. if (!wlen) {
  1079. free(wbuf);
  1080. return NULL;
  1081. }
  1082. #if __GLIBCXX__
  1083. int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
  1084. __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
  1085. std::istream fin(&buffer);
  1086. #else // MSVC
  1087. // unused in our current build
  1088. auto fin = std::ifstream(wbuf, std::ios::binary);
  1089. #endif
  1090. free(wbuf);
  1091. #else
  1092. auto fin = std::ifstream(fname, std::ios::binary);
  1093. #endif
  1094. if (!fin) {
  1095. LOG_TEE("cannot open model file for loading tensors\n");
  1096. clip_free(new_clip);
  1097. gguf_free(ctx);
  1098. return nullptr;
  1099. }
  1100. // add tensors to context
  1101. for (int i = 0; i < n_tensors; ++i) {
  1102. const char * name = gguf_get_tensor_name(ctx, i);
  1103. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1104. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1105. ggml_set_name(cur, name);
  1106. }
  1107. // alloc memory and offload data
  1108. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1109. for (int i = 0; i < n_tensors; ++i) {
  1110. const char * name = gguf_get_tensor_name(ctx, i);
  1111. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1112. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1113. fin.seekg(offset, std::ios::beg);
  1114. if (!fin) {
  1115. LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
  1116. clip_free(new_clip);
  1117. gguf_free(ctx);
  1118. return nullptr;
  1119. }
  1120. int num_bytes = ggml_nbytes(cur);
  1121. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1122. // for the CPU and Metal backend, we can read directly into the tensor
  1123. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1124. } else {
  1125. // read into a temporary buffer first, then copy to device memory
  1126. read_buf.resize(num_bytes);
  1127. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1128. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1129. }
  1130. }
  1131. #if defined(_WIN32) && defined(__GLIBCXX__)
  1132. close(fd);
  1133. #else
  1134. fin.close();
  1135. #endif
  1136. }
  1137. // vision model
  1138. if (new_clip->has_vision_encoder) {
  1139. // load vision model
  1140. auto & vision_model = new_clip->vision_model;
  1141. auto & hparams = vision_model.hparams;
  1142. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1143. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1144. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1145. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1146. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1147. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1148. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1149. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1150. try {
  1151. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1152. int n = gguf_get_arr_n(ctx, idx);
  1153. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1154. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  1155. hparams.image_grid_pinpoints[i] = pinpoints[i];
  1156. }
  1157. if (n < 32)
  1158. hparams.image_grid_pinpoints[n] = 0;
  1159. } catch (std::runtime_error & /*e*/) {
  1160. hparams.image_grid_pinpoints[0]=0;
  1161. }
  1162. try {
  1163. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1164. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1165. } catch (std::runtime_error & /*e*/) {
  1166. strcpy(hparams.mm_patch_merge_type, "flat");
  1167. }
  1168. try {
  1169. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1170. } catch(const std::exception& /*e*/) {
  1171. hparams.image_crop_resolution = hparams.image_size;
  1172. }
  1173. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1174. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1175. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1176. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1177. for (int i = 0; i < 3; ++i) {
  1178. new_clip->image_mean[i] = mean_data[i];
  1179. new_clip->image_std[i] = std_data[i];
  1180. }
  1181. if (verbosity >= 2) {
  1182. LOG_TEE("\n%s: vision model hparams\n", __func__);
  1183. LOG_TEE("image_size %d\n", hparams.image_size);
  1184. LOG_TEE("patch_size %d\n", hparams.patch_size);
  1185. LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
  1186. LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
  1187. LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
  1188. LOG_TEE("v_n_head %d\n", hparams.n_head);
  1189. LOG_TEE("v_n_layer %d\n", hparams.n_layer);
  1190. LOG_TEE("v_eps %f\n", hparams.eps);
  1191. LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1192. LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1193. LOG_TEE("v_image_grid_pinpoints: ");
  1194. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  1195. LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
  1196. }
  1197. LOG_TEE("\n");
  1198. LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1199. }
  1200. try {
  1201. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1202. new_clip->has_class_embedding = true;
  1203. } catch (const std::exception& /*e*/) {
  1204. new_clip->has_class_embedding = false;
  1205. }
  1206. try {
  1207. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1208. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1209. new_clip->has_pre_norm = true;
  1210. } catch (std::exception & /*e*/) {
  1211. new_clip->has_pre_norm = false;
  1212. }
  1213. try {
  1214. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1215. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1216. new_clip->has_post_norm = true;
  1217. } catch (std::exception & /*e*/) {
  1218. new_clip->has_post_norm = false;
  1219. }
  1220. try {
  1221. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1222. new_clip->has_patch_bias = true;
  1223. } catch (std::exception & /*e*/) {
  1224. new_clip->has_patch_bias = false;
  1225. }
  1226. try {
  1227. vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1228. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1229. } catch(const std::exception& /*e*/) {
  1230. LOG_TEE("%s: failed to load vision model tensors\n", __func__);
  1231. }
  1232. // LLaVA projection
  1233. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1234. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1235. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1236. try {
  1237. // Yi-type llava
  1238. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1239. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1240. } catch (std::runtime_error & /*e*/) { }
  1241. try {
  1242. // missing in Yi-type llava
  1243. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1244. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1245. } catch (std::runtime_error & /*e*/) { }
  1246. try {
  1247. // Yi-type llava
  1248. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1249. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1250. } catch (std::runtime_error & /*e*/) { }
  1251. try {
  1252. // Yi-type llava
  1253. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1254. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1255. } catch (std::runtime_error & /*e*/) { }
  1256. try {
  1257. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1258. // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1259. } catch (std::runtime_error & /*e*/) { }
  1260. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1261. // MobileVLM projection
  1262. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1263. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1264. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1265. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1266. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1267. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1268. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1269. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1270. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1271. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1272. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1273. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1274. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1275. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1276. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1277. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1278. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1279. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1280. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1281. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1282. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1283. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1284. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1285. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1286. }
  1287. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1288. {
  1289. // MobilVLM_V2 projection
  1290. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1291. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1292. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1293. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1294. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1295. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1296. }
  1297. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1298. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1299. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1300. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1301. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1302. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1303. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1304. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1305. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1306. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1307. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1308. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1309. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1310. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1311. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1312. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1313. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1314. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1315. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1316. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1317. }
  1318. else {
  1319. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1320. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1321. }
  1322. vision_model.layers.resize(hparams.n_layer);
  1323. for (int il = 0; il < hparams.n_layer; ++il) {
  1324. auto & layer = vision_model.layers[il];
  1325. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1326. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1327. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1328. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1329. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1330. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1331. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1332. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1333. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1334. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1335. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1336. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1337. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1338. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1339. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1340. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1341. }
  1342. }
  1343. ggml_free(meta);
  1344. new_clip->ctx_gguf = ctx;
  1345. // measure mem requirement and allocate
  1346. {
  1347. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1348. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1349. clip_image_f32_batch batch;
  1350. batch.size = 1;
  1351. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1352. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1353. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1354. LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1355. }
  1356. return new_clip;
  1357. }
  1358. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1359. ctx_clip->load_image_size = load_image_size;
  1360. }
  1361. struct clip_image_size * clip_image_size_init() {
  1362. struct clip_image_size * load_image_size = new struct clip_image_size();
  1363. load_image_size->width = 448;
  1364. load_image_size->height = 448;
  1365. return load_image_size;
  1366. }
  1367. struct clip_image_u8 * clip_image_u8_init() {
  1368. return new clip_image_u8();
  1369. }
  1370. struct clip_image_f32 * clip_image_f32_init() {
  1371. return new clip_image_f32();
  1372. }
  1373. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1374. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1375. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1376. if (batch->size > 0) {
  1377. delete[] batch->data;
  1378. batch->size = 0;
  1379. }
  1380. }
  1381. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1382. if (batch->size > 0) {
  1383. delete[] batch->data;
  1384. batch->size = 0;
  1385. }
  1386. }
  1387. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1388. img->nx = nx;
  1389. img->ny = ny;
  1390. img->buf.resize(3 * nx * ny);
  1391. memcpy(img->buf.data(), data, img->buf.size());
  1392. }
  1393. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1394. int nx, ny, nc;
  1395. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1396. if (!data) {
  1397. LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
  1398. return false;
  1399. }
  1400. build_clip_img_from_data(data, nx, ny, img);
  1401. stbi_image_free(data);
  1402. return true;
  1403. }
  1404. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1405. int nx, ny, nc;
  1406. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1407. if (!data) {
  1408. LOG_TEE("%s: failed to decode image bytes\n", __func__);
  1409. return false;
  1410. }
  1411. build_clip_img_from_data(data, nx, ny, img);
  1412. stbi_image_free(data);
  1413. return true;
  1414. }
  1415. // Linear interpolation between two points
  1416. inline float clip_lerp(float s, float e, float t) {
  1417. return s + (e - s) * t;
  1418. }
  1419. // Bilinear resize function
  1420. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1421. dst.nx = target_width;
  1422. dst.ny = target_height;
  1423. dst.buf.resize(3 * target_width * target_height);
  1424. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1425. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1426. for (int y = 0; y < target_height; y++) {
  1427. for (int x = 0; x < target_width; x++) {
  1428. float px = x_ratio * x;
  1429. float py = y_ratio * y;
  1430. int x_floor = static_cast<int>(px);
  1431. int y_floor = static_cast<int>(py);
  1432. float x_lerp = px - x_floor;
  1433. float y_lerp = py - y_floor;
  1434. for (int c = 0; c < 3; c++) {
  1435. float top = clip_lerp(
  1436. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1437. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1438. x_lerp
  1439. );
  1440. float bottom = clip_lerp(
  1441. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1442. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1443. x_lerp
  1444. );
  1445. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1446. }
  1447. }
  1448. }
  1449. }
  1450. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1451. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1452. dst->nx = src->nx;
  1453. dst->ny = src->ny;
  1454. dst->buf.resize(src->buf.size());
  1455. for (size_t i = 0; i < src->buf.size(); ++i) {
  1456. int c = i % 3; // rgb
  1457. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1458. }
  1459. }
  1460. inline int clip(int x, int lower, int upper) {
  1461. return std::max(lower, std::min(x, upper));
  1462. }
  1463. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1464. const int nx = img.nx;
  1465. const int ny = img.ny;
  1466. dst.nx = target_width;
  1467. dst.ny = target_height;
  1468. dst.buf.resize(3 * target_width * target_height);
  1469. float Cc;
  1470. float C[5];
  1471. float d0, d2, d3, a0, a1, a2, a3;
  1472. int i, j, k, jj;
  1473. int x, y;
  1474. float dx, dy;
  1475. float tx, ty;
  1476. tx = (float)nx / (float)target_width;
  1477. ty = (float)ny / (float)target_height;
  1478. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1479. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1480. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1481. for (i = 0; i < target_height; i++) {
  1482. for (j = 0; j < target_width; j++) {
  1483. x = (int)(tx * j);
  1484. y = (int)(ty * i);
  1485. dx = tx * j - x;
  1486. dy = ty * i - y;
  1487. for (k = 0; k < 3; k++) {
  1488. for (jj = 0; jj <= 3; jj++) {
  1489. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1490. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1491. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1492. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1493. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1494. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1495. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1496. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1497. d0 = C[0] - C[1];
  1498. d2 = C[2] - C[1];
  1499. d3 = C[3] - C[1];
  1500. a0 = C[1];
  1501. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1502. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1503. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1504. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1505. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1506. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1507. }
  1508. }
  1509. }
  1510. }
  1511. return true;
  1512. }
  1513. // llava-1.6 type of resize_and_pad (black)
  1514. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1515. int target_width = target_resolution.first;
  1516. int target_height = target_resolution.second;
  1517. float scale_w = static_cast<float>(target_width) / image.nx;
  1518. float scale_h = static_cast<float>(target_height) / image.ny;
  1519. int new_width, new_height;
  1520. if (scale_w < scale_h) {
  1521. new_width = target_width;
  1522. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1523. } else {
  1524. new_height = target_height;
  1525. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1526. }
  1527. clip_image_u8 resized_image;
  1528. // bilinear_resize(image, resized_image, new_width, new_height);
  1529. bicubic_resize(image, resized_image, new_width, new_height);
  1530. clip_image_u8 padded_image;
  1531. padded_image.nx = target_width;
  1532. padded_image.ny = target_height;
  1533. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1534. // Calculate padding offsets
  1535. int pad_x = (target_width - new_width) / 2;
  1536. int pad_y = (target_height - new_height) / 2;
  1537. // Copy the resized image into the center of the padded buffer
  1538. for (int y = 0; y < new_height; ++y) {
  1539. for (int x = 0; x < new_width; ++x) {
  1540. for (int c = 0; c < 3; ++c) {
  1541. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1542. }
  1543. }
  1544. }
  1545. image_output = std::move(padded_image);
  1546. }
  1547. /**
  1548. * Selects the best resolution from a list of possible resolutions based on the original size.
  1549. *
  1550. * @param original_size The original size of the image in the format (width, height).
  1551. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1552. * @return The best fit resolution in the format (width, height).
  1553. */
  1554. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1555. int original_width = original_size.first;
  1556. int original_height = original_size.second;
  1557. std::pair<int, int> best_fit;
  1558. int max_effective_resolution = 0;
  1559. int min_wasted_resolution = std::numeric_limits<int>::max();
  1560. for (const auto& resolution : possible_resolutions) {
  1561. int width = resolution.first;
  1562. int height = resolution.second;
  1563. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1564. int downscaled_width = static_cast<int>(original_width * scale);
  1565. int downscaled_height = static_cast<int>(original_height * scale);
  1566. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1567. int wasted_resolution = (width * height) - effective_resolution;
  1568. // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1569. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1570. max_effective_resolution = effective_resolution;
  1571. min_wasted_resolution = wasted_resolution;
  1572. best_fit = resolution;
  1573. }
  1574. }
  1575. return best_fit;
  1576. }
  1577. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1578. std::vector<clip_image_u8*> patches;
  1579. int width = image.nx;
  1580. int height = image.ny;
  1581. for (int i = 0; i < height; i += patch_size) {
  1582. for (int j = 0; j < width; j += patch_size) {
  1583. clip_image_u8 *patch = clip_image_u8_init();
  1584. patch->nx = std::min(patch_size, width - j);
  1585. patch->ny = std::min(patch_size, height - i);
  1586. patch->buf.resize(3 * patch->nx * patch->ny);
  1587. for (int y = 0; y < patch->ny; ++y) {
  1588. for (int x = 0; x < patch->nx; ++x) {
  1589. for (int c = 0; c < 3; ++c) {
  1590. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1591. }
  1592. }
  1593. }
  1594. patches.push_back(patch);
  1595. }
  1596. }
  1597. return patches;
  1598. }
  1599. static int ensure_divide(int length, int patch_size) {
  1600. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1601. }
  1602. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1603. int width = original_size.first;
  1604. int height = original_size.second;
  1605. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1606. float r = static_cast<float>(width) / height;
  1607. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1608. width = static_cast<int>(height * r);
  1609. }
  1610. int best_width = ensure_divide(width, patch_size);
  1611. int best_height = ensure_divide(height, patch_size);
  1612. return std::make_pair(best_width, best_height);
  1613. }
  1614. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1615. int width, height;
  1616. std::tie(width, height) = original_size;
  1617. int grid_x, grid_y;
  1618. std::tie(grid_x, grid_y) = grid;
  1619. int refine_width = ensure_divide(width, grid_x);
  1620. int refine_height = ensure_divide(height, grid_y);
  1621. int grid_width = refine_width / grid_x;
  1622. int grid_height = refine_height / grid_y;
  1623. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1624. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1625. int best_grid_width, best_grid_height;
  1626. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1627. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1628. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1629. return refine_size;
  1630. }
  1631. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1632. std::vector<int> candidate_split_grids_nums;
  1633. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1634. if (i == 1 || i > max_slice_nums) {
  1635. continue;
  1636. }
  1637. candidate_split_grids_nums.push_back(i);
  1638. }
  1639. std::vector<std::pair<int, int>> candidate_grids;
  1640. for (int split_grids_nums : candidate_split_grids_nums) {
  1641. int m = 1;
  1642. while (m <= split_grids_nums) {
  1643. if (split_grids_nums % m == 0) {
  1644. candidate_grids.emplace_back(m, split_grids_nums / m);
  1645. }
  1646. ++m;
  1647. }
  1648. }
  1649. std::pair<int, int> best_grid{1, 1};
  1650. float min_error = std::numeric_limits<float>::infinity();
  1651. for (const auto& grid : candidate_grids) {
  1652. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1653. if (error < min_error) {
  1654. best_grid = grid;
  1655. min_error = error;
  1656. }
  1657. }
  1658. return best_grid;
  1659. }
  1660. // inspired from LLaVA-UHD:
  1661. // -> https://arxiv.org/pdf/2403.11703
  1662. // -> https://github.com/thunlp/LLaVA-UHD
  1663. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1664. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1665. const std::pair<int, int> original_size={img->nx,img->ny};
  1666. const int original_width = img->nx;
  1667. const int original_height = img->ny;
  1668. const float log_ratio = log(1.0*original_width/original_height);
  1669. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1670. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1671. std::vector<std::vector<clip_image_u8 *>> images;
  1672. LOG_TEE("%s: multiple %d\n", __func__, multiple);
  1673. images.push_back(std::vector<clip_image_u8 *>());
  1674. if (multiple <= 1) {
  1675. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1676. clip_image_u8 * source_image = clip_image_u8_init();
  1677. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1678. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1679. images[images.size()-1].push_back(source_image);
  1680. }
  1681. else if (multiple > 1) {
  1682. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1683. clip_image_u8 * source_image = clip_image_u8_init();
  1684. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1685. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1686. LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1687. images[images.size()-1].push_back(source_image);
  1688. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1689. LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1690. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1691. clip_image_u8 * refine_image = clip_image_u8_init();
  1692. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1693. LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1694. // split_to_patches
  1695. int width = refine_image->nx;
  1696. int height = refine_image->ny;
  1697. int grid_x = int(width / best_grid.first);
  1698. int grid_y = int(height / best_grid.second);
  1699. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1700. images.push_back(std::vector<clip_image_u8 *>());
  1701. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1702. clip_image_u8 * patch = clip_image_u8_init();
  1703. patch->nx = grid_x;
  1704. patch->ny = grid_y;
  1705. patch->buf.resize(3 * patch->nx * patch->ny);
  1706. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1707. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1708. const int i = 3 * (y * refine_image->nx + x);
  1709. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1710. patch->buf[j] = refine_image->buf[i];
  1711. patch->buf[j+1] = refine_image->buf[i+1];
  1712. patch->buf[j+2] = refine_image->buf[i+2];
  1713. }
  1714. }
  1715. images[images.size()-1].push_back(patch);
  1716. }
  1717. }
  1718. }
  1719. return images;
  1720. }
  1721. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1722. const int max_slice_nums=9;
  1723. const int scale_resolution=448;
  1724. const int original_width = ctx_clip->load_image_size->width;
  1725. const int original_height = ctx_clip->load_image_size->height;
  1726. const float log_ratio = log(1.0*original_width/original_height);
  1727. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1728. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1729. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1730. return best_grid.first;
  1731. }
  1732. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1733. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1734. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1735. if(clip_is_minicpmv(ctx)){
  1736. int max_slice_nums = 9;
  1737. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1738. res_imgs->size = 0;
  1739. for (size_t i = 0; i < imgs.size(); ++i){
  1740. res_imgs->size += imgs[i].size();
  1741. }
  1742. res_imgs->data = new clip_image_f32[res_imgs->size];
  1743. int idx = 0;
  1744. for (size_t i = 0; i < imgs.size(); ++i) {
  1745. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1746. LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1747. clip_image_f32 * res = clip_image_f32_init();
  1748. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1749. res_imgs->data[idx++] = *res;
  1750. clip_image_f32_free(res);
  1751. }
  1752. }
  1753. return true;
  1754. }
  1755. bool pad_to_square = true;
  1756. if (!ctx->has_vision_encoder) {
  1757. LOG_TEE("This gguf file seems to have no vision encoder\n");
  1758. return false;
  1759. }
  1760. auto & params = ctx->vision_model.hparams;
  1761. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1762. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1763. pad_to_square = false;
  1764. }
  1765. // free the previous res_imgs if any set
  1766. if (res_imgs->size > 0) {
  1767. clip_image_f32_batch_free(res_imgs);
  1768. }
  1769. res_imgs->data = nullptr;
  1770. res_imgs->size = 0;
  1771. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1772. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1773. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1774. if (pad_to_square && img->nx != img->ny) {
  1775. int longer_side = std::max(img->nx, img->ny);
  1776. temp->nx = longer_side;
  1777. temp->ny = longer_side;
  1778. temp->buf.resize(3 * longer_side * longer_side);
  1779. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1780. // fill with background color
  1781. for (size_t i = 0; i < temp->buf.size(); i++) {
  1782. temp->buf[i] = bc[i % 3];
  1783. }
  1784. // copy from the input image
  1785. for (int y = 0; y < img->ny; y++) {
  1786. for (int x = 0; x < img->nx; x++) {
  1787. const int i = 3 * (y * img->nx + x);
  1788. const int j = 3 * (y * temp->nx + x);
  1789. temp->buf[j] = img->buf[i];
  1790. temp->buf[j+1] = img->buf[i+1];
  1791. temp->buf[j+2] = img->buf[i+2];
  1792. }
  1793. }
  1794. } else {
  1795. if (params.image_grid_pinpoints[0] != 0) {
  1796. // "spatial_unpad" with "anyres" processing for llava-1.6
  1797. std::vector<std::pair<int, int>> possible_resolutions;
  1798. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1799. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1800. }
  1801. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1802. // clip_image_save_to_bmp(*img, "input.bmp");
  1803. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1804. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1805. // visually verify normalized image:
  1806. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1807. // {
  1808. // clip_image_u8 * temp2 = clip_image_u8_init();
  1809. // clip_image_convert_f32_to_u8(*res, *temp2);
  1810. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1811. // clip_image_u8_free(temp2);
  1812. // }
  1813. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1814. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1815. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1816. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1817. patches.insert(patches.begin(), image_original_resize);
  1818. // clip_image_f32_batch_init(patches.size());
  1819. res_imgs->size = patches.size();
  1820. res_imgs->data = new clip_image_f32[res_imgs->size];
  1821. int num=0;
  1822. for (auto& patch : patches) {
  1823. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1824. num++;
  1825. }
  1826. for (size_t i = 0; i < patches.size(); i++) {
  1827. // LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1828. clip_image_u8_free(patches[i]);
  1829. }
  1830. clip_image_u8_free(temp);
  1831. return true;
  1832. } else {
  1833. temp->nx = img->nx;
  1834. temp->ny = img->ny;
  1835. temp->buf.resize(img->buf.size());
  1836. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1837. }
  1838. }
  1839. const int nx = temp->nx;
  1840. const int ny = temp->ny;
  1841. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1842. const int nx2 = ctx->vision_model.hparams.image_size;
  1843. const int ny2 = ctx->vision_model.hparams.image_size;
  1844. clip_image_f32 * res = clip_image_f32_init();
  1845. res->nx = nx2;
  1846. res->ny = ny2;
  1847. res->buf.resize(3 * nx2 * ny2);
  1848. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1849. const int nx3 = int(nx / scale + 0.5f);
  1850. const int ny3 = int(ny / scale + 0.5f);
  1851. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1852. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1853. for (int y = 0; y < ny3; y++) {
  1854. for (int x = 0; x < nx3; x++) {
  1855. for (int c = 0; c < 3; c++) {
  1856. // linear interpolation
  1857. const float sx = (x + 0.5f) * scale - 0.5f;
  1858. const float sy = (y + 0.5f) * scale - 0.5f;
  1859. const int x0 = std::max(0, (int)std::floor(sx));
  1860. const int y0 = std::max(0, (int)std::floor(sy));
  1861. const int x1 = std::min(x0 + 1, nx - 1);
  1862. const int y1 = std::min(y0 + 1, ny - 1);
  1863. const float dx = sx - x0;
  1864. const float dy = sy - y0;
  1865. const int j00 = 3 * (y0 * nx + x0) + c;
  1866. const int j01 = 3 * (y0 * nx + x1) + c;
  1867. const int j10 = 3 * (y1 * nx + x0) + c;
  1868. const int j11 = 3 * (y1 * nx + x1) + c;
  1869. const float v00 = temp->buf[j00];
  1870. const float v01 = temp->buf[j01];
  1871. const float v10 = temp->buf[j10];
  1872. const float v11 = temp->buf[j11];
  1873. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1874. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1875. const float v = v0 * (1.0f - dy) + v1 * dy;
  1876. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1877. const int i = 3 * (y * nx3 + x) + c;
  1878. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  1879. }
  1880. }
  1881. }
  1882. clip_image_u8_free(temp);
  1883. // {
  1884. // clip_image_u8 * temp2 = clip_image_u8_init();
  1885. // clip_image_convert_f32_to_u8(*res, *temp2);
  1886. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  1887. // clip_image_u8_free(temp2);
  1888. // }
  1889. // res_imgs.push_back(res);
  1890. res_imgs->size = 1;
  1891. res_imgs->data = new clip_image_f32[res_imgs->size];
  1892. res_imgs->data[0] = *res;
  1893. clip_image_f32_free(res);
  1894. return true;
  1895. }
  1896. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  1897. return ctx->vision_model.image_newline;
  1898. }
  1899. void clip_free(clip_ctx * ctx) {
  1900. ggml_free(ctx->ctx_data);
  1901. gguf_free(ctx->ctx_gguf);
  1902. ggml_backend_buffer_free(ctx->params_buffer);
  1903. ggml_backend_free(ctx->backend);
  1904. ggml_gallocr_free(ctx->compute_alloc);
  1905. delete ctx;
  1906. }
  1907. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  1908. return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1909. }
  1910. int32_t clip_image_size(const struct clip_ctx * ctx) {
  1911. return ctx->vision_model.hparams.image_size;
  1912. }
  1913. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  1914. return ctx->vision_model.hparams.patch_size;
  1915. }
  1916. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  1917. return ctx->vision_model.hparams.hidden_size;
  1918. }
  1919. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  1920. return ctx->vision_model.hparams.mm_patch_merge_type;
  1921. }
  1922. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  1923. return ctx->vision_model.hparams.image_grid_pinpoints;
  1924. }
  1925. int clip_n_patches(const struct clip_ctx * ctx) {
  1926. const auto & params = ctx->vision_model.hparams;
  1927. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  1928. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  1929. n_patches /= 4;
  1930. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1931. if (ctx->minicpmv_version == 2) {
  1932. n_patches = 96;
  1933. }
  1934. else if (ctx->minicpmv_version == 3) {
  1935. n_patches = 64;
  1936. }
  1937. }
  1938. return n_patches;
  1939. }
  1940. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  1941. assert(embed_dim % 2 == 0);
  1942. int H = pos.size();
  1943. int W = pos[0].size();
  1944. std::vector<float> omega(embed_dim / 2);
  1945. for (int i = 0; i < embed_dim / 2; ++i) {
  1946. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  1947. }
  1948. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  1949. for (int h = 0; h < H; ++h) {
  1950. for (int w = 0; w < W; ++w) {
  1951. for (int d = 0; d < embed_dim / 2; ++d) {
  1952. float out_value = pos[h][w] * omega[d];
  1953. emb[h][w][d] = sin(out_value);
  1954. emb[h][w][d + embed_dim / 2] = cos(out_value);
  1955. }
  1956. }
  1957. }
  1958. return emb;
  1959. }
  1960. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  1961. assert(embed_dim % 2 == 0);
  1962. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  1963. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  1964. int H = emb_h.size();
  1965. int W = emb_h[0].size();
  1966. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  1967. for (int h = 0; h < H; ++h) {
  1968. for (int w = 0; w < W; ++w) {
  1969. for (int d = 0; d < embed_dim / 2; ++d) {
  1970. emb[h][w][d] = emb_h[h][w][d];
  1971. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  1972. }
  1973. }
  1974. }
  1975. return emb;
  1976. }
  1977. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  1978. int grid_h_size = image_size.first;
  1979. int grid_w_size = image_size.second;
  1980. std::vector<float> grid_h(grid_h_size);
  1981. std::vector<float> grid_w(grid_w_size);
  1982. for (int i = 0; i < grid_h_size; ++i) {
  1983. grid_h[i] = static_cast<float>(i);
  1984. }
  1985. for (int i = 0; i < grid_w_size; ++i) {
  1986. grid_w[i] = static_cast<float>(i);
  1987. }
  1988. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  1989. for (int h = 0; h < grid_h_size; ++h) {
  1990. for (int w = 0; w < grid_w_size; ++w) {
  1991. grid[h][w] = grid_w[w];
  1992. }
  1993. }
  1994. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  1995. for (int h = 0; h < grid_h_size; ++h) {
  1996. for (int w = 0; w < grid_w_size; ++w) {
  1997. grid_2d[0][h][w] = grid_h[h];
  1998. grid_2d[1][h][w] = grid_w[w];
  1999. }
  2000. }
  2001. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2002. int H = image_size.first;
  2003. int W = image_size.second;
  2004. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2005. for (int h = 0; h < H; ++h) {
  2006. for (int w = 0; w < W; ++w) {
  2007. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2008. }
  2009. }
  2010. return pos_embed_2d;
  2011. }
  2012. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2013. if (!ctx->has_vision_encoder) {
  2014. LOG_TEE("This gguf file seems to have no vision encoder\n");
  2015. return false;
  2016. }
  2017. clip_image_f32_batch imgs{};
  2018. imgs.size = 1;
  2019. imgs.data = img;
  2020. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2021. }
  2022. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  2023. if (!ctx->has_vision_encoder) {
  2024. LOG_TEE("This gguf file seems to have no vision encoder\n");
  2025. return false;
  2026. }
  2027. int batch_size = imgs->size;
  2028. if (ctx->has_llava_projector) {
  2029. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2030. }
  2031. if (ctx->has_minicpmv_projector) {
  2032. GGML_ASSERT(batch_size == 1);
  2033. }
  2034. // build the inference graph
  2035. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2036. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  2037. // set inputs
  2038. const auto & model = ctx->vision_model;
  2039. const auto & hparams = model.hparams;
  2040. const int image_size = hparams.image_size;
  2041. int image_size_width = image_size;
  2042. int image_size_height = image_size;
  2043. if (ctx->has_minicpmv_projector) {
  2044. image_size_width = imgs->data[0].nx;
  2045. image_size_height = imgs->data[0].ny;
  2046. }
  2047. const int patch_size = hparams.patch_size;
  2048. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2049. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2050. if(ctx->load_image_size==nullptr){
  2051. ctx->load_image_size= clip_image_size_init();
  2052. }
  2053. const int pos_w = ctx->load_image_size->width/patch_size;
  2054. const int pos_h = ctx->load_image_size->height/patch_size;
  2055. {
  2056. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2057. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2058. for (size_t i = 0; i < imgs->size; i++) {
  2059. const int nx = imgs->data[i].nx;
  2060. const int ny = imgs->data[i].ny;
  2061. if (!ctx->has_minicpmv_projector) {
  2062. GGML_ASSERT(nx == image_size && ny == image_size);
  2063. }
  2064. const int n = nx * ny;
  2065. for (int b = 0; b < batch_size; b++) {
  2066. for (int k = 0; k < 3; k++) {
  2067. for (int y = 0; y < ny; y++) {
  2068. for (int x = 0; x < nx; x++) {
  2069. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2070. }
  2071. }
  2072. }
  2073. }
  2074. }
  2075. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2076. free(data);
  2077. }
  2078. if (ctx->has_minicpmv_projector) {
  2079. {
  2080. // inspired from siglip:
  2081. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2082. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2083. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2084. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2085. int bucket_coords_h[70];
  2086. int bucket_coords_w[70];
  2087. for (int i = 0; i < pos_h; i++){
  2088. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2089. }
  2090. for (int i = 0; i < pos_w; i++){
  2091. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2092. }
  2093. for (int i = 0, id = 0; i < pos_h; i++){
  2094. for (int j = 0; j < pos_w; j++){
  2095. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2096. }
  2097. }
  2098. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2099. free(positions_data);
  2100. }
  2101. {
  2102. // inspired from resampler of Qwen-VL:
  2103. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2104. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2105. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2106. int embed_dim = 4096;
  2107. if (ctx->minicpmv_version == 2) {
  2108. embed_dim = 4096;
  2109. }
  2110. else if (ctx->minicpmv_version == 3) {
  2111. embed_dim = 3584;
  2112. }
  2113. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2114. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2115. for(int i=0;i<pos_w * pos_h;++i){
  2116. for(int j=0;j<embed_dim;++j){
  2117. pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
  2118. }
  2119. }
  2120. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2121. free(pos_embed_data);
  2122. }
  2123. }
  2124. else{
  2125. {
  2126. if (ctx->has_class_embedding) {
  2127. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2128. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2129. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2130. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2131. free(zero_mem);
  2132. }
  2133. }
  2134. {
  2135. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2136. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2137. for (int i = 0; i < num_positions; i++) {
  2138. positions_data[i] = i;
  2139. }
  2140. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2141. free(positions_data);
  2142. }
  2143. {
  2144. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2145. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2146. for (int i = 0; i < num_patches; i++) {
  2147. patches_data[i] = i + 1;
  2148. }
  2149. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2150. free(patches_data);
  2151. }
  2152. }
  2153. if (ggml_backend_is_cpu(ctx->backend)) {
  2154. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2155. }
  2156. #ifdef GGML_USE_METAL
  2157. if (ggml_backend_is_metal(ctx->backend)) {
  2158. ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
  2159. }
  2160. #endif
  2161. ggml_backend_graph_compute(ctx->backend, gf);
  2162. // the last node is the embedding tensor
  2163. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
  2164. // copy the embeddings to the location passed by the user
  2165. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2166. return true;
  2167. }
  2168. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2169. ggml_type type = GGML_TYPE_Q4_1;
  2170. assert(itype < GGML_TYPE_COUNT);
  2171. type = static_cast<ggml_type>(itype);
  2172. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2173. const auto & ctx_src = ctx_clip->ctx_gguf;
  2174. const auto & ctx_data = ctx_clip->ctx_data;
  2175. auto * ctx_out = gguf_init_empty();
  2176. gguf_set_kv(ctx_out, ctx_src);
  2177. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2178. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2179. auto fout = std::ofstream(fname_out, std::ios::binary);
  2180. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2181. for (int i = 0; i < n_tensors; ++i) {
  2182. const char * name = gguf_get_tensor_name(ctx_src, i);
  2183. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2184. gguf_add_tensor(ctx_out, cur);
  2185. }
  2186. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2187. for (size_t i = 0; i < meta_size; ++i) {
  2188. fout.put(0);
  2189. }
  2190. // regexes of tensor names to be quantized
  2191. const std::vector<std::string> k_names = {
  2192. ".*weight",
  2193. };
  2194. std::vector<uint8_t> work(512);
  2195. std::vector<float> conv_buf(512);
  2196. size_t total_size_org = 0;
  2197. size_t total_size_new = 0;
  2198. for (int i = 0; i < n_tensors; ++i) {
  2199. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2200. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2201. enum ggml_type new_type;
  2202. void * new_data;
  2203. size_t new_size;
  2204. bool quantize = false;
  2205. for (const auto & s : k_names) {
  2206. if (std::regex_match(name, std::regex(s))) {
  2207. quantize = true;
  2208. break;
  2209. }
  2210. }
  2211. // quantize only 2D tensors
  2212. quantize &= (ggml_n_dims(cur) == 2);
  2213. if (quantize) {
  2214. new_type = type;
  2215. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2216. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2217. // LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2218. }
  2219. const size_t n_elms = ggml_nelements(cur);
  2220. float * f32_data;
  2221. switch (cur->type) {
  2222. case GGML_TYPE_F32:
  2223. f32_data = (float *)cur->data;
  2224. break;
  2225. case GGML_TYPE_F16:
  2226. if (conv_buf.size() < n_elms) {
  2227. conv_buf.resize(n_elms);
  2228. }
  2229. for (size_t j = 0; j < n_elms; ++j) {
  2230. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2231. }
  2232. f32_data = (float *)conv_buf.data();
  2233. break;
  2234. default:
  2235. LOG_TEE("Please use an input file in f32 or f16\n");
  2236. gguf_free(ctx_out);
  2237. return false;
  2238. }
  2239. if (work.size() < n_elms * 4) {
  2240. work.resize(n_elms * 4);
  2241. }
  2242. new_data = work.data();
  2243. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2244. } else {
  2245. new_type = cur->type;
  2246. new_data = cur->data;
  2247. new_size = ggml_nbytes(cur);
  2248. }
  2249. const size_t orig_size = ggml_nbytes(cur);
  2250. total_size_org += orig_size;
  2251. total_size_new += new_size;
  2252. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2253. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  2254. fout.write((const char *)new_data, new_size);
  2255. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2256. for (size_t j = 0; j < pad; ++j) {
  2257. fout.put(0);
  2258. }
  2259. LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2260. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2261. }
  2262. // go back to beginning of file and write the updated metadata
  2263. fout.seekp(0, std::ios::beg);
  2264. std::vector<uint8_t> meta(meta_size);
  2265. gguf_get_meta_data(ctx_out, meta.data());
  2266. fout.write((const char *)meta.data(), meta_size);
  2267. fout.close();
  2268. clip_free(ctx_clip);
  2269. gguf_free(ctx_out);
  2270. {
  2271. LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2272. LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2273. }
  2274. return true;
  2275. }
  2276. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2277. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2278. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2279. }
  2280. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2281. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2282. }
  2283. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2284. return ctx->vision_model.mm_2_b->ne[0];
  2285. }
  2286. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2287. return ctx->vision_model.mm_3_b->ne[0];
  2288. }
  2289. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2290. if (ctx->minicpmv_version == 2) {
  2291. return 4096;
  2292. }
  2293. else if (ctx->minicpmv_version == 3) {
  2294. return 3584;
  2295. }
  2296. }
  2297. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2298. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2299. }
  2300. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2301. if (ctx->has_minicpmv_projector) {
  2302. return ctx->minicpmv_version;
  2303. }
  2304. return 0;
  2305. }