1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
- #include "clip.h"
- #include "log.h"
- #include "ggml.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #ifdef GGML_USE_CUDA
- #include "ggml-cuda.h"
- #endif
- #ifdef GGML_USE_METAL
- #include "ggml-metal.h"
- #endif
- #ifdef GGML_USE_CANN
- #include "ggml-cann.h"
- #endif
- #ifdef GGML_USE_VULKAN
- #include "ggml-vulkan.h"
- #endif
- #define STB_IMAGE_IMPLEMENTATION
- #include "stb_image.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- #include <limits>
- #if defined(_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #if __GLIBCXX__
- #include <cstdio>
- #include <ext/stdio_filebuf.h>
- #include <fcntl.h>
- #endif
- #endif
- //#define CLIP_DEBUG_FUNCTIONS
- // RGB uint8 image
- struct clip_image_u8 {
- int nx;
- int ny;
- std::vector<uint8_t> buf;
- };
- // RGB float32 image (NHWC)
- // Memory layout: RGBRGBRGB...
- struct clip_image_f32 {
- int nx;
- int ny;
- std::vector<float> buf;
- };
- static std::string format(const char * fmt, ...) {
- va_list ap;
- va_list ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), buf.size());
- }
- //
- // key constants
- //
- #define KEY_FTYPE "general.file_type"
- #define KEY_NAME "general.name"
- #define KEY_DESCRIPTION "general.description"
- #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
- #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
- #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
- #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
- #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
- #define KEY_USE_GELU "clip.use_gelu"
- #define KEY_N_EMBD "clip.%s.embedding_length"
- #define KEY_N_FF "clip.%s.feed_forward_length"
- #define KEY_N_BLOCK "clip.%s.block_count"
- #define KEY_N_HEAD "clip.%s.attention.head_count"
- #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
- #define KEY_PROJ_DIM "clip.%s.projection_dim"
- #define KEY_TOKENS "tokenizer.ggml.tokens"
- #define KEY_N_POSITIONS "clip.text.context_length"
- #define KEY_IMAGE_SIZE "clip.vision.image_size"
- #define KEY_PATCH_SIZE "clip.vision.patch_size"
- #define KEY_IMAGE_MEAN "clip.vision.image_mean"
- #define KEY_IMAGE_STD "clip.vision.image_std"
- #define KEY_PROJ_TYPE "clip.projector_type"
- #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
- #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
- #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
- //
- // tensor name constants
- //
- #define TN_TOKEN_EMBD "%s.token_embd.weight"
- #define TN_POS_EMBD "%s.position_embd.weight"
- #define TN_CLASS_EMBD "v.class_embd"
- #define TN_PATCH_EMBD "v.patch_embd.weight"
- #define TN_PATCH_BIAS "v.patch_embd.bias"
- #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
- #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
- #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
- #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
- #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
- #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
- #define TN_LN_1 "%s.blk.%d.ln1.%s"
- #define TN_LN_2 "%s.blk.%d.ln2.%s"
- #define TN_LN_PRE "%s.pre_ln.%s"
- #define TN_LN_POST "%s.post_ln.%s"
- #define TN_TEXT_PROJ "text_projection.weight"
- #define TN_VIS_PROJ "visual_projection.weight"
- #define TN_LLAVA_PROJ "mm.%d.%s"
- #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
- #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
- #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
- #define TN_IMAGE_NEWLINE "model.image_newline"
- #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
- #define TN_MINICPMV_QUERY "resampler.query"
- #define TN_MINICPMV_PROJ "resampler.proj.weight"
- #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
- #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
- #define TN_MINICPMV_LN "resampler.ln_%s.%s"
- enum projector_type {
- PROJECTOR_TYPE_MLP,
- PROJECTOR_TYPE_MLP_NORM,
- PROJECTOR_TYPE_LDP,
- PROJECTOR_TYPE_LDPV2,
- PROJECTOR_TYPE_RESAMPLER,
- PROJECTOR_TYPE_UNKNOWN,
- };
- static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
- { PROJECTOR_TYPE_MLP, "mlp" },
- { PROJECTOR_TYPE_LDP, "ldp" },
- { PROJECTOR_TYPE_LDPV2, "ldpv2"},
- { PROJECTOR_TYPE_RESAMPLER, "resampler"},
- };
- //
- // utilities to get data from a gguf file
- //
- static int get_key_idx(const gguf_context * ctx, const char * key) {
- int i = gguf_find_key(ctx, key);
- if (i == -1) {
- LOG_TEE("key %s not found in file\n", key);
- throw std::runtime_error(format("Missing required key: %s", key));
- }
- return i;
- }
- static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_u32(ctx, i);
- }
- static float get_f32(const gguf_context * ctx, const std::string & key) {
- const int i = get_key_idx(ctx, key.c_str());
- return gguf_get_val_f32(ctx, i);
- }
- static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
- struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
- if (!cur) {
- throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- return cur;
- }
- static std::string get_ftype(int ftype) {
- return ggml_type_name(static_cast<ggml_type>(ftype));
- }
- static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
- switch (type) {
- case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
- case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
- case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
- case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
- case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
- case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
- case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
- case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
- case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
- case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
- case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
- default: return format("unknown type %d", type);
- }
- }
- static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
- if (search.empty()) {
- return;
- }
- std::string builder;
- builder.reserve(s.length());
- size_t pos = 0;
- size_t last_pos = 0;
- while ((pos = s.find(search, last_pos)) != std::string::npos) {
- builder.append(s, last_pos, pos - last_pos);
- builder.append(replace);
- last_pos = pos + search.length();
- }
- builder.append(s, last_pos, std::string::npos);
- s = std::move(builder);
- }
- static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
- const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
- switch (type) {
- case GGUF_TYPE_STRING:
- return gguf_get_val_str(ctx_gguf, i);
- case GGUF_TYPE_ARRAY:
- {
- const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
- int arr_n = gguf_get_arr_n(ctx_gguf, i);
- const void * data = gguf_get_arr_data(ctx_gguf, i);
- std::stringstream ss;
- ss << "[";
- for (int j = 0; j < arr_n; j++) {
- if (arr_type == GGUF_TYPE_STRING) {
- std::string val = gguf_get_arr_str(ctx_gguf, i, j);
- // escape quotes
- replace_all(val, "\\", "\\\\");
- replace_all(val, "\"", "\\\"");
- ss << '"' << val << '"';
- } else if (arr_type == GGUF_TYPE_ARRAY) {
- ss << "???";
- } else {
- ss << gguf_data_to_str(arr_type, data, j);
- }
- if (j < arr_n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- return ss.str();
- }
- default:
- return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
- }
- }
- static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
- size_t tensor_size = ggml_nbytes(tensor);
- LOG_TEE("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
- prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
- tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
- }
- static projector_type clip_projector_type_from_string(const std::string & name) {
- for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
- if (kv.second == name) {
- return kv.first;
- }
- }
- return PROJECTOR_TYPE_UNKNOWN;
- }
- #ifdef CLIP_DEBUG_FUNCTIONS
- static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- // PPM header: P6 format, width, height, and max color value
- file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
- // Write pixel data
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- // PPM expects binary data in RGB format, which matches our image buffer
- file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
- }
- file.close();
- }
- static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_TEE("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
- int bytesPerPixel = 3;
- int widthInBytes = img.nx * bytesPerPixel;
- int paddingAmount = (4 - (widthInBytes % 4)) % 4;
- int stride = widthInBytes + paddingAmount;
- // Bitmap file header
- unsigned char fileHeader[14] = {
- 'B','M', // Signature
- 0,0,0,0, // Image file size in bytes
- 0,0,0,0, // Reserved
- 54,0,0,0 // Start of pixel array
- };
- // Total file size
- fileSize = 54 + (stride * img.ny);
- fileHeader[2] = (unsigned char)(fileSize);
- fileHeader[3] = (unsigned char)(fileSize >> 8);
- fileHeader[4] = (unsigned char)(fileSize >> 16);
- fileHeader[5] = (unsigned char)(fileSize >> 24);
- // Bitmap information header (BITMAPINFOHEADER)
- unsigned char infoHeader[40] = {
- 40,0,0,0, // Size of this header (40 bytes)
- 0,0,0,0, // Image width
- 0,0,0,0, // Image height
- 1,0, // Number of color planes
- 24,0, // Bits per pixel
- 0,0,0,0, // No compression
- 0,0,0,0, // Image size (can be 0 for no compression)
- 0,0,0,0, // X pixels per meter (not specified)
- 0,0,0,0, // Y pixels per meter (not specified)
- 0,0,0,0, // Total colors (color table not used)
- 0,0,0,0 // Important colors (all are important)
- };
- // Width and height in the information header
- infoHeader[4] = (unsigned char)(img.nx);
- infoHeader[5] = (unsigned char)(img.nx >> 8);
- infoHeader[6] = (unsigned char)(img.nx >> 16);
- infoHeader[7] = (unsigned char)(img.nx >> 24);
- infoHeader[8] = (unsigned char)(img.ny);
- infoHeader[9] = (unsigned char)(img.ny >> 8);
- infoHeader[10] = (unsigned char)(img.ny >> 16);
- infoHeader[11] = (unsigned char)(img.ny >> 24);
- // Write file headers
- file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
- file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
- // Pixel data
- std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
- for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
- for (int x = 0; x < img.nx; ++x) {
- // Each pixel
- size_t pixelIndex = (y * img.nx + x) * 3;
- unsigned char pixel[3] = {
- img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
- img.buf[pixelIndex + 1],
- img.buf[pixelIndex]
- };
- file.write(reinterpret_cast<char*>(pixel), 3);
- }
- // Write padding for the row
- file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
- }
- file.close();
- }
- // debug function to convert f32 to u8
- static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(3 * src.nx * src.ny);
- for (size_t i = 0; i < src.buf.size(); ++i) {
- dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
- }
- }
- #endif
- //
- // clip layers
- //
- struct clip_hparams {
- int32_t image_size;
- int32_t patch_size;
- int32_t hidden_size;
- int32_t n_intermediate;
- int32_t projection_dim;
- int32_t n_head;
- int32_t n_layer;
- float eps;
- char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
- int32_t image_grid_pinpoints[32];
- int32_t image_crop_resolution;
- };
- struct clip_layer {
- // attention
- struct ggml_tensor * k_w;
- struct ggml_tensor * k_b;
- struct ggml_tensor * q_w;
- struct ggml_tensor * q_b;
- struct ggml_tensor * v_w;
- struct ggml_tensor * v_b;
- struct ggml_tensor * o_w;
- struct ggml_tensor * o_b;
- // layernorm 1
- struct ggml_tensor * ln_1_w;
- struct ggml_tensor * ln_1_b;
- // ff
- struct ggml_tensor * ff_i_w;
- struct ggml_tensor * ff_i_b;
- struct ggml_tensor * ff_o_w;
- struct ggml_tensor * ff_o_b;
- // layernorm 2
- struct ggml_tensor * ln_2_w;
- struct ggml_tensor * ln_2_b;
- };
- struct clip_vision_model {
- struct clip_hparams hparams;
- // embeddings
- struct ggml_tensor * class_embedding;
- struct ggml_tensor * patch_embeddings;
- struct ggml_tensor * patch_bias;
- struct ggml_tensor * position_embeddings;
- struct ggml_tensor * pre_ln_w;
- struct ggml_tensor * pre_ln_b;
- std::vector<clip_layer> layers;
- struct ggml_tensor * post_ln_w;
- struct ggml_tensor * post_ln_b;
- struct ggml_tensor * projection;
- // LLaVA projection
- struct ggml_tensor * mm_0_w = NULL;
- struct ggml_tensor * mm_0_b = NULL;
- struct ggml_tensor * mm_2_w = NULL;
- struct ggml_tensor * mm_2_b = NULL;
- struct ggml_tensor * image_newline = NULL;
- // Yi type models with mlp+normalization projection
- struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
- struct ggml_tensor * mm_1_b = NULL;
- struct ggml_tensor * mm_3_w = NULL;
- struct ggml_tensor * mm_3_b = NULL;
- struct ggml_tensor * mm_4_w = NULL;
- struct ggml_tensor * mm_4_b = NULL;
- // MobileVLM projection
- struct ggml_tensor * mm_model_mlp_1_w;
- struct ggml_tensor * mm_model_mlp_1_b;
- struct ggml_tensor * mm_model_mlp_3_w;
- struct ggml_tensor * mm_model_mlp_3_b;
- struct ggml_tensor * mm_model_block_1_block_0_0_w;
- struct ggml_tensor * mm_model_block_1_block_0_1_w;
- struct ggml_tensor * mm_model_block_1_block_0_1_b;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
- struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
- struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
- struct ggml_tensor * mm_model_block_1_block_2_0_w;
- struct ggml_tensor * mm_model_block_1_block_2_1_w;
- struct ggml_tensor * mm_model_block_1_block_2_1_b;
- struct ggml_tensor * mm_model_block_2_block_0_0_w;
- struct ggml_tensor * mm_model_block_2_block_0_1_w;
- struct ggml_tensor * mm_model_block_2_block_0_1_b;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
- struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
- struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
- struct ggml_tensor * mm_model_block_2_block_2_0_w;
- struct ggml_tensor * mm_model_block_2_block_2_1_w;
- struct ggml_tensor * mm_model_block_2_block_2_1_b;
- // MobileVLM_V2 projection
- struct ggml_tensor * mm_model_mlp_0_w;
- struct ggml_tensor * mm_model_mlp_0_b;
- struct ggml_tensor * mm_model_mlp_2_w;
- struct ggml_tensor * mm_model_mlp_2_b;
- struct ggml_tensor * mm_model_peg_0_w;
- struct ggml_tensor * mm_model_peg_0_b;
- // MINICPMV projection
- struct ggml_tensor * mm_model_pos_embed_k;
- struct ggml_tensor * mm_model_query;
- struct ggml_tensor * mm_model_proj;
- struct ggml_tensor * mm_model_kv_proj;
- struct ggml_tensor * mm_model_attn_q_w;
- struct ggml_tensor * mm_model_attn_q_b;
- struct ggml_tensor * mm_model_attn_k_w;
- struct ggml_tensor * mm_model_attn_k_b;
- struct ggml_tensor * mm_model_attn_v_w;
- struct ggml_tensor * mm_model_attn_v_b;
- struct ggml_tensor * mm_model_attn_o_w;
- struct ggml_tensor * mm_model_attn_o_b;
- struct ggml_tensor * mm_model_ln_q_w;
- struct ggml_tensor * mm_model_ln_q_b;
- struct ggml_tensor * mm_model_ln_kv_w;
- struct ggml_tensor * mm_model_ln_kv_b;
- struct ggml_tensor * mm_model_ln_post_w;
- struct ggml_tensor * mm_model_ln_post_b;
- };
- struct clip_ctx {
- bool has_text_encoder = false;
- bool has_vision_encoder = false;
- bool has_llava_projector = false;
- bool has_minicpmv_projector = false;
- int minicpmv_version = 2;
- struct clip_vision_model vision_model;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- float image_mean[3];
- float image_std[3];
- bool use_gelu = false;
- int32_t ftype = 1;
- bool has_class_embedding = true;
- bool has_pre_norm = true;
- bool has_post_norm = false;
- bool has_patch_bias = false;
- struct gguf_context * ctx_gguf;
- struct ggml_context * ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- // memory buffers to evaluate the model
- ggml_backend_buffer_t params_buffer = NULL;
- ggml_backend_t backend = NULL;
- ggml_gallocr_t compute_alloc = NULL;
- struct clip_image_size * load_image_size;
- };
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
- if (!ctx->has_vision_encoder) {
- LOG_TEE("This gguf file seems to have no vision encoder\n");
- return nullptr;
- }
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- if (ctx->has_minicpmv_projector) {
- if (load_image_size == nullptr) {
- load_image_size = clip_image_size_init();
- }
- LOG_TEE("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
- image_size_width = load_image_size->width;
- image_size_height = load_image_size->height;
- if (is_inf) {
- image_size_width = imgs->data->nx;
- image_size_height = imgs->data->ny;
- }
- }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
- const int hidden_size = hparams.hidden_size;
- const int n_head = hparams.n_head;
- const int d_head = hidden_size / n_head;
- int n_layer = hparams.n_layer;
- const float eps = hparams.eps;
- const int batch_size = imgs->size;
- if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph * gf = ggml_new_graph(ctx0);
- struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
- inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
- if (ctx->has_patch_bias) {
- // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- struct ggml_tensor * embeddings = inp;
- struct ggml_tensor * pos_embed = nullptr;
- if (ctx->has_llava_projector) {
- // concat class_embeddings and patch_embeddings
- if (ctx->has_class_embedding) {
- embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
- ggml_set_name(embeddings, "embeddings");
- ggml_set_input(embeddings);
- embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
- embeddings = ggml_acc(ctx0, embeddings, inp,
- embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
- }
- }
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- embeddings =
- ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
- if (ctx->has_minicpmv_projector) {
- int pos_w = image_size_width/patch_size;
- int pos_h = image_size_height/patch_size;
- if (ctx->minicpmv_version == 2) {
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
- }
- else if (ctx->minicpmv_version == 3) {
- pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
- }
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
- }
- // pre-layernorm
- if (ctx->has_pre_norm) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "pre_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
- }
- // loop over layers
- if (ctx->has_minicpmv_projector) {
- n_layer += 1;
- }
- for (int il = 0; il < n_layer - 1; il++) {
- struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
- //const size_t nb_q_w = model.layers[il].q_w->nb[0];
- // layernorm1
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
- model.layers[il].ln_1_b);
- }
- // self-attention
- {
- struct ggml_tensor * Q =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
- Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * K =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- struct ggml_tensor * V =
- ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_inplace(ctx0, KQ);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
- }
- // attention output
- cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, embeddings);
- embeddings = cur; // embeddings = residual, cur = hidden_states
- // layernorm2
- {
- cur = ggml_norm(ctx0, cur, eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
- if (ctx->use_gelu) {
- cur = ggml_gelu_inplace(ctx0, cur);
- } else {
- cur = ggml_gelu_quick_inplace(ctx0, cur);
- }
- cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
- cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
- // residual 2
- cur = ggml_add(ctx0, embeddings, cur);
- embeddings = cur;
- }
- // post-layernorm
- if (ctx->has_post_norm) {
- embeddings = ggml_norm(ctx0, embeddings, eps);
- ggml_set_name(embeddings, "post_ln");
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
- }
- // llava projector
- if (ctx->has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- struct ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
- mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- struct ggml_tensor * peg_0 = ggml_conv_depthwise_2d(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // minicpmv projector
- else if (ctx->has_minicpmv_projector)
- {
- if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- struct ggml_tensor * q = model.mm_model_query;
- { // layernorm
- q = ggml_norm(ctx0, q, eps);
- q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- }
- struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- { // layernorm
- v = ggml_norm(ctx0, v, eps);
- v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
- }
- struct ggml_tensor * k;
- { // position
- // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
- k = ggml_add(ctx0, v, pos_embed);
- }
- { // attention
- int hidden_size = 4096;
- const int d_head = 128;
- int n_head = hidden_size/d_head;
- int num_query = 96;
- if (ctx->minicpmv_version == 2) {
- hidden_size = 4096;
- n_head = hidden_size/d_head;
- num_query = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- hidden_size = 3584;
- n_head = hidden_size/d_head;
- num_query = 64;
- }
- struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
- Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
- struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
- struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
- // permute
- Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
- Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
- Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
- K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
- K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
- K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
- V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
- V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
- V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- KQ = ggml_soft_max_inplace(ctx0, KQ);
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
- KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
- KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
- embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
- }
- { // layernorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
- }
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- }
- else {
- GGML_ASSERT(false);
- }
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- ggml_free(ctx0);
- return gf;
- }
- // read and create ggml_context containing the tensors and their data
- struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
- struct ggml_context * meta = NULL;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- struct gguf_context * ctx = gguf_init_from_file(fname, params);
- if (!ctx) {
- throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- if (verbosity >= 1) {
- const int n_tensors = gguf_get_n_tensors(ctx);
- const int n_kv = gguf_get_n_kv(ctx);
- const int ftype = get_u32(ctx, KEY_FTYPE);
- const std::string ftype_str = get_ftype(ftype);
- const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
- const std::string description = gguf_get_val_str(ctx, idx_desc);
- const int idx_name = gguf_find_key(ctx, KEY_NAME);
- if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
- const std::string name = gguf_get_val_str(ctx, idx_name);
- LOG_TEE("%s: model name: %s\n", __func__, name.c_str());
- }
- LOG_TEE("%s: description: %s\n", __func__, description.c_str());
- LOG_TEE("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
- LOG_TEE("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
- LOG_TEE("%s: n_tensors: %d\n", __func__, n_tensors);
- LOG_TEE("%s: n_kv: %d\n", __func__, n_kv);
- LOG_TEE("%s: ftype: %s\n", __func__, ftype_str.c_str());
- LOG_TEE("\n");
- }
- const int n_tensors = gguf_get_n_tensors(ctx);
- // kv
- const int n_kv = gguf_get_n_kv(ctx);
- LOG_TEE("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
- __func__, n_kv, n_tensors, fname);
- {
- std::map<enum ggml_type, uint32_t> n_type;
- for (int i = 0; i < n_tensors; i++) {
- enum ggml_type type = gguf_get_tensor_type(ctx, i);
- n_type[type]++;
- }
- LOG_TEE("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
- for (int i = 0; i < n_kv; i++) {
- const char * name = gguf_get_key(ctx, i);
- const enum gguf_type type = gguf_get_kv_type(ctx, i);
- const std::string type_name =
- type == GGUF_TYPE_ARRAY
- ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
- : gguf_type_name(type);
- std::string value = gguf_kv_to_str(ctx, i);
- const size_t MAX_VALUE_LEN = 40;
- if (value.size() > MAX_VALUE_LEN) {
- value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
- }
- replace_all(value, "\n", "\\n");
- LOG_TEE("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
- }
- // print type counts
- for (auto & kv : n_type) {
- if (kv.second == 0) {
- continue;
- }
- LOG_TEE("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
- }
- }
- // data
- size_t model_size = 0;
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- const size_t offset = gguf_get_tensor_offset(ctx, i);
- enum ggml_type type = gguf_get_tensor_type(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- model_size += tensor_size;
- if (verbosity >= 3) {
- LOG_TEE("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- clip_ctx * new_clip = new clip_ctx{};
- // update projector type
- {
- int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
- if (idx != -1) {
- const std::string proj_type = gguf_get_val_str(ctx, idx);
- new_clip->proj_type = clip_projector_type_from_string(proj_type);
- } else {
- new_clip->proj_type = PROJECTOR_TYPE_MLP;
- }
- if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
- if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
- new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
- }
- }
- }
- #ifdef GGML_USE_CUDA
- new_clip->backend = ggml_backend_cuda_init(0);
- LOG_TEE("%s: CLIP using CUDA backend\n", __func__);
- #endif
- #ifdef GGML_USE_METAL
- new_clip->backend = ggml_backend_metal_init();
- LOG_TEE("%s: CLIP using Metal backend\n", __func__);
- #endif
- #ifdef GGML_USE_CANN
- new_clip->backend = ggml_backend_cann_init(0);
- LOG_TEE("%s: CLIP using CANN backend\n", __func__);
- #endif
- #ifdef GGML_USE_VULKAN
- new_clip->backend = ggml_backend_vk_init(0);
- LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
- #endif
- if (!new_clip->backend) {
- new_clip->backend = ggml_backend_cpu_init();
- LOG_TEE("%s: CLIP using CPU backend\n", __func__);
- }
- // model size and capabilities
- {
- int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
- new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
- idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
- new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
- idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
- if (idx != -1) {
- new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
- }
- idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
- if (idx != -1) {
- new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
- }
- idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
- if (idx != -1) {
- new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
- }
- // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
- GGML_ASSERT(new_clip->has_vision_encoder);
- GGML_ASSERT(!new_clip->has_text_encoder);
- idx = get_key_idx(ctx, KEY_USE_GELU);
- new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
- if (verbosity >= 1) {
- LOG_TEE("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
- LOG_TEE("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
- LOG_TEE("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
- LOG_TEE("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
- LOG_TEE("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
- LOG_TEE("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
- }
- }
- LOG_TEE("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
- // load tensors
- {
- std::vector<uint8_t> read_buf;
- struct ggml_init_params params = {
- /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- new_clip->ctx_data = ggml_init(params);
- if (!new_clip->ctx_data) {
- LOG_TEE("%s: ggml_init() failed\n", __func__);
- clip_free(new_clip);
- gguf_free(ctx);
- return nullptr;
- }
- #ifdef _WIN32
- int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
- if (!wlen) {
- return NULL;
- }
- wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
- wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
- if (!wlen) {
- free(wbuf);
- return NULL;
- }
- #if __GLIBCXX__
- int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
- __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
- std::istream fin(&buffer);
- #else // MSVC
- // unused in our current build
- auto fin = std::ifstream(wbuf, std::ios::binary);
- #endif
- free(wbuf);
- #else
- auto fin = std::ifstream(fname, std::ios::binary);
- #endif
- if (!fin) {
- LOG_TEE("cannot open model file for loading tensors\n");
- clip_free(new_clip);
- gguf_free(ctx);
- return nullptr;
- }
- // add tensors to context
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * t = ggml_get_tensor(meta, name);
- struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
- ggml_set_name(cur, name);
- }
- // alloc memory and offload data
- new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx, i);
- struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
- const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- LOG_TEE("%s: failed to seek for tensor %s\n", __func__, name);
- clip_free(new_clip);
- gguf_free(ctx);
- return nullptr;
- }
- int num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- #if defined(_WIN32) && defined(__GLIBCXX__)
- close(fd);
- #else
- fin.close();
- #endif
- }
- // vision model
- if (new_clip->has_vision_encoder) {
- // load vision model
- auto & vision_model = new_clip->vision_model;
- auto & hparams = vision_model.hparams;
- hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
- hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
- hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
- hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
- hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
- hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
- hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
- hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
- try {
- int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
- int n = gguf_get_arr_n(ctx, idx);
- const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
- for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
- hparams.image_grid_pinpoints[i] = pinpoints[i];
- }
- if (n < 32)
- hparams.image_grid_pinpoints[n] = 0;
- } catch (std::runtime_error & /*e*/) {
- hparams.image_grid_pinpoints[0]=0;
- }
- try {
- int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
- strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
- } catch (std::runtime_error & /*e*/) {
- strcpy(hparams.mm_patch_merge_type, "flat");
- }
- try {
- hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
- } catch(const std::exception& /*e*/) {
- hparams.image_crop_resolution = hparams.image_size;
- }
- int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
- int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
- const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
- const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
- for (int i = 0; i < 3; ++i) {
- new_clip->image_mean[i] = mean_data[i];
- new_clip->image_std[i] = std_data[i];
- }
- if (verbosity >= 2) {
- LOG_TEE("\n%s: vision model hparams\n", __func__);
- LOG_TEE("image_size %d\n", hparams.image_size);
- LOG_TEE("patch_size %d\n", hparams.patch_size);
- LOG_TEE("v_hidden_size %d\n", hparams.hidden_size);
- LOG_TEE("v_n_intermediate %d\n", hparams.n_intermediate);
- LOG_TEE("v_projection_dim %d\n", hparams.projection_dim);
- LOG_TEE("v_n_head %d\n", hparams.n_head);
- LOG_TEE("v_n_layer %d\n", hparams.n_layer);
- LOG_TEE("v_eps %f\n", hparams.eps);
- LOG_TEE("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
- LOG_TEE("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
- LOG_TEE("v_image_grid_pinpoints: ");
- for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
- LOG_TEE("%d ", hparams.image_grid_pinpoints[i]);
- }
- LOG_TEE("\n");
- LOG_TEE("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
- }
- try {
- vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
- new_clip->has_class_embedding = true;
- } catch (const std::exception& /*e*/) {
- new_clip->has_class_embedding = false;
- }
- try {
- vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
- vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
- new_clip->has_pre_norm = true;
- } catch (std::exception & /*e*/) {
- new_clip->has_pre_norm = false;
- }
- try {
- vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
- vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
- new_clip->has_post_norm = true;
- } catch (std::exception & /*e*/) {
- new_clip->has_post_norm = false;
- }
- try {
- vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
- new_clip->has_patch_bias = true;
- } catch (std::exception & /*e*/) {
- new_clip->has_patch_bias = false;
- }
- try {
- vision_model.patch_embeddings = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
- vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
- } catch(const std::exception& /*e*/) {
- LOG_TEE("%s: failed to load vision model tensors\n", __func__);
- }
- // LLaVA projection
- if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
- vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
- try {
- // Yi-type llava
- vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
- vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
- } catch (std::runtime_error & /*e*/) { }
- try {
- // missing in Yi-type llava
- vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
- vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
- } catch (std::runtime_error & /*e*/) { }
- try {
- // Yi-type llava
- vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
- vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
- } catch (std::runtime_error & /*e*/) { }
- try {
- // Yi-type llava
- vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
- vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
- } catch (std::runtime_error & /*e*/) { }
- try {
- vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
- // LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
- } catch (std::runtime_error & /*e*/) { }
- } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
- // MobileVLM projection
- vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
- vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
- vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
- vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
- vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- }
- else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
- {
- // MobilVLM_V2 projection
- vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
- vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
- vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
- vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
- vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
- vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
- }
- else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
- vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
- vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
- vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
- vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
- vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
- vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
- vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
- vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
- vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
- vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
- vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
- vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
- vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
- vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
- vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
- vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
- vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
- vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
- }
- else {
- std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
- throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
- }
- vision_model.layers.resize(hparams.n_layer);
- for (int il = 0; il < hparams.n_layer; ++il) {
- auto & layer = vision_model.layers[il];
- layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
- layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
- layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
- layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
- layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
- layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
- layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
- layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
- layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
- layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
- layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
- layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
- layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
- layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
- layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
- layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
- }
- }
- ggml_free(meta);
- new_clip->ctx_gguf = ctx;
- // measure mem requirement and allocate
- {
- new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
- new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
- clip_image_f32_batch batch;
- batch.size = 1;
- ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
- ggml_gallocr_reserve(new_clip->compute_alloc, gf);
- size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
- LOG_TEE("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
- }
- return new_clip;
- }
- void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
- ctx_clip->load_image_size = load_image_size;
- }
- struct clip_image_size * clip_image_size_init() {
- struct clip_image_size * load_image_size = new struct clip_image_size();
- load_image_size->width = 448;
- load_image_size->height = 448;
- return load_image_size;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
- void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
- if (batch->size > 0) {
- delete[] batch->data;
- batch->size = 0;
- }
- }
- void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
- if (batch->size > 0) {
- delete[] batch->data;
- batch->size = 0;
- }
- }
- static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), data, img->buf.size());
- }
- bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_TEE("%s: failed to load image '%s'\n", __func__, fname);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
- int nx, ny, nc;
- auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
- if (!data) {
- LOG_TEE("%s: failed to decode image bytes\n", __func__);
- return false;
- }
- build_clip_img_from_data(data, nx, ny, img);
- stbi_image_free(data);
- return true;
- }
- // Linear interpolation between two points
- inline float clip_lerp(float s, float e, float t) {
- return s + (e - s) * t;
- }
- // Bilinear resize function
- static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float x_ratio = static_cast<float>(src.nx - 1) / target_width;
- float y_ratio = static_cast<float>(src.ny - 1) / target_height;
- for (int y = 0; y < target_height; y++) {
- for (int x = 0; x < target_width; x++) {
- float px = x_ratio * x;
- float py = y_ratio * y;
- int x_floor = static_cast<int>(px);
- int y_floor = static_cast<int>(py);
- float x_lerp = px - x_floor;
- float y_lerp = py - y_floor;
- for (int c = 0; c < 3; c++) {
- float top = clip_lerp(
- static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- float bottom = clip_lerp(
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
- }
- }
- }
- }
- // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
- static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
- dst->nx = src->nx;
- dst->ny = src->ny;
- dst->buf.resize(src->buf.size());
- for (size_t i = 0; i < src->buf.size(); ++i) {
- int c = i % 3; // rgb
- dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
- }
- }
- inline int clip(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
- const int nx = img.nx;
- const int ny = img.ny;
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float Cc;
- float C[5];
- float d0, d2, d3, a0, a1, a2, a3;
- int i, j, k, jj;
- int x, y;
- float dx, dy;
- float tx, ty;
- tx = (float)nx / (float)target_width;
- ty = (float)ny / (float)target_height;
- // Bicubic interpolation; adapted from ViT.cpp, inspired from :
- // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
- // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
- for (i = 0; i < target_height; i++) {
- for (j = 0; j < target_width; j++) {
- x = (int)(tx * j);
- y = (int)(ty * i);
- dx = tx * j - x;
- dy = ty * i - y;
- for (k = 0; k < 3; k++) {
- for (jj = 0; jj <= 3; jj++) {
- d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
- d0 = C[0] - C[1];
- d2 = C[2] - C[1];
- d3 = C[3] - C[1];
- a0 = C[1];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
- const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
- dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
- }
- }
- }
- }
- return true;
- }
- // llava-1.6 type of resize_and_pad (black)
- static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
- int target_width = target_resolution.first;
- int target_height = target_resolution.second;
- float scale_w = static_cast<float>(target_width) / image.nx;
- float scale_h = static_cast<float>(target_height) / image.ny;
- int new_width, new_height;
- if (scale_w < scale_h) {
- new_width = target_width;
- new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
- } else {
- new_height = target_height;
- new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
- }
- clip_image_u8 resized_image;
- // bilinear_resize(image, resized_image, new_width, new_height);
- bicubic_resize(image, resized_image, new_width, new_height);
- clip_image_u8 padded_image;
- padded_image.nx = target_width;
- padded_image.ny = target_height;
- padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
- // Calculate padding offsets
- int pad_x = (target_width - new_width) / 2;
- int pad_y = (target_height - new_height) / 2;
- // Copy the resized image into the center of the padded buffer
- for (int y = 0; y < new_height; ++y) {
- for (int x = 0; x < new_width; ++x) {
- for (int c = 0; c < 3; ++c) {
- padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
- }
- }
- }
- image_output = std::move(padded_image);
- }
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * @param original_size The original size of the image in the format (width, height).
- * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
- * @return The best fit resolution in the format (width, height).
- */
- static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
- int original_width = original_size.first;
- int original_height = original_size.second;
- std::pair<int, int> best_fit;
- int max_effective_resolution = 0;
- int min_wasted_resolution = std::numeric_limits<int>::max();
- for (const auto& resolution : possible_resolutions) {
- int width = resolution.first;
- int height = resolution.second;
- float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
- int downscaled_width = static_cast<int>(original_width * scale);
- int downscaled_height = static_cast<int>(original_height * scale);
- int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
- int wasted_resolution = (width * height) - effective_resolution;
- // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
- max_effective_resolution = effective_resolution;
- min_wasted_resolution = wasted_resolution;
- best_fit = resolution;
- }
- }
- return best_fit;
- }
- static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
- std::vector<clip_image_u8*> patches;
- int width = image.nx;
- int height = image.ny;
- for (int i = 0; i < height; i += patch_size) {
- for (int j = 0; j < width; j += patch_size) {
- clip_image_u8 *patch = clip_image_u8_init();
- patch->nx = std::min(patch_size, width - j);
- patch->ny = std::min(patch_size, height - i);
- patch->buf.resize(3 * patch->nx * patch->ny);
- for (int y = 0; y < patch->ny; ++y) {
- for (int x = 0; x < patch->nx; ++x) {
- for (int c = 0; c < 3; ++c) {
- patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
- }
- }
- }
- patches.push_back(patch);
- }
- }
- return patches;
- }
- static int ensure_divide(int length, int patch_size) {
- return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
- }
- static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.first;
- int height = original_size.second;
- if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
- float r = static_cast<float>(width) / height;
- height = static_cast<int>(scale_resolution / std::sqrt(r));
- width = static_cast<int>(height * r);
- }
- int best_width = ensure_divide(width, patch_size);
- int best_height = ensure_divide(height, patch_size);
- return std::make_pair(best_width, best_height);
- }
- static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width, height;
- std::tie(width, height) = original_size;
- int grid_x, grid_y;
- std::tie(grid_x, grid_y) = grid;
- int refine_width = ensure_divide(width, grid_x);
- int refine_height = ensure_divide(height, grid_y);
- int grid_width = refine_width / grid_x;
- int grid_height = refine_height / grid_y;
- // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
- auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
- int best_grid_width, best_grid_height;
- std::tie(best_grid_width, best_grid_height) = best_grid_size;
- // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
- std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
- return refine_size;
- }
- static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
- std::vector<int> candidate_split_grids_nums;
- for (int i : {multiple - 1, multiple, multiple + 1}) {
- if (i == 1 || i > max_slice_nums) {
- continue;
- }
- candidate_split_grids_nums.push_back(i);
- }
- std::vector<std::pair<int, int>> candidate_grids;
- for (int split_grids_nums : candidate_split_grids_nums) {
- int m = 1;
- while (m <= split_grids_nums) {
- if (split_grids_nums % m == 0) {
- candidate_grids.emplace_back(m, split_grids_nums / m);
- }
- ++m;
- }
- }
- std::pair<int, int> best_grid{1, 1};
- float min_error = std::numeric_limits<float>::infinity();
- for (const auto& grid : candidate_grids) {
- float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
- if (error < min_error) {
- best_grid = grid;
- min_error = error;
- }
- }
- return best_grid;
- }
- // inspired from LLaVA-UHD:
- // -> https://arxiv.org/pdf/2403.11703
- // -> https://github.com/thunlp/LLaVA-UHD
- // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
- static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
- const std::pair<int, int> original_size={img->nx,img->ny};
- const int original_width = img->nx;
- const int original_height = img->ny;
- const float log_ratio = log(1.0*original_width/original_height);
- const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- std::vector<std::vector<clip_image_u8 *>> images;
- LOG_TEE("%s: multiple %d\n", __func__, multiple);
- images.push_back(std::vector<clip_image_u8 *>());
- if (multiple <= 1) {
- auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
- clip_image_u8 * source_image = clip_image_u8_init();
- bicubic_resize(*img, *source_image, best_size.first, best_size.second);
- // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
- images[images.size()-1].push_back(source_image);
- }
- else if (multiple > 1) {
- auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
- clip_image_u8 * source_image = clip_image_u8_init();
- bicubic_resize(*img, *source_image, best_size.first, best_size.second);
- // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
- LOG_TEE("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
- images[images.size()-1].push_back(source_image);
- std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
- LOG_TEE("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
- auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
- clip_image_u8 * refine_image = clip_image_u8_init();
- bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
- LOG_TEE("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
- // split_to_patches
- int width = refine_image->nx;
- int height = refine_image->ny;
- int grid_x = int(width / best_grid.first);
- int grid_y = int(height / best_grid.second);
- for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
- images.push_back(std::vector<clip_image_u8 *>());
- for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
- clip_image_u8 * patch = clip_image_u8_init();
- patch->nx = grid_x;
- patch->ny = grid_y;
- patch->buf.resize(3 * patch->nx * patch->ny);
- for (int y = patches_i; y < patches_i + grid_y; ++y) {
- for (int x = patches_j; x < patches_j + grid_x; ++x) {
- const int i = 3 * (y * refine_image->nx + x);
- const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
- patch->buf[j] = refine_image->buf[i];
- patch->buf[j+1] = refine_image->buf[i+1];
- patch->buf[j+2] = refine_image->buf[i+2];
- }
- }
- images[images.size()-1].push_back(patch);
- }
- }
- }
- return images;
- }
- int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
- const int max_slice_nums=9;
- const int scale_resolution=448;
- const int original_width = ctx_clip->load_image_size->width;
- const int original_height = ctx_clip->load_image_size->height;
- const float log_ratio = log(1.0*original_width/original_height);
- const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
- return best_grid.first;
- }
- // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
- // res_imgs memory is being allocated here, previous allocations will be freed if found
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
- if(clip_is_minicpmv(ctx)){
- int max_slice_nums = 9;
- std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
- res_imgs->size = 0;
- for (size_t i = 0; i < imgs.size(); ++i){
- res_imgs->size += imgs[i].size();
- }
- res_imgs->data = new clip_image_f32[res_imgs->size];
- int idx = 0;
- for (size_t i = 0; i < imgs.size(); ++i) {
- for (size_t j = 0; j < imgs[i].size(); ++j) {
- LOG_TEE("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
- clip_image_f32 * res = clip_image_f32_init();
- normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
- res_imgs->data[idx++] = *res;
- clip_image_f32_free(res);
- }
- }
- return true;
- }
- bool pad_to_square = true;
- if (!ctx->has_vision_encoder) {
- LOG_TEE("This gguf file seems to have no vision encoder\n");
- return false;
- }
- auto & params = ctx->vision_model.hparams;
- // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
- if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
- pad_to_square = false;
- }
- // free the previous res_imgs if any set
- if (res_imgs->size > 0) {
- clip_image_f32_batch_free(res_imgs);
- }
- res_imgs->data = nullptr;
- res_imgs->size = 0;
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
- if (pad_to_square && img->nx != img->ny) {
- int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
- // fill with background color
- for (size_t i = 0; i < temp->buf.size(); i++) {
- temp->buf[i] = bc[i % 3];
- }
- // copy from the input image
- for (int y = 0; y < img->ny; y++) {
- for (int x = 0; x < img->nx; x++) {
- const int i = 3 * (y * img->nx + x);
- const int j = 3 * (y * temp->nx + x);
- temp->buf[j] = img->buf[i];
- temp->buf[j+1] = img->buf[i+1];
- temp->buf[j+2] = img->buf[i+2];
- }
- }
- } else {
- if (params.image_grid_pinpoints[0] != 0) {
- // "spatial_unpad" with "anyres" processing for llava-1.6
- std::vector<std::pair<int, int>> possible_resolutions;
- for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
- possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
- }
- std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
- // clip_image_save_to_bmp(*img, "input.bmp");
- resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
- // clip_image_save_to_bmp(*temp, "resized.bmp");
- // visually verify normalized image:
- // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
- // {
- // clip_image_u8 * temp2 = clip_image_u8_init();
- // clip_image_convert_f32_to_u8(*res, *temp2);
- // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
- // clip_image_u8_free(temp2);
- // }
- std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
- clip_image_u8 *image_original_resize = clip_image_u8_init();
- // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
- bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
- patches.insert(patches.begin(), image_original_resize);
- // clip_image_f32_batch_init(patches.size());
- res_imgs->size = patches.size();
- res_imgs->data = new clip_image_f32[res_imgs->size];
- int num=0;
- for (auto& patch : patches) {
- normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
- num++;
- }
- for (size_t i = 0; i < patches.size(); i++) {
- // LOG_TEE("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
- clip_image_u8_free(patches[i]);
- }
- clip_image_u8_free(temp);
- return true;
- } else {
- temp->nx = img->nx;
- temp->ny = img->ny;
- temp->buf.resize(img->buf.size());
- memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
- }
- }
- const int nx = temp->nx;
- const int ny = temp->ny;
- // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
- const int nx2 = ctx->vision_model.hparams.image_size;
- const int ny2 = ctx->vision_model.hparams.image_size;
- clip_image_f32 * res = clip_image_f32_init();
- res->nx = nx2;
- res->ny = ny2;
- res->buf.resize(3 * nx2 * ny2);
- const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
- const int nx3 = int(nx / scale + 0.5f);
- const int ny3 = int(ny / scale + 0.5f);
- const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
- const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
- for (int y = 0; y < ny3; y++) {
- for (int x = 0; x < nx3; x++) {
- for (int c = 0; c < 3; c++) {
- // linear interpolation
- const float sx = (x + 0.5f) * scale - 0.5f;
- const float sy = (y + 0.5f) * scale - 0.5f;
- const int x0 = std::max(0, (int)std::floor(sx));
- const int y0 = std::max(0, (int)std::floor(sy));
- const int x1 = std::min(x0 + 1, nx - 1);
- const int y1 = std::min(y0 + 1, ny - 1);
- const float dx = sx - x0;
- const float dy = sy - y0;
- const int j00 = 3 * (y0 * nx + x0) + c;
- const int j01 = 3 * (y0 * nx + x1) + c;
- const int j10 = 3 * (y1 * nx + x0) + c;
- const int j11 = 3 * (y1 * nx + x1) + c;
- const float v00 = temp->buf[j00];
- const float v01 = temp->buf[j01];
- const float v10 = temp->buf[j10];
- const float v11 = temp->buf[j11];
- const float v0 = v00 * (1.0f - dx) + v01 * dx;
- const float v1 = v10 * (1.0f - dx) + v11 * dx;
- const float v = v0 * (1.0f - dy) + v1 * dy;
- const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
- const int i = 3 * (y * nx3 + x) + c;
- res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
- }
- }
- }
- clip_image_u8_free(temp);
- // {
- // clip_image_u8 * temp2 = clip_image_u8_init();
- // clip_image_convert_f32_to_u8(*res, *temp2);
- // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
- // clip_image_u8_free(temp2);
- // }
- // res_imgs.push_back(res);
- res_imgs->size = 1;
- res_imgs->data = new clip_image_f32[res_imgs->size];
- res_imgs->data[0] = *res;
- clip_image_f32_free(res);
- return true;
- }
- ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
- return ctx->vision_model.image_newline;
- }
- void clip_free(clip_ctx * ctx) {
- ggml_free(ctx->ctx_data);
- gguf_free(ctx->ctx_gguf);
- ggml_backend_buffer_free(ctx->params_buffer);
- ggml_backend_free(ctx->backend);
- ggml_gallocr_free(ctx->compute_alloc);
- delete ctx;
- }
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- int32_t clip_image_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_size;
- }
- int32_t clip_patch_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.patch_size;
- }
- int32_t clip_hidden_size(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.hidden_size;
- }
- const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.mm_patch_merge_type;
- }
- const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
- return ctx->vision_model.hparams.image_grid_pinpoints;
- }
- int clip_n_patches(const struct clip_ctx * ctx) {
- const auto & params = ctx->vision_model.hparams;
- int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
- if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
- n_patches /= 4;
- } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- if (ctx->minicpmv_version == 2) {
- n_patches = 96;
- }
- else if (ctx->minicpmv_version == 3) {
- n_patches = 64;
- }
- }
- return n_patches;
- }
- static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
- return pos_embed_2d;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- if (!ctx->has_vision_encoder) {
- LOG_TEE("This gguf file seems to have no vision encoder\n");
- return false;
- }
- clip_image_f32_batch imgs{};
- imgs.size = 1;
- imgs.data = img;
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
- if (!ctx->has_vision_encoder) {
- LOG_TEE("This gguf file seems to have no vision encoder\n");
- return false;
- }
- int batch_size = imgs->size;
- if (ctx->has_llava_projector) {
- GGML_ASSERT(batch_size == 1); // TODO: support multiple images
- }
- if (ctx->has_minicpmv_projector) {
- GGML_ASSERT(batch_size == 1);
- }
- // build the inference graph
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
- ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
- // set inputs
- const auto & model = ctx->vision_model;
- const auto & hparams = model.hparams;
- const int image_size = hparams.image_size;
- int image_size_width = image_size;
- int image_size_height = image_size;
- if (ctx->has_minicpmv_projector) {
- image_size_width = imgs->data[0].nx;
- image_size_height = imgs->data[0].ny;
- }
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
- if(ctx->load_image_size==nullptr){
- ctx->load_image_size= clip_image_size_init();
- }
- const int pos_w = ctx->load_image_size->width/patch_size;
- const int pos_h = ctx->load_image_size->height/patch_size;
- {
- struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
- float * data = (float *)malloc(ggml_nbytes(inp_raw));
- for (size_t i = 0; i < imgs->size; i++) {
- const int nx = imgs->data[i].nx;
- const int ny = imgs->data[i].ny;
- if (!ctx->has_minicpmv_projector) {
- GGML_ASSERT(nx == image_size && ny == image_size);
- }
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- for (int k = 0; k < 3; k++) {
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
- }
- }
- }
- }
- }
- ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
- free(data);
- }
- if (ctx->has_minicpmv_projector) {
- {
- // inspired from siglip:
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- int bucket_coords_h[70];
- int bucket_coords_w[70];
- for (int i = 0; i < pos_h; i++){
- bucket_coords_h[i] = std::floor(70.0*i/pos_h);
- }
- for (int i = 0; i < pos_w; i++){
- bucket_coords_w[i] = std::floor(70.0*i/pos_w);
- }
- for (int i = 0, id = 0; i < pos_h; i++){
- for (int j = 0; j < pos_w; j++){
- positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
- }
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- {
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
- int embed_dim = 4096;
- if (ctx->minicpmv_version == 2) {
- embed_dim = 4096;
- }
- else if (ctx->minicpmv_version == 3) {
- embed_dim = 3584;
- }
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
- float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
- for(int i=0;i<pos_w * pos_h;++i){
- for(int j=0;j<embed_dim;++j){
- pos_embed_data[i*embed_dim+j]=pos_embed_t[i][j];
- }
- }
- ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
- free(pos_embed_data);
- }
- }
- else{
- {
- if (ctx->has_class_embedding) {
- struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
- void* zero_mem = malloc(ggml_nbytes(embeddings));
- memset(zero_mem, 0, ggml_nbytes(embeddings));
- ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
- free(zero_mem);
- }
- }
- {
- struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
- int* positions_data = (int*)malloc(ggml_nbytes(positions));
- for (int i = 0; i < num_positions; i++) {
- positions_data[i] = i;
- }
- ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
- free(positions_data);
- }
- {
- struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
- int* patches_data = (int*)malloc(ggml_nbytes(patches));
- for (int i = 0; i < num_patches; i++) {
- patches_data[i] = i + 1;
- }
- ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
- free(patches_data);
- }
- }
- if (ggml_backend_is_cpu(ctx->backend)) {
- ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
- }
- #ifdef GGML_USE_METAL
- if (ggml_backend_is_metal(ctx->backend)) {
- ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
- }
- #endif
- ggml_backend_graph_compute(ctx->backend, gf);
- // the last node is the embedding tensor
- struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 1];
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
- ggml_type type = GGML_TYPE_Q4_1;
- assert(itype < GGML_TYPE_COUNT);
- type = static_cast<ggml_type>(itype);
- auto * ctx_clip = clip_model_load(fname_inp, 2);
- const auto & ctx_src = ctx_clip->ctx_gguf;
- const auto & ctx_data = ctx_clip->ctx_data;
- auto * ctx_out = gguf_init_empty();
- gguf_set_kv(ctx_out, ctx_src);
- gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
- gguf_set_val_u32(ctx_out, "general.file_type", itype);
- auto fout = std::ofstream(fname_out, std::ios::binary);
- const int n_tensors = gguf_get_n_tensors(ctx_src);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
- gguf_add_tensor(ctx_out, cur);
- }
- const size_t meta_size = gguf_get_meta_size(ctx_out);
- for (size_t i = 0; i < meta_size; ++i) {
- fout.put(0);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- std::vector<uint8_t> work(512);
- std::vector<float> conv_buf(512);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- for (int i = 0; i < n_tensors; ++i) {
- const std::string name = gguf_get_tensor_name(ctx_src, i);
- struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors
- quantize &= (ggml_n_dims(cur) == 2);
- if (quantize) {
- new_type = type;
- if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
- new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
- // LOG_TEE("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
- }
- const size_t n_elms = ggml_nelements(cur);
- float * f32_data;
- switch (cur->type) {
- case GGML_TYPE_F32:
- f32_data = (float *)cur->data;
- break;
- case GGML_TYPE_F16:
- if (conv_buf.size() < n_elms) {
- conv_buf.resize(n_elms);
- }
- for (size_t j = 0; j < n_elms; ++j) {
- conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
- }
- f32_data = (float *)conv_buf.data();
- break;
- default:
- LOG_TEE("Please use an input file in f32 or f16\n");
- gguf_free(ctx_out);
- return false;
- }
- if (work.size() < n_elms * 4) {
- work.resize(n_elms * 4);
- }
- new_data = work.data();
- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
- } else {
- new_type = cur->type;
- new_data = cur->data;
- new_size = ggml_nbytes(cur);
- }
- const size_t orig_size = ggml_nbytes(cur);
- total_size_org += orig_size;
- total_size_new += new_size;
- gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
- gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
- fout.write((const char *)new_data, new_size);
- size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
- for (size_t j = 0; j < pad; ++j) {
- fout.put(0);
- }
- LOG_TEE("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
- orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
- }
- // go back to beginning of file and write the updated metadata
- fout.seekp(0, std::ios::beg);
- std::vector<uint8_t> meta(meta_size);
- gguf_get_meta_data(ctx_out, meta.data());
- fout.write((const char *)meta.data(), meta_size);
- fout.close();
- clip_free(ctx_clip);
- gguf_free(ctx_out);
- {
- LOG_TEE("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
- LOG_TEE("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
- }
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
- return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
- return ctx->vision_model.mm_model_peg_0_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
- return ctx->vision_model.mm_3_b->ne[0];
- }
- if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
- if (ctx->minicpmv_version == 2) {
- return 4096;
- }
- else if (ctx->minicpmv_version == 3) {
- return 3584;
- }
- }
- std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
- throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
- }
- int clip_is_minicpmv(const struct clip_ctx * ctx) {
- if (ctx->has_minicpmv_projector) {
- return ctx->minicpmv_version;
- }
- return 0;
- }
|