common.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. // Various helper functions and utilities
  27. #pragma once
  28. #include "llama.h"
  29. #include "sampling.h"
  30. #define LOG_NO_FILE_LINE_FUNCTION
  31. #include "log.h"
  32. #include <cmath>
  33. #include <string>
  34. #include <vector>
  35. #include <random>
  36. #include <thread>
  37. #include <unordered_map>
  38. #include <tuple>
  39. #ifdef _WIN32
  40. #define DIRECTORY_SEPARATOR '\\'
  41. #else
  42. #define DIRECTORY_SEPARATOR '/'
  43. #endif // _WIN32
  44. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  45. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  46. #define print_build_info() do { \
  47. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  48. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  49. } while(0)
  50. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  51. struct llama_lora_adapter_info {
  52. std::string path;
  53. float scale;
  54. };
  55. struct llama_lora_adapter_container : llama_lora_adapter_info {
  56. struct llama_lora_adapter * adapter;
  57. };
  58. // build info
  59. extern int LLAMA_BUILD_NUMBER;
  60. extern char const * LLAMA_COMMIT;
  61. extern char const * LLAMA_COMPILER;
  62. extern char const * LLAMA_BUILD_TARGET;
  63. struct llama_control_vector_load_info;
  64. //
  65. // CPU utils
  66. //
  67. int32_t cpu_get_num_physical_cores();
  68. int32_t cpu_get_num_math();
  69. //
  70. // CLI argument parsing
  71. //
  72. // dimensionality reduction methods, used by cvector-generator
  73. enum dimre_method {
  74. DIMRE_METHOD_PCA,
  75. DIMRE_METHOD_MEAN,
  76. };
  77. struct cpu_params {
  78. int n_threads = -1;
  79. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  80. bool mask_valid = false; // Default: any CPU
  81. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  82. bool strict_cpu = false; // Use strict CPU placement
  83. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  84. };
  85. struct gpt_params {
  86. uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
  87. int32_t n_predict = -1; // new tokens to predict
  88. int32_t n_ctx = 0; // context size
  89. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  90. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  91. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  92. int32_t n_draft = 5; // number of tokens to draft during speculative decoding
  93. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  94. int32_t n_parallel = 1; // number of parallel sequences to decode
  95. int32_t n_sequences = 1; // number of sequences to decode
  96. float p_split = 0.1f; // speculative decoding split probability
  97. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  98. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  99. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  100. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  101. int32_t grp_attn_n = 1; // group-attention factor
  102. int32_t grp_attn_w = 512; // group-attention width
  103. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  104. float rope_freq_base = 0.0f; // RoPE base frequency
  105. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  106. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  107. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  108. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  109. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  110. int32_t yarn_orig_ctx = 0; // YaRN original context length
  111. float defrag_thold = -1.0f; // KV cache defragmentation threshold
  112. struct cpu_params cpuparams;
  113. struct cpu_params cpuparams_batch;
  114. struct cpu_params draft_cpuparams;
  115. struct cpu_params draft_cpuparams_batch;
  116. ggml_backend_sched_eval_callback cb_eval = nullptr;
  117. void * cb_eval_user_data = nullptr;
  118. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  119. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  120. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  121. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  122. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  123. // // sampling parameters
  124. struct llama_sampling_params sparams;
  125. std::string model = ""; // model path
  126. std::string model_draft = ""; // draft model for speculative decoding
  127. std::string model_alias = "unknown"; // model alias
  128. std::string model_url = ""; // model url to download
  129. std::string hf_token = ""; // HF token
  130. std::string hf_repo = ""; // HF repo
  131. std::string hf_file = ""; // HF file
  132. std::string prompt = "";
  133. std::string prompt_file = ""; // store the external prompt file name
  134. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  135. std::string input_prefix = ""; // string to prefix user inputs with
  136. std::string input_suffix = ""; // string to suffix user inputs with
  137. std::string logdir = ""; // directory in which to save YAML log files
  138. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
  139. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
  140. std::string logits_file = ""; // file for saving *all* logits
  141. std::string rpc_servers = ""; // comma separated list of RPC servers
  142. std::vector<std::string> in_files; // all input files
  143. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  144. std::vector<llama_model_kv_override> kv_overrides;
  145. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_lora_adapter_apply)
  146. std::vector<llama_lora_adapter_info> lora_adapters; // lora adapter path with user defined scale
  147. std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
  148. int32_t verbosity = 0;
  149. int32_t control_vector_layer_start = -1; // layer range for control vector
  150. int32_t control_vector_layer_end = -1; // layer range for control vector
  151. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  152. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  153. // (which is more convenient to use for plotting)
  154. //
  155. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  156. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  157. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  158. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  159. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  160. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  161. bool kl_divergence = false; // compute KL divergence
  162. bool usage = false; // print usage
  163. bool use_color = false; // use color to distinguish generations and inputs
  164. bool special = false; // enable special token output
  165. bool interactive = false; // interactive mode
  166. bool interactive_first = false; // wait for user input immediately
  167. bool conversation = false; // conversation mode (does not print special tokens and suffix/prefix)
  168. bool prompt_cache_all = false; // save user input and generations to prompt cache
  169. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  170. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  171. bool multiline_input = false; // reverse the usage of `\`
  172. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  173. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  174. bool flash_attn = false; // flash attention
  175. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  176. bool ignore_eos = false; // ignore generated EOS tokens
  177. bool logits_all = false; // return logits for all tokens in the batch
  178. bool use_mmap = true; // use mmap for faster loads
  179. bool use_mlock = false; // use mlock to keep model in memory
  180. bool verbose_prompt = false; // print prompt tokens before generation
  181. bool display_prompt = true; // print prompt before generation
  182. bool infill = false; // use infill mode
  183. bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
  184. bool no_kv_offload = false; // disable KV offloading
  185. bool warmup = true; // warmup run
  186. bool check_tensors = false; // validate tensor data
  187. std::string cache_type_k = "f16"; // KV cache data type for the K
  188. std::string cache_type_v = "f16"; // KV cache data type for the V
  189. // multimodal models (see examples/llava)
  190. std::string mmproj = ""; // path to multimodal projector
  191. std::vector<std::string> image; // path to image file(s)
  192. // embedding
  193. bool embedding = false; // get only sentence embedding
  194. int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  195. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  196. std::string embd_sep = "\n"; // separator of embendings
  197. // server params
  198. int32_t port = 8080; // server listens on this network port
  199. int32_t timeout_read = 600; // http read timeout in seconds
  200. int32_t timeout_write = timeout_read; // http write timeout in seconds
  201. int n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  202. std::string hostname = "127.0.0.1";
  203. std::string public_path = "";
  204. std::string chat_template = "";
  205. std::string system_prompt = "";
  206. bool enable_chat_template = true;
  207. std::vector<std::string> api_keys;
  208. std::string ssl_file_key = "";
  209. std::string ssl_file_cert = "";
  210. bool endpoint_slots = true;
  211. bool endpoint_metrics = false;
  212. bool log_json = false;
  213. std::string slot_save_path;
  214. float slot_prompt_similarity = 0.5f;
  215. // batched-bench params
  216. bool is_pp_shared = false;
  217. std::vector<int32_t> n_pp;
  218. std::vector<int32_t> n_tg;
  219. std::vector<int32_t> n_pl;
  220. // retrieval params
  221. std::vector<std::string> context_files; // context files to embed
  222. int32_t chunk_size = 64; // chunk size for context embedding
  223. std::string chunk_separator = "\n"; // chunk separator for context embedding
  224. // passkey params
  225. int32_t n_junk = 250; // number of times to repeat the junk text
  226. int32_t i_pos = -1; // position of the passkey in the junk text
  227. // imatrix params
  228. std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
  229. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  230. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  231. int32_t i_chunk = 0; // start processing from this chunk
  232. bool process_output = false; // collect data for the output tensor
  233. bool compute_ppl = true; // whether to compute perplexity
  234. // cvector-generator params
  235. int n_pca_batch = 100;
  236. int n_pca_iterations = 1000;
  237. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  238. std::string cvector_outfile = "control_vector.gguf";
  239. std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
  240. std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
  241. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  242. std::string lora_outfile = "ggml-lora-merged-f16.gguf";
  243. };
  244. void gpt_params_parse_from_env(gpt_params & params);
  245. void gpt_params_handle_model_default(gpt_params & params);
  246. bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
  247. bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
  248. bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
  249. void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
  250. std::string gpt_params_get_system_info(const gpt_params & params);
  251. bool parse_cpu_range(const std::string& range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  252. bool parse_cpu_mask(const std::string& mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  253. void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model = nullptr);
  254. bool set_process_priority(enum ggml_sched_priority prio);
  255. //
  256. // String utils
  257. //
  258. std::vector<std::string> string_split(std::string input, char separator);
  259. std::string string_strip(const std::string & str);
  260. std::string string_get_sortable_timestamp();
  261. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  262. template<class T>
  263. static std::vector<T> string_split(const std::string & str, char delim) {
  264. std::vector<T> values;
  265. std::istringstream str_stream(str);
  266. std::string token;
  267. while (std::getline(str_stream, token, delim)) {
  268. T value;
  269. std::istringstream token_stream(token);
  270. token_stream >> value;
  271. values.push_back(value);
  272. }
  273. return values;
  274. }
  275. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  276. void string_process_escapes(std::string & input);
  277. //
  278. // Filesystem utils
  279. //
  280. bool fs_validate_filename(const std::string & filename);
  281. bool fs_create_directory_with_parents(const std::string & path);
  282. std::string fs_get_cache_directory();
  283. std::string fs_get_cache_file(const std::string & filename);
  284. //
  285. // Model utils
  286. //
  287. struct llama_init_result {
  288. struct llama_model * model = nullptr;
  289. struct llama_context * context = nullptr;
  290. std::vector<llama_lora_adapter_container> lora_adapters;
  291. };
  292. struct llama_init_result llama_init_from_gpt_params(gpt_params & params);
  293. struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
  294. struct llama_context_params llama_context_params_from_gpt_params (const gpt_params & params);
  295. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  296. struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  297. struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const char * hf_token, const struct llama_model_params & params);
  298. // clear LoRA adapters from context, then apply new list of adapters
  299. void llama_lora_adapters_apply(struct llama_context * ctx, std::vector<llama_lora_adapter_container> & lora_adapters);
  300. // Batch utils
  301. void llama_batch_clear(struct llama_batch & batch);
  302. void llama_batch_add(
  303. struct llama_batch & batch,
  304. llama_token id,
  305. llama_pos pos,
  306. const std::vector<llama_seq_id> & seq_ids,
  307. bool logits);
  308. //
  309. // Vocab utils
  310. //
  311. // tokenizes a string into a vector of tokens
  312. // should work similar to Python's `tokenizer.encode`
  313. std::vector<llama_token> llama_tokenize(
  314. const struct llama_context * ctx,
  315. const std::string & text,
  316. bool add_special,
  317. bool parse_special = false);
  318. std::vector<llama_token> llama_tokenize(
  319. const struct llama_model * model,
  320. const std::string & text,
  321. bool add_special,
  322. bool parse_special = false);
  323. // tokenizes a token into a piece, optionally renders special/control tokens
  324. // should work similar to Python's `tokenizer.id_to_piece`
  325. std::string llama_token_to_piece(
  326. const struct llama_context * ctx,
  327. llama_token token,
  328. bool special = true);
  329. // detokenizes a vector of tokens into a string
  330. // should work similar to Python's `tokenizer.decode`
  331. // optionally renders special/control tokens
  332. std::string llama_detokenize(
  333. llama_context * ctx,
  334. const std::vector<llama_token> & tokens,
  335. bool special = true);
  336. //
  337. // Chat template utils
  338. //
  339. // same with llama_chat_message, but uses std::string
  340. struct llama_chat_msg {
  341. std::string role;
  342. std::string content;
  343. };
  344. // Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
  345. bool llama_chat_verify_template(const std::string & tmpl);
  346. // CPP wrapper for llama_chat_apply_template
  347. // If the built-in template is not supported, we default to chatml
  348. // If the custom "tmpl" is not supported, we throw an error
  349. std::string llama_chat_apply_template(const struct llama_model * model,
  350. const std::string & tmpl,
  351. const std::vector<llama_chat_msg> & chat,
  352. bool add_ass);
  353. // Format single message, while taking into account the position of that message in chat history
  354. std::string llama_chat_format_single(const struct llama_model * model,
  355. const std::string & tmpl,
  356. const std::vector<llama_chat_msg> & past_msg,
  357. const llama_chat_msg & new_msg,
  358. bool add_ass);
  359. // Returns an example of formatted chat
  360. std::string llama_chat_format_example(const struct llama_model * model,
  361. const std::string & tmpl);
  362. //
  363. // KV cache utils
  364. //
  365. // Dump the KV cache view with the number of sequences per cell.
  366. void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
  367. // Dump the KV cache view showing individual sequences in each cell (long output).
  368. void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
  369. //
  370. // Embedding utils
  371. //
  372. void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm = 2);
  373. float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  374. //
  375. // Control vector utils
  376. //
  377. struct llama_control_vector_data {
  378. int n_embd;
  379. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  380. std::vector<float> data;
  381. };
  382. struct llama_control_vector_load_info {
  383. float strength;
  384. std::string fname;
  385. };
  386. // Load control vectors, scale each by strength, and add them together.
  387. // On error, returns {-1, empty}
  388. llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
  389. //
  390. // Split utils
  391. //
  392. static const char * const LLM_KV_SPLIT_NO = "split.no";
  393. static const char * const LLM_KV_SPLIT_COUNT = "split.count";
  394. static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  395. //
  396. // YAML utils
  397. //
  398. void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
  399. void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
  400. void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
  401. void yaml_dump_non_result_info(
  402. FILE * stream, const gpt_params & params, const llama_context * lctx,
  403. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);