ggml-backend.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "ggml-backend-impl.h"
  27. #include "ggml-alloc.h"
  28. #include "ggml-impl.h"
  29. #include <assert.h>
  30. #include <limits.h>
  31. #include <stdarg.h>
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  36. // backend buffer type
  37. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_name(buft);
  39. }
  40. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  41. return buft->iface.alloc_buffer(buft, size);
  42. }
  43. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  44. return buft->iface.get_alignment(buft);
  45. }
  46. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  47. // get_max_size is optional, defaults to SIZE_MAX
  48. if (buft->iface.get_max_size) {
  49. return buft->iface.get_max_size(buft);
  50. }
  51. return SIZE_MAX;
  52. }
  53. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  54. // get_alloc_size is optional, defaults to ggml_nbytes
  55. if (buft->iface.get_alloc_size) {
  56. size_t size = buft->iface.get_alloc_size(buft, tensor);
  57. assert(size >= ggml_nbytes(tensor));
  58. return size;
  59. }
  60. return ggml_nbytes(tensor);
  61. }
  62. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  63. if (buft->iface.is_host) {
  64. return buft->iface.is_host(buft);
  65. }
  66. return false;
  67. }
  68. // backend buffer
  69. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  70. ggml_backend_buffer_type_t buft,
  71. struct ggml_backend_buffer_i iface,
  72. ggml_backend_buffer_context_t context,
  73. size_t size) {
  74. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  75. (*buffer) = (struct ggml_backend_buffer) {
  76. /* .interface = */ iface,
  77. /* .buft = */ buft,
  78. /* .context = */ context,
  79. /* .size = */ size,
  80. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  81. };
  82. return buffer;
  83. }
  84. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  85. return buffer->iface.get_name(buffer);
  86. }
  87. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  88. if (buffer == NULL) {
  89. return;
  90. }
  91. if (buffer->iface.free_buffer != NULL) {
  92. buffer->iface.free_buffer(buffer);
  93. }
  94. // TODO: this needs to be freed in cuda and hipblas backends because
  95. // the cuda backend implementation compiled with msvc
  96. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  97. free(buffer);
  98. #endif
  99. }
  100. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  101. return buffer->size;
  102. }
  103. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  104. void * base = buffer->iface.get_base(buffer);
  105. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  106. return base;
  107. }
  108. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  109. // init_tensor is optional
  110. if (buffer->iface.init_tensor) {
  111. buffer->iface.init_tensor(buffer, tensor);
  112. }
  113. }
  114. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  115. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  116. }
  117. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  118. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  119. }
  120. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  121. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  122. }
  123. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  124. buffer->iface.clear(buffer, value);
  125. }
  126. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  127. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  128. }
  129. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  130. buffer->usage = usage;
  131. // FIXME: add a generic callback to the buffer interface
  132. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  133. ggml_backend_multi_buffer_set_usage(buffer, usage);
  134. }
  135. }
  136. enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
  137. return buffer->usage;
  138. }
  139. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  140. return buffer->buft;
  141. }
  142. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  143. if (buffer->iface.reset) {
  144. buffer->iface.reset(buffer);
  145. }
  146. }
  147. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  148. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  149. if (dst_buf->iface.cpy_tensor) {
  150. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  151. }
  152. return false;
  153. }
  154. // backend
  155. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  156. if (backend == NULL) {
  157. return NULL;
  158. }
  159. return backend->guid;
  160. }
  161. const char * ggml_backend_name(ggml_backend_t backend) {
  162. if (backend == NULL) {
  163. return "NULL";
  164. }
  165. return backend->iface.get_name(backend);
  166. }
  167. void ggml_backend_free(ggml_backend_t backend) {
  168. if (backend == NULL) {
  169. return;
  170. }
  171. backend->iface.free(backend);
  172. }
  173. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  174. return backend->iface.get_default_buffer_type(backend);
  175. }
  176. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  177. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  178. }
  179. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  180. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  181. }
  182. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  183. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  184. }
  185. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  186. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  187. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  188. if (backend->iface.set_tensor_async == NULL) {
  189. ggml_backend_tensor_set(tensor, data, offset, size);
  190. } else {
  191. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  192. }
  193. }
  194. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  195. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  196. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  197. if (backend->iface.get_tensor_async == NULL) {
  198. ggml_backend_tensor_get(tensor, data, offset, size);
  199. } else {
  200. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  201. }
  202. }
  203. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  204. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  205. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  206. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  207. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  208. if (!size) {
  209. return;
  210. }
  211. buf->iface.set_tensor(buf, tensor, data, offset, size);
  212. }
  213. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  214. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  215. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  216. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  217. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  218. if (!size) {
  219. return;
  220. }
  221. buf->iface.get_tensor(buf, tensor, data, offset, size);
  222. }
  223. void ggml_backend_synchronize(ggml_backend_t backend) {
  224. if (backend->iface.synchronize == NULL) {
  225. return;
  226. }
  227. backend->iface.synchronize(backend);
  228. }
  229. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  230. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  231. return backend->iface.graph_plan_create(backend, cgraph);
  232. }
  233. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  234. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  235. backend->iface.graph_plan_free(backend, plan);
  236. }
  237. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  238. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  239. return backend->iface.graph_plan_compute(backend, plan);
  240. }
  241. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  242. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  243. ggml_backend_synchronize(backend);
  244. return err;
  245. }
  246. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  247. return backend->iface.graph_compute(backend, cgraph);
  248. }
  249. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  250. return backend->iface.supports_op(backend, op);
  251. }
  252. bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  253. return backend->iface.supports_buft(backend, buft);
  254. }
  255. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  256. if (backend->iface.offload_op != NULL) {
  257. return backend->iface.offload_op(backend, op);
  258. }
  259. return false;
  260. }
  261. // backend copy
  262. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  263. if (a->type != b->type) {
  264. return false;
  265. }
  266. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  267. if (a->ne[i] != b->ne[i]) {
  268. return false;
  269. }
  270. if (a->nb[i] != b->nb[i]) {
  271. return false;
  272. }
  273. }
  274. return true;
  275. }
  276. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  277. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  278. if (src == dst) {
  279. return;
  280. }
  281. if (ggml_backend_buffer_is_host(src->buffer)) {
  282. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  283. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  284. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  285. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  286. #ifndef NDEBUG
  287. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  288. #endif
  289. size_t nbytes = ggml_nbytes(src);
  290. void * data = malloc(nbytes);
  291. ggml_backend_tensor_get(src, data, 0, nbytes);
  292. ggml_backend_tensor_set(dst, data, 0, nbytes);
  293. free(data);
  294. }
  295. }
  296. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  297. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  298. if (src == dst) {
  299. return;
  300. }
  301. if (backend_dst->iface.cpy_tensor_async != NULL) {
  302. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  303. return;
  304. }
  305. }
  306. // an async copy would normally happen after all the queued operations on both backends are completed
  307. // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
  308. ggml_backend_synchronize(backend_src);
  309. ggml_backend_synchronize(backend_dst);
  310. ggml_backend_tensor_copy(src, dst);
  311. }
  312. // events
  313. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  314. if (backend->iface.event_new == NULL) {
  315. return NULL;
  316. }
  317. return backend->iface.event_new(backend);
  318. }
  319. void ggml_backend_event_free(ggml_backend_event_t event) {
  320. if (event == NULL) {
  321. return;
  322. }
  323. event->backend->iface.event_free(event);
  324. }
  325. void ggml_backend_event_record(ggml_backend_event_t event) {
  326. GGML_ASSERT(event->backend->iface.event_record != NULL);
  327. event->backend->iface.event_record(event);
  328. }
  329. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  330. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  331. event->backend->iface.event_synchronize(event);
  332. }
  333. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  334. GGML_ASSERT(backend->iface.event_wait != NULL);
  335. backend->iface.event_wait(backend, event);
  336. }
  337. // backend registry
  338. #define GGML_REG_MAX_BACKENDS 64
  339. struct ggml_backend_reg {
  340. char name[128];
  341. ggml_backend_init_fn init_fn;
  342. ggml_backend_buffer_type_t default_buffer_type;
  343. void * user_data;
  344. };
  345. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  346. static size_t ggml_backend_registry_count = 0;
  347. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  348. GGML_CALL static void ggml_backend_registry_init(void) {
  349. static bool initialized = false;
  350. if (initialized) {
  351. return;
  352. }
  353. initialized = true;
  354. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  355. // add forward decls here to avoid including the backend headers
  356. #ifdef GGML_USE_CUDA
  357. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  358. ggml_backend_cuda_reg_devices();
  359. #endif
  360. #ifdef GGML_USE_SYCL
  361. extern void ggml_backend_sycl_reg_devices(void);
  362. ggml_backend_sycl_reg_devices();
  363. #endif
  364. #ifdef GGML_USE_METAL
  365. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  366. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  367. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  368. #endif
  369. #ifdef GGML_USE_VULKAN
  370. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  371. ggml_backend_vk_reg_devices();
  372. #endif
  373. #ifdef GGML_USE_KOMPUTE
  374. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  375. ggml_backend_kompute_reg_devices();
  376. #endif
  377. #ifdef GGML_USE_CANN
  378. extern GGML_CALL int ggml_backend_cann_reg_devices(void);
  379. ggml_backend_cann_reg_devices();
  380. #endif
  381. }
  382. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  383. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  384. size_t id = ggml_backend_registry_count;
  385. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  386. /* .name = */ {0},
  387. /* .fn = */ init_fn,
  388. /* .default_buffer_type = */ default_buffer_type,
  389. /* .user_data = */ user_data,
  390. };
  391. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  392. #ifndef NDEBUG
  393. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  394. #endif
  395. ggml_backend_registry_count++;
  396. }
  397. size_t ggml_backend_reg_get_count(void) {
  398. ggml_backend_registry_init();
  399. return ggml_backend_registry_count;
  400. }
  401. size_t ggml_backend_reg_find_by_name(const char * name) {
  402. ggml_backend_registry_init();
  403. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  404. // TODO: case insensitive in a portable way
  405. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  406. return i;
  407. }
  408. }
  409. // not found
  410. return SIZE_MAX;
  411. }
  412. // init from backend:params string
  413. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  414. ggml_backend_registry_init();
  415. const char * params = strchr(backend_str, ':');
  416. char backend_name[128];
  417. if (params == NULL) {
  418. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  419. params = "";
  420. } else {
  421. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  422. params++;
  423. }
  424. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  425. if (backend_i == SIZE_MAX) {
  426. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  427. return NULL;
  428. }
  429. return ggml_backend_reg_init_backend(backend_i, params);
  430. }
  431. const char * ggml_backend_reg_get_name(size_t i) {
  432. ggml_backend_registry_init();
  433. GGML_ASSERT(i < ggml_backend_registry_count);
  434. return ggml_backend_registry[i].name;
  435. }
  436. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  437. ggml_backend_registry_init();
  438. GGML_ASSERT(i < ggml_backend_registry_count);
  439. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  440. }
  441. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  442. ggml_backend_registry_init();
  443. GGML_ASSERT(i < ggml_backend_registry_count);
  444. return ggml_backend_registry[i].default_buffer_type;
  445. }
  446. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  447. ggml_backend_registry_init();
  448. GGML_ASSERT(i < ggml_backend_registry_count);
  449. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  450. }
  451. // backend CPU
  452. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  453. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  454. return "CPU";
  455. GGML_UNUSED(buffer);
  456. }
  457. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  458. uintptr_t data = (uintptr_t)buffer->context;
  459. // align the buffer
  460. if (data % TENSOR_ALIGNMENT != 0) {
  461. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  462. }
  463. return (void *)data;
  464. }
  465. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  466. free(buffer->context);
  467. }
  468. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  469. memcpy((char *)tensor->data + offset, data, size);
  470. GGML_UNUSED(buffer);
  471. }
  472. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  473. memcpy(data, (const char *)tensor->data + offset, size);
  474. GGML_UNUSED(buffer);
  475. }
  476. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  477. if (ggml_backend_buffer_is_host(src->buffer)) {
  478. memcpy(dst->data, src->data, ggml_nbytes(src));
  479. return true;
  480. }
  481. return false;
  482. GGML_UNUSED(buffer);
  483. }
  484. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  485. memset(buffer->context, value, buffer->size);
  486. }
  487. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  488. /* .get_name = */ ggml_backend_cpu_buffer_name,
  489. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  490. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  491. /* .init_tensor = */ NULL, // no initialization required
  492. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  493. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  494. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  495. /* .clear = */ ggml_backend_cpu_buffer_clear,
  496. /* .reset = */ NULL,
  497. };
  498. // for buffers from ptr, free is not called
  499. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  500. /* .get_name = */ ggml_backend_cpu_buffer_name,
  501. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  502. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  503. /* .init_tensor = */ NULL, // no initialization required
  504. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  505. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  506. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  507. /* .clear = */ ggml_backend_cpu_buffer_clear,
  508. /* .reset = */ NULL,
  509. };
  510. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  511. return "CPU";
  512. GGML_UNUSED(buft);
  513. }
  514. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  515. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  516. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  517. if (data == NULL) {
  518. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  519. return NULL;
  520. }
  521. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  522. }
  523. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  524. return TENSOR_ALIGNMENT;
  525. GGML_UNUSED(buft);
  526. }
  527. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  528. return true;
  529. GGML_UNUSED(buft);
  530. }
  531. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  532. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  533. /* .iface = */ {
  534. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  535. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  536. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  537. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  538. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  539. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  540. },
  541. /* .context = */ NULL,
  542. };
  543. return &ggml_backend_cpu_buffer_type;
  544. }
  545. #ifdef GGML_USE_CPU_HBM
  546. // buffer type HBM
  547. #include <hbwmalloc.h>
  548. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  549. return "CPU_HBM";
  550. GGML_UNUSED(buft);
  551. }
  552. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  553. return "CPU_HBM";
  554. GGML_UNUSED(buf);
  555. }
  556. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  557. hbw_free(buffer->context);
  558. }
  559. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  560. //void * ptr = hbw_malloc(size);
  561. void * ptr;
  562. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  563. if (result != 0) {
  564. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  565. return NULL;
  566. }
  567. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  568. buffer->buft = buft;
  569. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  570. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  571. return buffer;
  572. }
  573. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  574. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  575. /* .iface = */ {
  576. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  577. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  578. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  579. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  580. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  581. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  582. },
  583. /* .context = */ NULL,
  584. };
  585. return &ggml_backend_cpu_buffer_type_hbm;
  586. }
  587. #endif
  588. struct ggml_backend_cpu_context {
  589. int n_threads;
  590. ggml_threadpool_t threadpool;
  591. void * work_data;
  592. size_t work_size;
  593. ggml_abort_callback abort_callback;
  594. void * abort_callback_data;
  595. };
  596. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  597. return "CPU";
  598. GGML_UNUSED(backend);
  599. }
  600. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  601. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  602. free(cpu_ctx->work_data);
  603. free(cpu_ctx);
  604. free(backend);
  605. }
  606. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  607. return ggml_backend_cpu_buffer_type();
  608. GGML_UNUSED(backend);
  609. }
  610. struct ggml_backend_plan_cpu {
  611. struct ggml_cplan cplan;
  612. struct ggml_cgraph cgraph;
  613. };
  614. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  615. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  616. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  617. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  618. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  619. if (cpu_plan->cplan.work_size > 0) {
  620. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  621. if (cpu_plan->cplan.work_data == NULL) {
  622. free(cpu_plan);
  623. return NULL;
  624. }
  625. }
  626. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  627. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  628. return cpu_plan;
  629. }
  630. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  631. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  632. free(cpu_plan->cplan.work_data);
  633. free(cpu_plan);
  634. GGML_UNUSED(backend);
  635. }
  636. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  637. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  638. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  639. GGML_UNUSED(backend);
  640. }
  641. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  642. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  643. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
  644. if (cpu_ctx->work_size < cplan.work_size) {
  645. free(cpu_ctx->work_data);
  646. cpu_ctx->work_data = malloc(cplan.work_size);
  647. if (cpu_ctx->work_data == NULL) {
  648. cpu_ctx->work_size = 0;
  649. return GGML_STATUS_ALLOC_FAILED;
  650. }
  651. cpu_ctx->work_size = cplan.work_size;
  652. }
  653. cplan.work_data = cpu_ctx->work_data;
  654. cplan.abort_callback = cpu_ctx->abort_callback;
  655. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  656. return ggml_graph_compute(cgraph, &cplan);
  657. }
  658. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  659. switch (op->op) {
  660. case GGML_OP_CPY:
  661. return
  662. op->type != GGML_TYPE_IQ2_XXS &&
  663. op->type != GGML_TYPE_IQ2_XS &&
  664. op->type != GGML_TYPE_IQ1_S &&
  665. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  666. case GGML_OP_MUL_MAT:
  667. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  668. default:
  669. return true;
  670. }
  671. GGML_UNUSED(backend);
  672. }
  673. GGML_CALL static bool ggml_backend_cpu_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
  674. return ggml_backend_buft_is_host(buft);
  675. GGML_UNUSED(backend);
  676. }
  677. static struct ggml_backend_i cpu_backend_i = {
  678. /* .get_name = */ ggml_backend_cpu_name,
  679. /* .free = */ ggml_backend_cpu_free,
  680. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  681. /* .set_tensor_async = */ NULL,
  682. /* .get_tensor_async = */ NULL,
  683. /* .cpy_tensor_async = */ NULL,
  684. /* .synchronize = */ NULL,
  685. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  686. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  687. /* .graph_plan_update = */ NULL,
  688. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  689. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  690. /* .supports_op = */ ggml_backend_cpu_supports_op,
  691. /* .supports_buft = */ ggml_backend_cpu_supports_buft,
  692. /* .offload_op = */ NULL,
  693. /* .event_new = */ NULL,
  694. /* .event_free = */ NULL,
  695. /* .event_record = */ NULL,
  696. /* .event_wait = */ NULL,
  697. /* .event_synchronize = */ NULL,
  698. };
  699. static ggml_guid_t ggml_backend_cpu_guid(void) {
  700. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  701. return &guid;
  702. }
  703. ggml_backend_t ggml_backend_cpu_init(void) {
  704. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  705. if (ctx == NULL) {
  706. return NULL;
  707. }
  708. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  709. ctx->threadpool = NULL;
  710. ctx->work_data = NULL;
  711. ctx->work_size = 0;
  712. ctx->abort_callback = NULL;
  713. ctx->abort_callback_data = NULL;
  714. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  715. if (cpu_backend == NULL) {
  716. free(ctx);
  717. return NULL;
  718. }
  719. *cpu_backend = (struct ggml_backend) {
  720. /* .guid = */ ggml_backend_cpu_guid(),
  721. /* .interface = */ cpu_backend_i,
  722. /* .context = */ ctx
  723. };
  724. return cpu_backend;
  725. }
  726. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  727. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  728. }
  729. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  730. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  731. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  732. ctx->n_threads = n_threads;
  733. }
  734. void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
  735. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  736. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  737. if (ctx->threadpool && ctx->threadpool != threadpool) {
  738. // already had a different threadpool, pause/suspend it before switching
  739. ggml_threadpool_pause(ctx->threadpool);
  740. }
  741. ctx->threadpool = threadpool;
  742. }
  743. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  744. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  745. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  746. ctx->abort_callback = abort_callback;
  747. ctx->abort_callback_data = abort_callback_data;
  748. }
  749. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  750. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  751. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  752. }
  753. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  754. return ggml_backend_cpu_init();
  755. GGML_UNUSED(params);
  756. GGML_UNUSED(user_data);
  757. }
  758. // multi-buffer buffer
  759. struct ggml_backend_multi_buffer_context {
  760. ggml_backend_buffer_t * buffers;
  761. size_t n_buffers;
  762. };
  763. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  764. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  765. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  766. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  767. }
  768. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  769. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  770. for (size_t i = 0; i < ctx->n_buffers; i++) {
  771. ggml_backend_buffer_free(ctx->buffers[i]);
  772. }
  773. free(ctx->buffers);
  774. free(ctx);
  775. }
  776. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  777. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  778. for (size_t i = 0; i < ctx->n_buffers; i++) {
  779. ggml_backend_buffer_clear(ctx->buffers[i], value);
  780. }
  781. }
  782. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  783. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  784. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  785. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  786. /* .get_base = */ NULL,
  787. /* .init_tensor = */ NULL,
  788. /* .set_tensor = */ NULL,
  789. /* .get_tensor = */ NULL,
  790. /* .cpy_tensor = */ NULL,
  791. /* .clear = */ ggml_backend_multi_buffer_clear,
  792. /* .reset = */ NULL,
  793. };
  794. return multi_backend_buffer_i;
  795. }
  796. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  797. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  798. ctx->n_buffers = n_buffers;
  799. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  800. GGML_ASSERT(ctx->buffers != NULL);
  801. size_t total_size = 0;
  802. for (size_t i = 0; i < n_buffers; i++) {
  803. ctx->buffers[i] = buffers[i];
  804. total_size += ggml_backend_buffer_get_size(buffers[i]);
  805. }
  806. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  807. }
  808. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  809. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  810. }
  811. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  812. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  813. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  814. for (size_t i = 0; i < ctx->n_buffers; i++) {
  815. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  816. }
  817. }
  818. // creates a copy of the tensor with the same memory layout
  819. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  820. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  821. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  822. dup->nb[i] = tensor->nb[i];
  823. }
  824. return dup;
  825. }
  826. static bool ggml_is_view_op(enum ggml_op op) {
  827. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  828. }
  829. // scheduler
  830. #ifndef GGML_SCHED_MAX_BACKENDS
  831. #define GGML_SCHED_MAX_BACKENDS 16
  832. #endif
  833. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  834. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  835. #endif
  836. #ifndef GGML_SCHED_MAX_COPIES
  837. #define GGML_SCHED_MAX_COPIES 4
  838. #endif
  839. struct ggml_backend_sched_split {
  840. int backend_id;
  841. int i_start;
  842. int i_end;
  843. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  844. int n_inputs;
  845. // graph view of this split
  846. struct ggml_cgraph graph;
  847. };
  848. struct ggml_backend_sched {
  849. bool is_reset; // true if the scheduler has been reset since the last graph split
  850. bool is_alloc;
  851. int n_backends;
  852. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  853. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  854. ggml_gallocr_t galloc;
  855. // hash map of the nodes in the graph
  856. struct ggml_hash_set hash_set;
  857. int * hv_tensor_backend_ids; // [hash_set.size]
  858. struct ggml_tensor ** hv_tensor_copies; // [hash_set.size][n_backends][n_copies]
  859. int * node_backend_ids; // [graph_size]
  860. int * leaf_backend_ids; // [graph_size]
  861. int * prev_node_backend_ids; // [graph_size]
  862. int * prev_leaf_backend_ids; // [graph_size]
  863. // copy of the graph with modified inputs
  864. struct ggml_cgraph graph;
  865. // graph splits
  866. struct ggml_backend_sched_split * splits;
  867. int n_splits;
  868. int splits_capacity;
  869. // pipeline parallelism support
  870. int n_copies;
  871. int cur_copy;
  872. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  873. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  874. int n_graph_inputs;
  875. struct ggml_context * ctx;
  876. ggml_backend_sched_eval_callback callback_eval;
  877. void * callback_eval_user_data;
  878. char * context_buffer;
  879. size_t context_buffer_size;
  880. bool debug;
  881. };
  882. #define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
  883. #define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
  884. #define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
  885. #define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)
  886. // returns the priority of the backend, lower id is higher priority
  887. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  888. for (int i = 0; i < sched->n_backends; i++) {
  889. if (sched->backends[i] == backend) {
  890. return i;
  891. }
  892. }
  893. return -1;
  894. }
  895. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
  896. ggml_backend_buffer_t buffer = tensor->buffer;
  897. if (buffer == NULL) {
  898. return -1;
  899. }
  900. // find highest prio backend that supports the buffer type and the op
  901. for (int i = 0; i < sched->n_backends; i++) {
  902. if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
  903. ggml_backend_supports_op(sched->backends[i], op)) {
  904. return i;
  905. }
  906. }
  907. #ifndef NDEBUG
  908. fprintf(stderr, "%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
  909. __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
  910. #endif
  911. return -1;
  912. }
  913. #if 0
  914. #define GGML_SCHED_MAX_SPLITS_DEBUG 4096
  915. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  916. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  917. #define GET_CAUSE(node) causes[hash_id(node)]
  918. #else
  919. #define SET_CAUSE(node, ...)
  920. #define GET_CAUSE(node) ""
  921. #endif
  922. // returns the backend that should be used for the node based on the current locations
  923. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  924. // TODO: use supports_op to check if the backend supports the op
  925. // assign pre-allocated nodes to their backend
  926. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
  927. if (cur_backend_id != -1) {
  928. SET_CAUSE(tensor, "1.dst");
  929. return cur_backend_id;
  930. }
  931. // view_src
  932. if (tensor->view_src != NULL) {
  933. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
  934. if (cur_backend_id != -1) {
  935. SET_CAUSE(tensor, "1.vsrc");
  936. return cur_backend_id;
  937. }
  938. }
  939. // graph input
  940. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  941. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  942. SET_CAUSE(tensor, "1.inp");
  943. return cur_backend_id;
  944. }
  945. // operations with weights are preferably run on the same backend as the weights
  946. for (int i = 0; i < GGML_MAX_SRC; i++) {
  947. const struct ggml_tensor * src = tensor->src[i];
  948. if (src == NULL) {
  949. continue;
  950. }
  951. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  952. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
  953. // check if a backend with higher prio wants to offload the op
  954. if (src_backend_id == sched->n_backends - 1) {
  955. for (int b = 0; b < src_backend_id; b++) {
  956. if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
  957. SET_CAUSE(tensor, "1.off");
  958. return b;
  959. }
  960. }
  961. }
  962. SET_CAUSE(tensor, "1.wgt%d", i);
  963. return src_backend_id;
  964. }
  965. }
  966. return -1;
  967. }
  968. static char * fmt_size(size_t size) {
  969. static char buffer[128];
  970. if (size >= 1024*1024) {
  971. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  972. } else {
  973. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  974. }
  975. return buffer;
  976. }
  977. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  978. int cur_split = 0;
  979. for (int i = 0; i < graph->n_nodes; i++) {
  980. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  981. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  982. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  983. sched->splits[cur_split].n_inputs);
  984. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  985. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  986. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  987. }
  988. fprintf(stderr, "\n");
  989. cur_split++;
  990. }
  991. struct ggml_tensor * node = graph->nodes[i];
  992. if (ggml_is_view_op(node->op)) {
  993. continue;
  994. }
  995. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  996. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  997. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  998. for (int j = 0; j < GGML_MAX_SRC; j++) {
  999. struct ggml_tensor * src = node->src[j];
  1000. if (src == NULL) {
  1001. continue;
  1002. }
  1003. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  1004. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  1005. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  1006. }
  1007. fprintf(stderr, "\n");
  1008. }
  1009. }
  1010. static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
  1011. ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
  1012. ggml_backend_buffer_type_t buft = NULL;
  1013. if (buf) {
  1014. // the tensor is already allocated
  1015. buft = buf->buft;
  1016. } else {
  1017. // see if the tensor already has a backend assigned, and use the buffer type of that backend
  1018. int tensor_backend_id = tensor_backend_id(t);
  1019. if (tensor_backend_id == -1 && t->view_src) {
  1020. tensor_backend_id = tensor_backend_id(t->view_src);
  1021. }
  1022. if (tensor_backend_id != -1) {
  1023. buft = sched->bufts[tensor_backend_id];
  1024. }
  1025. }
  1026. return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
  1027. }
  1028. static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
  1029. if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
  1030. *node_backend_id = cur_backend_id;
  1031. SET_CAUSE(node, "2.sup");
  1032. }
  1033. }
  1034. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1035. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1036. // reset splits
  1037. sched->n_splits = 0;
  1038. sched->n_graph_inputs = 0;
  1039. sched->is_reset = false;
  1040. struct ggml_init_params params = {
  1041. /* .mem_size = */ sched->context_buffer_size,
  1042. /* .mem_buffer = */ sched->context_buffer,
  1043. /* .no_alloc = */ true
  1044. };
  1045. ggml_free(sched->ctx);
  1046. sched->ctx = ggml_init(params);
  1047. if (sched->ctx == NULL) {
  1048. GGML_ABORT("%s: failed to initialize context\n", __func__);
  1049. }
  1050. // pass 1: assign backends to ops with pre-allocated inputs
  1051. for (int i = 0; i < graph->n_leafs; i++) {
  1052. struct ggml_tensor * leaf = graph->leafs[i];
  1053. int * leaf_backend_id = &tensor_backend_id(leaf);
  1054. // do not overwrite user assignments
  1055. if (*leaf_backend_id == -1) {
  1056. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1057. }
  1058. }
  1059. for (int i = 0; i < graph->n_nodes; i++) {
  1060. struct ggml_tensor * node = graph->nodes[i];
  1061. int * node_backend_id = &tensor_backend_id(node);
  1062. // do not overwrite user assignments
  1063. if (*node_backend_id == -1) {
  1064. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1065. #if 0
  1066. // src
  1067. if (node->op == GGML_OP_NONE) {
  1068. continue;
  1069. }
  1070. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1071. struct ggml_tensor * src = node->src[j];
  1072. if (src == NULL) {
  1073. continue;
  1074. }
  1075. int * src_backend_id = &tensor_backend_id(src);
  1076. if (*src_backend_id == -1) {
  1077. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1078. }
  1079. }
  1080. #endif
  1081. }
  1082. }
  1083. // pass 2: expand current backend assignments
  1084. // assign the same backend to adjacent nodes
  1085. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1086. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1087. // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
  1088. // expand gpu down
  1089. {
  1090. int cur_backend_id = -1;
  1091. for (int i = 0; i < graph->n_nodes; i++) {
  1092. struct ggml_tensor * node = graph->nodes[i];
  1093. if (ggml_is_view_op(node->op)) {
  1094. continue;
  1095. }
  1096. int * node_backend_id = &tensor_backend_id(node);
  1097. if (*node_backend_id != -1) {
  1098. if (*node_backend_id == sched->n_backends - 1) {
  1099. // skip cpu (lowest prio backend)
  1100. cur_backend_id = -1;
  1101. } else {
  1102. cur_backend_id = *node_backend_id;
  1103. }
  1104. } else if (cur_backend_id != -1) {
  1105. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1106. }
  1107. }
  1108. }
  1109. // expand gpu up
  1110. {
  1111. int cur_backend_id = -1;
  1112. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1113. struct ggml_tensor * node = graph->nodes[i];
  1114. if (ggml_is_view_op(node->op)) {
  1115. continue;
  1116. }
  1117. int * node_backend_id = &tensor_backend_id(node);
  1118. if (*node_backend_id != -1) {
  1119. if (*node_backend_id == sched->n_backends - 1) {
  1120. // skip cpu (lowest prio backend)
  1121. cur_backend_id = -1;
  1122. } else {
  1123. cur_backend_id = *node_backend_id;
  1124. }
  1125. } else if (cur_backend_id != -1) {
  1126. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1127. }
  1128. }
  1129. }
  1130. // expand rest down
  1131. {
  1132. int cur_backend_id = -1;
  1133. for (int i = 0; i < graph->n_nodes; i++) {
  1134. struct ggml_tensor * node = graph->nodes[i];
  1135. if (ggml_is_view_op(node->op)) {
  1136. continue;
  1137. }
  1138. int * node_backend_id = &tensor_backend_id(node);
  1139. if (*node_backend_id != -1) {
  1140. cur_backend_id = *node_backend_id;
  1141. } else if (cur_backend_id != -1) {
  1142. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1143. }
  1144. }
  1145. }
  1146. // expand rest up
  1147. {
  1148. int cur_backend_id = -1;
  1149. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1150. struct ggml_tensor * node = graph->nodes[i];
  1151. if (ggml_is_view_op(node->op)) {
  1152. continue;
  1153. }
  1154. int * node_backend_id = &tensor_backend_id(node);
  1155. if (*node_backend_id != -1) {
  1156. cur_backend_id = *node_backend_id;
  1157. } else if (cur_backend_id != -1) {
  1158. ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
  1159. }
  1160. }
  1161. }
  1162. // pass 3: upgrade nodes to higher prio backends with compatible buffer types
  1163. // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
  1164. // however, we also need to verify that the sources are in compatible buffer types
  1165. // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
  1166. // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
  1167. // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
  1168. // additionally, set remaining unassigned nodes to the backend with the most supported inputs
  1169. // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
  1170. for (int i = 0; i < graph->n_nodes; i++) {
  1171. struct ggml_tensor * node = graph->nodes[i];
  1172. if (ggml_is_view_op(node->op)) {
  1173. continue;
  1174. }
  1175. int * node_backend_id = &tensor_backend_id(node);
  1176. if (*node_backend_id == -1) {
  1177. // unassigned node: find the backend with the most supported inputs
  1178. int n_supported_best = -1;
  1179. for (int b = 0; b < sched->n_backends; b++) {
  1180. if (ggml_backend_supports_op(sched->backends[b], node)) {
  1181. int n_supported = 0;
  1182. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1183. struct ggml_tensor * src = node->src[j];
  1184. if (src == NULL) {
  1185. continue;
  1186. }
  1187. if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
  1188. n_supported++;
  1189. }
  1190. }
  1191. if (n_supported > n_supported_best) {
  1192. n_supported_best = n_supported;
  1193. *node_backend_id = b;
  1194. SET_CAUSE(node, "3.best");
  1195. }
  1196. }
  1197. }
  1198. } else {
  1199. // assigned node: upgrade to higher prio backend if possible
  1200. for (int b = 0; b < *node_backend_id; b++) {
  1201. if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
  1202. bool supported = true;
  1203. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1204. struct ggml_tensor * src = node->src[j];
  1205. if (src == NULL) {
  1206. continue;
  1207. }
  1208. if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
  1209. supported = false;
  1210. break;
  1211. }
  1212. }
  1213. if (supported) {
  1214. *node_backend_id = b;
  1215. SET_CAUSE(node, "3.upg");
  1216. break;
  1217. }
  1218. }
  1219. }
  1220. }
  1221. }
  1222. // pass 4: assign backends to remaining src from dst and view_src
  1223. for (int i = 0; i < graph->n_nodes; i++) {
  1224. struct ggml_tensor * node = graph->nodes[i];
  1225. int * cur_backend_id = &tensor_backend_id(node);
  1226. if (node->view_src != NULL && *cur_backend_id == -1) {
  1227. *cur_backend_id = tensor_backend_id(node->view_src);
  1228. SET_CAUSE(node, "4.vsrc");
  1229. }
  1230. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1231. struct ggml_tensor * src = node->src[j];
  1232. if (src == NULL) {
  1233. continue;
  1234. }
  1235. int * src_backend_id = &tensor_backend_id(src);
  1236. if (*src_backend_id == -1) {
  1237. if (src->view_src != NULL) {
  1238. // views are always on the same backend as the source
  1239. *src_backend_id = tensor_backend_id(src->view_src);
  1240. SET_CAUSE(src, "4.vsrc");
  1241. } else {
  1242. *src_backend_id = *cur_backend_id;
  1243. SET_CAUSE(src, "4.cur");
  1244. }
  1245. }
  1246. }
  1247. }
  1248. // pass 5: split graph, find tensors that need to be copied
  1249. {
  1250. int i_split = 0;
  1251. struct ggml_backend_sched_split * split = &sched->splits[0];
  1252. // find the backend of the first split, skipping view ops
  1253. int i = 0;
  1254. for (; i < graph->n_nodes; i++) {
  1255. struct ggml_tensor * node = graph->nodes[i];
  1256. if (!ggml_is_view_op(node->op)) {
  1257. split->backend_id = tensor_backend_id(node);
  1258. break;
  1259. }
  1260. }
  1261. split->i_start = 0;
  1262. split->n_inputs = 0;
  1263. int cur_backend_id = split->backend_id;
  1264. for (; i < graph->n_nodes; i++) {
  1265. struct ggml_tensor * node = graph->nodes[i];
  1266. if (ggml_is_view_op(node->op)) {
  1267. continue;
  1268. }
  1269. const int node_backend_id = tensor_backend_id(node);
  1270. assert(node_backend_id != -1); // all nodes should be assigned by now
  1271. // check if we should start a new split based on the sources of the current node
  1272. bool need_new_split = false;
  1273. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1274. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1275. struct ggml_tensor * src = node->src[j];
  1276. if (src == NULL) {
  1277. continue;
  1278. }
  1279. // check if a weight is on a different backend
  1280. // by starting a new split, the memory of the previously offloaded weights can be reused
  1281. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1282. int src_backend_id = tensor_backend_id(src);
  1283. if (src_backend_id != cur_backend_id) {
  1284. need_new_split = true;
  1285. break;
  1286. }
  1287. }
  1288. // check if the split has too many inputs
  1289. // FIXME: count the number of inputs instead of only checking when full
  1290. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1291. const size_t id = hash_id(src);
  1292. int src_backend_id = sched->hv_tensor_backend_ids[id];
  1293. bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
  1294. if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
  1295. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1296. need_new_split = true;
  1297. break;
  1298. }
  1299. }
  1300. }
  1301. }
  1302. if (node_backend_id != cur_backend_id || need_new_split) {
  1303. split->i_end = i;
  1304. i_split++;
  1305. if (i_split >= sched->splits_capacity) {
  1306. sched->splits_capacity *= 2;
  1307. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1308. GGML_ASSERT(sched->splits != NULL);
  1309. }
  1310. split = &sched->splits[i_split];
  1311. split->backend_id = node_backend_id;
  1312. split->i_start = i;
  1313. split->n_inputs = 0;
  1314. cur_backend_id = node_backend_id;
  1315. }
  1316. // find inputs that are not on the same backend
  1317. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1318. struct ggml_tensor * src = node->src[j];
  1319. if (src == NULL) {
  1320. continue;
  1321. }
  1322. size_t src_id = hash_id(src);
  1323. const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
  1324. assert(src_backend_id != -1); // all inputs should be assigned by now
  1325. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1326. if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
  1327. ggml_backend_t backend = sched->backends[src_backend_id];
  1328. for (int c = 0; c < sched->n_copies; c++) {
  1329. struct ggml_tensor * tensor_copy;
  1330. if (c == sched->cur_copy) {
  1331. tensor_copy = src; // use the original tensor as the current copy
  1332. } else {
  1333. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1334. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1335. }
  1336. if (sched->n_copies > 1) {
  1337. ggml_set_input(tensor_copy);
  1338. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1339. }
  1340. tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
  1341. SET_CAUSE(tensor_copy, "4.cpy");
  1342. }
  1343. int n_graph_inputs = sched->n_graph_inputs++;
  1344. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1345. sched->graph_inputs[n_graph_inputs] = src;
  1346. }
  1347. }
  1348. if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
  1349. // create a copy of the input in the split's backend
  1350. if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
  1351. ggml_backend_t backend = sched->backends[cur_backend_id];
  1352. for (int c = 0; c < sched->n_copies; c++) {
  1353. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1354. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1355. if (sched->n_copies > 1) {
  1356. ggml_set_input(tensor_copy);
  1357. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1358. }
  1359. tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
  1360. SET_CAUSE(tensor_copy, "4.cpy");
  1361. }
  1362. int n_inputs = split->n_inputs++;
  1363. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1364. split->inputs[n_inputs] = src;
  1365. }
  1366. node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
  1367. }
  1368. }
  1369. }
  1370. split->i_end = graph->n_nodes;
  1371. sched->n_splits = i_split + 1;
  1372. }
  1373. if (sched->debug) {
  1374. ggml_backend_sched_print_assignments(sched, graph);
  1375. }
  1376. // swap node_backend_ids and leaf _backend_ids with prevs
  1377. {
  1378. int * tmp = sched->node_backend_ids;
  1379. sched->node_backend_ids = sched->prev_node_backend_ids;
  1380. sched->prev_node_backend_ids = tmp;
  1381. tmp = sched->leaf_backend_ids;
  1382. sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
  1383. sched->prev_leaf_backend_ids = tmp;
  1384. }
  1385. int graph_size = graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1386. if (sched->graph.size < graph_size) {
  1387. sched->graph.size = graph_size;
  1388. sched->graph.nodes = realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
  1389. sched->graph.leafs = realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
  1390. GGML_ASSERT(sched->graph.nodes != NULL);
  1391. GGML_ASSERT(sched->graph.leafs != NULL);
  1392. }
  1393. sched->graph.n_nodes = 0;
  1394. sched->graph.n_leafs = 0;
  1395. struct ggml_cgraph * graph_copy = &sched->graph;
  1396. for (int i = 0; i < sched->n_splits; i++) {
  1397. struct ggml_backend_sched_split * split = &sched->splits[i];
  1398. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1399. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1400. for (int j = 0; j < split->n_inputs; j++) {
  1401. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1402. struct ggml_tensor * input = split->inputs[j];
  1403. const size_t input_id = hash_id(input);
  1404. struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);
  1405. // add a dependency to the input source so that it is not freed before the copy is done
  1406. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1407. input_dep->src[0] = input;
  1408. sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
  1409. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1410. // add a dependency to the input copy so that it is allocated at the start of the split
  1411. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1412. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1413. }
  1414. for (int j = split->i_start; j < split->i_end; j++) {
  1415. assert(graph_copy->size > graph_copy->n_nodes);
  1416. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1417. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1418. }
  1419. }
  1420. if (sched->n_copies > 1) {
  1421. // add input copies as leafs so that they are allocated first
  1422. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1423. struct ggml_tensor * input = sched->graph_inputs[i];
  1424. size_t id = hash_id(input);
  1425. int backend_id = tensor_backend_id(input);
  1426. for (int c = 0; c < sched->n_copies; c++) {
  1427. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1428. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1429. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1430. }
  1431. }
  1432. for (int i = 0; i < sched->n_splits; i++) {
  1433. struct ggml_backend_sched_split * split = &sched->splits[i];
  1434. int backend_id = split->backend_id;
  1435. for (int j = 0; j < split->n_inputs; j++) {
  1436. struct ggml_tensor * input = split->inputs[j];
  1437. size_t id = hash_id(input);
  1438. for (int c = 0; c < sched->n_copies; c++) {
  1439. struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
  1440. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1441. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1442. }
  1443. }
  1444. }
  1445. }
  1446. // add leafs from the original graph
  1447. for (int i = 0; i < graph->n_leafs; i++) {
  1448. struct ggml_tensor * leaf = graph->leafs[i];
  1449. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1450. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1451. }
  1452. }
  1453. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1454. bool backend_ids_changed = false;
  1455. for (int i = 0; i < sched->graph.n_nodes; i++) {
  1456. if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
  1457. sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
  1458. backend_ids_changed = true;
  1459. break;
  1460. }
  1461. }
  1462. if (!backend_ids_changed) {
  1463. for (int i = 0; i < sched->graph.n_leafs; i++) {
  1464. if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
  1465. sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
  1466. backend_ids_changed = true;
  1467. break;
  1468. }
  1469. }
  1470. }
  1471. // allocate graph
  1472. if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1473. // the re-allocation may cause the split inputs to be moved to a different address
  1474. ggml_backend_sched_synchronize(sched);
  1475. #ifndef NDEBUG
  1476. fprintf(stderr, "%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
  1477. #endif
  1478. ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1479. if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
  1480. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1481. return false;
  1482. }
  1483. }
  1484. return true;
  1485. }
  1486. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1487. struct ggml_backend_sched_split * splits = sched->splits;
  1488. for (int i = 0; i < sched->n_splits; i++) {
  1489. struct ggml_backend_sched_split * split = &splits[i];
  1490. int split_backend_id = split->backend_id;
  1491. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1492. // copy the input tensors to the split backend
  1493. for (int j = 0; j < split->n_inputs; j++) {
  1494. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1495. struct ggml_tensor * input = split->inputs[j];
  1496. struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
  1497. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1498. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1499. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1500. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1501. } else {
  1502. ggml_backend_synchronize(split_backend);
  1503. }
  1504. ggml_backend_tensor_copy(input, input_cpy);
  1505. } else {
  1506. // wait for the split backend to finish using the input before overwriting it
  1507. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1508. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1509. } else {
  1510. ggml_backend_synchronize(split_backend);
  1511. }
  1512. // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
  1513. // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
  1514. if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
  1515. ggml_backend_synchronize(input_backend);
  1516. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1517. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1518. } else {
  1519. ggml_backend_synchronize(split_backend);
  1520. }
  1521. ggml_backend_tensor_copy(input, input_cpy);
  1522. }
  1523. }
  1524. }
  1525. if (!sched->callback_eval) {
  1526. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1527. if (ec != GGML_STATUS_SUCCESS) {
  1528. return ec;
  1529. }
  1530. } else {
  1531. // similar to ggml_backend_compare_graph_backend
  1532. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1533. struct ggml_tensor * t = split->graph.nodes[j0];
  1534. // check if the user needs data from this node
  1535. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1536. int j1 = j0;
  1537. // determine the range [j0, j1] of nodes that can be computed together
  1538. while (!need && j1 < split->graph.n_nodes - 1) {
  1539. t = split->graph.nodes[++j1];
  1540. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1541. }
  1542. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1543. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1544. if (ec != GGML_STATUS_SUCCESS) {
  1545. return ec;
  1546. }
  1547. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1548. ggml_backend_synchronize(split_backend);
  1549. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1550. break;
  1551. }
  1552. j0 = j1;
  1553. }
  1554. }
  1555. // record the event of this copy
  1556. if (split->n_inputs > 0) {
  1557. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1558. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1559. }
  1560. }
  1561. }
  1562. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1563. return GGML_STATUS_SUCCESS;
  1564. }
  1565. ggml_backend_sched_t ggml_backend_sched_new(
  1566. ggml_backend_t * backends,
  1567. ggml_backend_buffer_type_t * bufts,
  1568. int n_backends,
  1569. size_t graph_size,
  1570. bool parallel) {
  1571. GGML_ASSERT(n_backends > 0);
  1572. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1573. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1574. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1575. sched->debug = getenv("GGML_SCHED_DEBUG") != NULL;
  1576. sched->n_backends = n_backends;
  1577. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1578. // initialize hash table
  1579. // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
  1580. sched->hash_set = ggml_hash_set_new(graph_size);
  1581. sched->hv_tensor_backend_ids = malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1582. sched->hv_tensor_copies = malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1583. const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
  1584. const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1585. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1586. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1587. sched->prev_node_backend_ids = calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
  1588. sched->prev_leaf_backend_ids = calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
  1589. sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
  1590. sched->context_buffer = malloc(sched->context_buffer_size);
  1591. const int initial_splits_capacity = 16;
  1592. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1593. sched->splits_capacity = initial_splits_capacity;
  1594. for (int b = 0; b < n_backends; b++) {
  1595. sched->backends[b] = backends[b];
  1596. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1597. GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));
  1598. if (sched->n_copies > 1) {
  1599. for (int c = 0; c < sched->n_copies; c++) {
  1600. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1601. }
  1602. }
  1603. }
  1604. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1605. ggml_backend_sched_reset(sched);
  1606. return sched;
  1607. }
  1608. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1609. if (sched == NULL) {
  1610. return;
  1611. }
  1612. for (int b = 0; b < sched->n_backends; b++) {
  1613. for (int c = 0; c < sched->n_copies; c++) {
  1614. ggml_backend_event_free(sched->events[b][c]);
  1615. }
  1616. }
  1617. ggml_gallocr_free(sched->galloc);
  1618. ggml_free(sched->ctx);
  1619. ggml_hash_set_free(&sched->hash_set);
  1620. free(sched->splits);
  1621. free(sched->hv_tensor_backend_ids);
  1622. free(sched->hv_tensor_copies);
  1623. free(sched->node_backend_ids);
  1624. free(sched->leaf_backend_ids);
  1625. free(sched->prev_node_backend_ids);
  1626. free(sched->prev_leaf_backend_ids);
  1627. free(sched->context_buffer);
  1628. free(sched->graph.nodes);
  1629. free(sched->graph.leafs);
  1630. free(sched);
  1631. }
  1632. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1633. // reset state for the next run
  1634. if (!sched->is_reset) {
  1635. ggml_hash_set_reset(&sched->hash_set);
  1636. memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
  1637. memset(sched->hv_tensor_copies, 0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
  1638. sched->is_reset = true;
  1639. }
  1640. sched->is_alloc = false;
  1641. }
  1642. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1643. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
  1644. ggml_backend_sched_split_graph(sched, measure_graph);
  1645. if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1646. return false;
  1647. }
  1648. ggml_backend_sched_reset(sched);
  1649. ggml_backend_sched_synchronize(sched);
  1650. return true;
  1651. }
  1652. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1653. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
  1654. ggml_backend_sched_split_graph(sched, graph);
  1655. if (!ggml_backend_sched_alloc_splits(sched)) {
  1656. return false;
  1657. }
  1658. sched->is_alloc = true;
  1659. return true;
  1660. }
  1661. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1662. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1663. ggml_backend_sched_synchronize(sched);
  1664. return err;
  1665. }
  1666. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1667. if (!sched->is_reset && !sched->is_alloc) {
  1668. ggml_backend_sched_reset(sched);
  1669. }
  1670. if (!sched->is_alloc) {
  1671. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1672. return GGML_STATUS_ALLOC_FAILED;
  1673. }
  1674. }
  1675. return ggml_backend_sched_compute_splits(sched);
  1676. }
  1677. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1678. for (int i = 0; i < sched->n_backends; i++) {
  1679. ggml_backend_synchronize(sched->backends[i]);
  1680. }
  1681. }
  1682. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1683. sched->callback_eval = callback;
  1684. sched->callback_eval_user_data = user_data;
  1685. }
  1686. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1687. return sched->n_splits;
  1688. }
  1689. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1690. return sched->n_copies;
  1691. }
  1692. int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
  1693. return sched->n_backends;
  1694. }
  1695. ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
  1696. GGML_ASSERT(i >= 0 && i < sched->n_backends);
  1697. return sched->backends[i];
  1698. }
  1699. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1700. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1701. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1702. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1703. }
  1704. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1705. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1706. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1707. tensor_backend_id(node) = backend_index;
  1708. SET_CAUSE(node, "usr");
  1709. sched->is_reset = false;
  1710. }
  1711. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1712. int backend_index = tensor_backend_id(node);
  1713. if (backend_index == -1) {
  1714. return NULL;
  1715. }
  1716. return sched->backends[backend_index];
  1717. }
  1718. // utils
  1719. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1720. GGML_ASSERT(tensor->buffer == NULL);
  1721. GGML_ASSERT(tensor->view_src != NULL);
  1722. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1723. GGML_ASSERT(tensor->view_src->data != NULL);
  1724. tensor->buffer = tensor->view_src->buffer;
  1725. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1726. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1727. }
  1728. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1729. GGML_ASSERT(tensor->buffer == NULL);
  1730. GGML_ASSERT(tensor->data == NULL);
  1731. GGML_ASSERT(tensor->view_src == NULL);
  1732. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1733. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1734. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1735. tensor->buffer = buffer;
  1736. tensor->data = addr;
  1737. ggml_backend_buffer_init_tensor(buffer, tensor);
  1738. }
  1739. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1740. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1741. GGML_ASSERT(src != NULL);
  1742. GGML_ASSERT(src->data && "graph must be allocated");
  1743. size_t id = ggml_hash_insert(&hash_set, src);
  1744. if (id == GGML_HASHSET_ALREADY_EXISTS) {
  1745. return node_copies[ggml_hash_find(&hash_set, src)];
  1746. }
  1747. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1748. if (src->view_src != NULL) {
  1749. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1750. dst->view_offs = src->view_offs;
  1751. }
  1752. dst->op = src->op;
  1753. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1754. ggml_set_name(dst, src->name);
  1755. // copy src
  1756. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1757. struct ggml_tensor * s = src->src[i];
  1758. if (s == NULL) {
  1759. continue;
  1760. }
  1761. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1762. }
  1763. node_copies[id] = dst;
  1764. return dst;
  1765. }
  1766. static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1767. size_t id = ggml_hash_find(hash_set, src);
  1768. if (node_init[id]) {
  1769. return;
  1770. }
  1771. node_init[id] = true;
  1772. struct ggml_tensor * dst = node_copies[id];
  1773. if (dst->view_src != NULL) {
  1774. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1775. ggml_backend_view_init(dst);
  1776. }
  1777. else {
  1778. ggml_backend_tensor_copy(src, dst);
  1779. }
  1780. // init src
  1781. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1782. struct ggml_tensor * s = src->src[i];
  1783. if (s == NULL) {
  1784. continue;
  1785. }
  1786. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1787. }
  1788. }
  1789. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1790. struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
  1791. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1792. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1793. struct ggml_init_params params = {
  1794. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1795. /* .mem_buffer = */ NULL,
  1796. /* .no_alloc = */ true
  1797. };
  1798. struct ggml_context * ctx_allocated = ggml_init(params);
  1799. struct ggml_context * ctx_unallocated = ggml_init(params);
  1800. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1801. fprintf(stderr, "failed to allocate context for graph copy\n");
  1802. ggml_hash_set_free(&hash_set);
  1803. free(node_copies);
  1804. free(node_init);
  1805. ggml_free(ctx_allocated);
  1806. ggml_free(ctx_unallocated);
  1807. return (struct ggml_backend_graph_copy) {
  1808. /* .buffer = */ NULL,
  1809. /* .ctx_allocated = */ NULL,
  1810. /* .ctx_unallocated = */ NULL,
  1811. /* .graph = */ NULL,
  1812. };
  1813. }
  1814. // dup nodes
  1815. for (int i = 0; i < graph->n_nodes; i++) {
  1816. struct ggml_tensor * node = graph->nodes[i];
  1817. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1818. }
  1819. // allocate nodes
  1820. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1821. if (buffer == NULL) {
  1822. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1823. ggml_hash_set_free(&hash_set);
  1824. free(node_copies);
  1825. free(node_init);
  1826. ggml_free(ctx_allocated);
  1827. ggml_free(ctx_unallocated);
  1828. return (struct ggml_backend_graph_copy) {
  1829. /* .buffer = */ NULL,
  1830. /* .ctx_allocated = */ NULL,
  1831. /* .ctx_unallocated = */ NULL,
  1832. /* .graph = */ NULL,
  1833. };
  1834. }
  1835. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1836. // copy data and init views
  1837. for (int i = 0; i < graph->n_nodes; i++) {
  1838. struct ggml_tensor * node = graph->nodes[i];
  1839. graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
  1840. }
  1841. // build graph copy
  1842. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1843. for (int i = 0; i < graph->n_nodes; i++) {
  1844. struct ggml_tensor * node = graph->nodes[i];
  1845. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
  1846. graph_copy->nodes[i] = node_copy;
  1847. }
  1848. graph_copy->n_nodes = graph->n_nodes;
  1849. ggml_hash_set_free(&hash_set);
  1850. free(node_copies);
  1851. free(node_init);
  1852. return (struct ggml_backend_graph_copy) {
  1853. /* .buffer = */ buffer,
  1854. /* .ctx_allocated = */ ctx_allocated,
  1855. /* .ctx_unallocated = */ ctx_unallocated,
  1856. /* .graph = */ graph_copy,
  1857. };
  1858. }
  1859. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1860. ggml_backend_buffer_free(copy.buffer);
  1861. ggml_free(copy.ctx_allocated);
  1862. ggml_free(copy.ctx_unallocated);
  1863. }
  1864. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1865. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1866. if (copy.buffer == NULL) {
  1867. return false;
  1868. }
  1869. struct ggml_cgraph * g1 = graph;
  1870. struct ggml_cgraph * g2 = copy.graph;
  1871. assert(g1->n_nodes == g2->n_nodes);
  1872. for (int i = 0; i < g1->n_nodes; i++) {
  1873. //printf("eval %d/%d\n", i, g1->n_nodes);
  1874. struct ggml_tensor * t1 = g1->nodes[i];
  1875. struct ggml_tensor * t2 = g2->nodes[i];
  1876. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1877. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1878. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1879. ggml_backend_graph_compute(backend1, &g1v);
  1880. ggml_backend_graph_compute(backend2, &g2v);
  1881. if (ggml_is_view_op(t1->op)) {
  1882. continue;
  1883. }
  1884. // compare results, calculate rms etc
  1885. if (!callback(i, t1, t2, user_data)) {
  1886. break;
  1887. }
  1888. }
  1889. ggml_backend_graph_copy_free(copy);
  1890. return true;
  1891. }