123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #ifdef GGML_USE_BLAS
- #include "ggml-blas.h"
- #include "ggml-backend-impl.h"
- #include <future>
- #include <vector>
- #if defined(GGML_USE_ACCELERATE)
- # include <Accelerate/Accelerate.h>
- #elif defined(GGML_BLAS_USE_MKL)
- # include <mkl.h>
- #elif defined(GGML_BLAS_USE_BLIS)
- # include <blis.h>
- #elif defined(GGML_BLAS_USE_NVPL)
- # include <nvpl_blas.h>
- #else
- # include <cblas.h>
- #endif
- struct ggml_backend_blas_context {
- int n_threads = GGML_DEFAULT_N_THREADS;
- std::unique_ptr<char[]> work_data;
- size_t work_size = 0;
- #ifndef GGML_USE_OPENMP
- std::vector<std::future<void>> tasks;
- #endif
- };
- // helper function to determine if it is better to use BLAS or not
- // for large matrices, BLAS is faster
- static bool ggml_backend_blas_use_blas(const struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- src1->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
- return false;
- }
- static void ggml_backend_blas_mul_mat(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const enum ggml_type type = src0->type;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- const int64_t ne_plane = ne01*ne00;
- const size_t desired_wsize = type == GGML_TYPE_F32 ? 0 : ne03*ne02*ne_plane*sizeof(float);
- if (ctx->work_size < desired_wsize) {
- ctx->work_data.reset(new char[desired_wsize]);
- ctx->work_size = desired_wsize;
- }
- void * wdata = ctx->work_data.get();
- // convert src0 to float
- if (type != GGML_TYPE_F32) {
- ggml_type_traits_t type_traits = ggml_internal_get_type_traits(type);
- ggml_to_float_t const to_float = type_traits.to_float;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
- float * const wplane = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
- const int min_cols_per_thread = 4096;
- const int min_rows_per_thread = std::max((int)(min_cols_per_thread/ne00), 1);
- const int n_threads = std::max(std::min(ctx->n_threads, (int)(ne01/min_rows_per_thread)), 1);
- #ifdef GGML_USE_OPENMP
- #pragma omp parallel for num_threads(n_threads)
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
- #else
- for (int i = 1; i < n_threads; i++) {
- const int64_t start = i*ne01/n_threads;
- const int64_t end = (i + 1)*ne01/n_threads;
- if (start < end) {
- ctx->tasks.push_back(std::async(std::launch::async, [=]() {
- for (int64_t i01 = start; i01 < end; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
- }));
- }
- }
- {
- // reuse the current thread for the first task
- const int64_t start = 0;
- const int64_t end = ne01/n_threads;
- for (int64_t i01 = start; i01 < end; i01++) {
- to_float((const char *) x + i01*nb01, wplane + i01*ne00, ne00);
- }
- }
- #endif
- }
- }
- #ifndef GGML_USE_OPENMP
- // wait for all tasks to finish
- for (auto & task : ctx->tasks) {
- task.get();
- }
- ctx->tasks.clear();
- #endif
- }
- #if defined(OPENBLAS_VERSION)
- openblas_set_num_threads(ctx->n_threads);
- #endif
- #if defined(GGML_BLAS_USE_BLIS)
- bli_thread_set_num_threads(ctx->n_threads);
- #endif
- #if defined(GGML_BLAS_USE_NVPL)
- nvpl_blas_set_num_threads(ctx->n_threads);
- #endif
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
- const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
- float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
- if (type != GGML_TYPE_F32) {
- x = (float *) wdata + i02*ne_plane + i03*ne02*ne_plane;
- }
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne1, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- }
- static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne3 == ne13);
- GGML_ASSERT(ne03 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
- // src0: (k,n)
- // src1: (k,m)
- // dst: (m,n)
- //
- // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
- // Also expressed as (major,minor)
- // a: (m,k): so src1 transposed
- // b: (k,n): so src0
- // c: (m,n)
- //
- // However, if ggml_is_transposed(src1) is true, then
- // src1->data already contains a transposed version, so sgemm mustn't
- // transpose it further.
- int n = src0->ne[0];
- int k = src0->ne[1];
- int m = src1->ne[0];
- CBLAS_TRANSPOSE transposeA;
- int lda;
- if (!ggml_is_transposed(src1)) {
- transposeA = CblasTrans;
- lda = m;
- } else {
- transposeA = CblasNoTrans;
- lda = k;
- }
- float * a = (float *) ((char *) src1->data);
- float * b = (float *) ((char *) src0->data);
- float * c = (float *) ((char *) dst->data);
- cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
- GGML_UNUSED(ctx);
- }
- // backend interface
- GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
- return "BLAS";
- GGML_UNUSED(backend);
- }
- GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
- delete ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
- return ggml_backend_cpu_buffer_type();
- GGML_UNUSED(backend);
- }
- GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- switch (node->op) {
- case GGML_OP_MUL_MAT:
- ggml_backend_blas_mul_mat(ctx, node);
- break;
- case GGML_OP_OUT_PROD:
- ggml_backend_blas_out_prod(ctx, node);
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- break;
- default:
- GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
- }
- }
- return GGML_STATUS_SUCCESS;
- GGML_UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- const struct ggml_tensor * src0 = op->src[0];
- const struct ggml_tensor * src1 = op->src[1];
- return (op->op == GGML_OP_MUL_MAT && ggml_backend_blas_use_blas(op)) ||
- (op->op == GGML_OP_OUT_PROD && op->src[0]->type == GGML_TYPE_F32 &&
- op->src[1]->type == GGML_TYPE_F32 &&
- ggml_is_matrix(src0) &&
- ggml_is_matrix(src1) &&
- ggml_is_contiguous(src0) &&
- (ggml_is_contiguous(src1) || ggml_is_transposed(src1)));
- GGML_UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
- return ggml_backend_buft_is_host(buft);
- GGML_UNUSED(backend);
- }
- static struct ggml_backend_i blas_backend_i = {
- /* .get_name = */ ggml_backend_blas_name,
- /* .free = */ ggml_backend_blas_free,
- /* .get_default_buffer_type = */ ggml_backend_blas_get_default_buffer_type,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_blas_graph_compute,
- /* .supports_op = */ ggml_backend_blas_supports_op,
- /* .supports_buft = */ ggml_backend_blas_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- static ggml_guid_t ggml_backend_blas_guid(void) {
- static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
- return &guid;
- }
- ggml_backend_t ggml_backend_blas_init(void) {
- ggml_backend_blas_context * ctx = new ggml_backend_blas_context;
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_blas_guid(),
- /* .interface = */ blas_backend_i,
- /* .context = */ ctx,
- };
- #if !defined(NDEBUG) && defined(OPENBLAS_VERSION) && defined(GGML_USE_OPENMP)
- if (openblas_get_parallel() != OPENBLAS_OPENMP) {
- fprintf(stderr, "%s: warning: ggml is using OpenMP, but OpenBLAS was compiled without OpenMP support\n", __func__);
- }
- #endif
- #if !defined(NDEBUG) && defined(BLIS_ENABLE_CBLAS) && defined(GGML_USE_OPENMP) && !defined(BLIS_ENABLE_OPENMP)
- fprintf(stderr, "%s: warning: ggml is using OpenMP, but BLIS was compiled without OpenMP support\n", __func__);
- #endif
- return backend;
- }
- GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
- }
- void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads) {
- GGML_ASSERT(ggml_backend_is_blas(backend_blas));
- ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend_blas->context;
- ctx->n_threads = n_threads;
- }
- #endif
|