123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "concat.cuh"
- // contiguous kernels
- static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (nidx < ne00) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne00 +
- blockIdx.z * ne00 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- (nidx - ne00) +
- blockIdx.y * (ne0 - ne00) +
- blockIdx.z * (ne0 - ne00) * gridDim.y;
- dst[offset_dst] = y[offset_src];
- }
- }
- static __global__ void concat_f32_dim1(const float * x, const float * y, float * dst, const int ne0, const int ne01) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (blockIdx.y < ne01) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * ne01;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx +
- (blockIdx.y - ne01) * ne0 +
- blockIdx.z * ne0 * (gridDim.y - ne01);
- dst[offset_dst] = y[offset_src];
- }
- }
- static __global__ void concat_f32_dim2(const float * x, const float * y, float * dst, const int ne0, const int ne02) {
- int nidx = threadIdx.x + blockIdx.x * blockDim.x;
- if (nidx >= ne0) {
- return;
- }
- int offset_dst =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- if (blockIdx.z < ne02) { // src0
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- blockIdx.z * ne0 * gridDim.y;
- dst[offset_dst] = x[offset_src];
- } else {
- int offset_src =
- nidx +
- blockIdx.y * ne0 +
- (blockIdx.z - ne02) * ne0 * gridDim.y;
- dst[offset_dst] = y[offset_src];
- }
- }
- static void concat_f32_cuda(const float * x, const float * y, float * dst, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2, int dim, cudaStream_t stream) {
- int num_blocks = (ne0 + CUDA_CONCAT_BLOCK_SIZE - 1) / CUDA_CONCAT_BLOCK_SIZE;
- dim3 gridDim(num_blocks, ne1, ne2);
- if (dim == 0) {
- concat_f32_dim0<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne00);
- return;
- }
- if (dim == 1) {
- concat_f32_dim1<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne01);
- return;
- }
- concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
- }
- // non-contiguous kernel (slow)
- static __global__ void concat_f32_non_cont(
- const char * src0,
- const char * src1,
- char * dst,
- int64_t ne00,
- int64_t ne01,
- int64_t ne02,
- int64_t ne03,
- uint64_t nb00,
- uint64_t nb01,
- uint64_t nb02,
- uint64_t nb03,
- int64_t /*ne10*/,
- int64_t /*ne11*/,
- int64_t /*ne12*/,
- int64_t /*ne13*/,
- uint64_t nb10,
- uint64_t nb11,
- uint64_t nb12,
- uint64_t nb13,
- int64_t ne0,
- int64_t /*ne1*/,
- int64_t /*ne2*/,
- int64_t /*ne3*/,
- uint64_t nb0,
- uint64_t nb1,
- uint64_t nb2,
- uint64_t nb3,
- int32_t dim) {
- const int64_t i3 = blockIdx.z;
- const int64_t i2 = blockIdx.y;
- const int64_t i1 = blockIdx.x;
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
- const float * x;
- for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
- } else {
- x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
- }
- float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- *y = *x;
- }
- }
- void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- cudaStream_t stream = ctx.stream();
- const int32_t dim = ((int32_t *) dst->op_params)[0];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
- const float * src0_d = (const float *)src0->data;
- const float * src1_d = (const float *)src1->data;
- float * dst_d = (float *)dst->data;
- if (dim != 3) {
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
- concat_f32_cuda(
- src0_d + i3 * (src0->nb[3] / 4),
- src1_d + i3 * (src1->nb[3] / 4),
- dst_d + i3 * ( dst->nb[3] / 4),
- src0->ne[0], src0->ne[1], src0->ne[2],
- dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
- }
- } else {
- const size_t size0 = ggml_nbytes(src0);
- const size_t size1 = ggml_nbytes(src1);
- CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
- CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
- }
- } else {
- dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
- concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
- (const char *)src0->data,
- (const char *)src1->data,
- ( char *)dst->data,
- src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
- src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
- src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
- src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
- dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
- dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
- }
- }
|