123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "common.cuh"
- #include "cross-entropy-loss.cuh"
- #include "sumrows.cuh"
- #include <cmath>
- #include <cstdint>
- static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) {
- const int warp_id = threadIdx.x / WARP_SIZE;
- const int lane_id = threadIdx.x % WARP_SIZE;
- const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE;
- const int ne_tmp = WARP_SIZE*nclasses;
- extern __shared__ float tmp_all[];
- float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp;
- float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp;
- // Each warp first loads ne_tmp logits/labels into shared memory:
- for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) {
- const int ig = i0*nclasses + i; // ig == i global
- tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f;
- tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f;
- }
- // Each thread in the warp then calculates the cross entropy loss for a single row.
- // TODO: pad in order to avoid shared memory bank conflicts.
- // Find maximum for softmax:
- float max = -INFINITY;
- for (int i = 0; i < nclasses; ++i) {
- max = fmaxf(max, tmp_logits[lane_id*nclasses + i]);
- }
- // Calculate log(softmax(logits)) which is just logits - max:
- float sum = 0.0f;
- for (int i = 0; i < nclasses; ++i) {
- float val = tmp_logits[lane_id*nclasses + i] - max;
- sum += expf(val);
- tmp_logits[lane_id*nclasses + i] = val;
- }
- sum = logf(sum);
- // log(exp(logits - max) / sum) = (logits - max) - log(sum)
- float loss = 0.0f;
- for (int i = 0; i < nclasses; ++i) {
- loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i];
- }
- loss = -warp_reduce_sum(loss) / (float)k;
- __syncthreads();
- if (lane_id == 0) {
- tmp_all[warp_id] = loss;
- }
- __syncthreads();
- if (warp_id != 0) {
- return;
- }
- loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f;
- loss = warp_reduce_sum(loss);
- if (lane_id != 0) {
- return;
- }
- dst[blockIdx.x] = loss;
- }
- void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows = ggml_nrows(src0);
- const float * src0_d = (const float *) src0->data;
- const float * src1_d = (const float *) src1->data;
- float * dst_d = (float *) dst->data;
- ggml_cuda_pool & pool = ctx.pool();
- cudaStream_t stream = ctx.stream();
- const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
- const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
- const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float);
- ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
- cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
- // Combine results from individual blocks:
- sum_rows_f32_cuda(dst_tmp.ptr, dst_d, blocks_num.x, 1, stream);
- }
|