123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "common.cuh"
- #include "convert.cuh"
- #include "vecdotq.cuh"
- #include <cstdint>
- #define FATTN_KQ_STRIDE 256
- #define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
- #define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
- typedef void (* fattn_kernel_t)(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const float logit_softcap,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int nb21,
- const int nb22,
- const int nb23,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3);
- typedef half (*vec_dot_KQ_f16_t)(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
- typedef float (*vec_dot_KQ_f32_t)(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
- template<typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
- const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
- GGML_UNUSED(Q_v);
- T sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const int ib = k_KQ / QI8_1;
- const int iqs4 = k_KQ % QI4_0;
- const int shift = k_KQ & (QI8_1/2);
- const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
- const int u = Q_q8[k_KQ_0/WARP_SIZE];
- const int sumi = ggml_cuda_dp4a(v, u, 0);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- const half2 * Q_ds = (const half2 *) Q_ds_v;
- const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
- sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
- } else
- #endif // FP16_AVAILABLE
- {
- const float2 * Q_ds = (const float2 *) Q_ds_v;
- sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
- }
- }
- return sum;
- }
- template<typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
- const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
- GGML_UNUSED(Q_v);
- T sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const int ib = k_KQ / QI8_1;
- const int iqs4 = k_KQ % QI4_1;
- const int shift = k_KQ & (QI8_1/2);
- const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
- const int u = Q_q8[k_KQ_0/WARP_SIZE];
- const int sumi = ggml_cuda_dp4a(v, u, 0);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- const half2 * Q_ds = (const half2 *) Q_ds_v;
- const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
- const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
- sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
- } else
- #endif // FP16_AVAILABLE
- {
- const float2 * Q_ds = (const float2 *) Q_ds_v;
- const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
- const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
- sum += (T) (sumid4d8 + m4s8scaled);
- }
- }
- return sum;
- }
- template<typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
- const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
- GGML_UNUSED(Q_v);
- T sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const int ib = k_KQ / QI8_1;
- const int iqs4 = k_KQ % QI5_0;
- const int iqs8 = k_KQ % QI8_1;
- const int shift = k_KQ & (QI8_1/2);
- int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
- const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
- v |= (vh << 4) & 0x00000010; // 0 -> 4
- v |= (vh << 11) & 0x00001000; // 1 -> 12
- v |= (vh << 18) & 0x00100000; // 2 -> 20
- v |= (vh << 25) & 0x10000000; // 3 -> 28
- const int u = Q_q8[k_KQ_0/WARP_SIZE];
- const int sumi = ggml_cuda_dp4a(v, u, 0);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- const half2 * Q_ds = (const half2 *) Q_ds_v;
- const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
- sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
- } else
- #endif // FP16_AVAILABLE
- {
- const float2 * Q_ds = (const float2 *) Q_ds_v;
- sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
- }
- }
- return sum;
- }
- template<typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
- const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
- GGML_UNUSED(Q_v);
- T sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const int ib = k_KQ / QI8_1;
- const int iqs4 = k_KQ % QI5_1;
- const int iqs8 = k_KQ % QI8_1;
- const int shift = k_KQ & (QI8_1/2);
- int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
- const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
- v |= (vh << 4) & 0x00000010; // 0 -> 4
- v |= (vh << 11) & 0x00001000; // 1 -> 12
- v |= (vh << 18) & 0x00100000; // 2 -> 20
- v |= (vh << 25) & 0x10000000; // 3 -> 28
- const int u = Q_q8[k_KQ_0/WARP_SIZE];
- const int sumi = ggml_cuda_dp4a(v, u, 0);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- const half2 * Q_ds = (const half2 *) Q_ds_v;
- const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
- const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
- sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
- } else
- #endif // FP16_AVAILABLE
- {
- const float2 * Q_ds = (const float2 *) Q_ds_v;
- const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
- const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
- sum += (T) (sumid5d8 + m5s8scaled);
- }
- }
- return sum;
- }
- template <typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
- const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
- GGML_UNUSED(Q_v);
- T sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const int ib = k_KQ / QI8_0;
- const int iqs = k_KQ % QI8_0;
- const int v = get_int_b2(K_q8_0[ib].qs, iqs);
- T Q_d;
- if (std::is_same<T, half>::value) {
- const half2 * Q_ds = (const half2 *) Q_ds_v;
- Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
- } else {
- const float2 * Q_ds = (const float2 *) Q_ds_v;
- Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
- }
- sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
- }
- return sum;
- }
- template <typename T, int D>
- static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
- const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
- const half2 * K_h2 = (const half2 *) K_c;
- GGML_UNUSED(Q_q8);
- GGML_UNUSED(Q_ds_v);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- const half2 * Q_h2 = (const half2 *) Q_v;
- half2 sum2 = make_half2(0.0f, 0.0f);
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const half2 K_ik = K_h2[k_KQ];
- sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
- }
- return __low2half(sum2) + __high2half(sum2);
- }
- #endif // FP16_AVAILABLE
- const float2 * Q_f2 = (const float2 *) Q_v;
- float sum = 0.0f;
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
- const half2 K_ik = K_h2[k_KQ];
- sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
- sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
- }
- return sum;
- }
- template <typename Tds>
- static __device__ __forceinline__ void quantize_q8_1_to_shared(
- const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
- float vals[sizeof(int)] = {0.0f};
- #pragma unroll
- for (int l = 0; l < sizeof(int); ++l) {
- vals[l] = scale * x[4*threadIdx.x + l];
- }
- float amax = fabsf(vals[0]);
- float sum = vals[0];
- #pragma unroll
- for (int l = 1; l < sizeof(int); ++l) {
- amax = fmaxf(amax, fabsf(vals[l]));
- sum += vals[l];
- }
- #pragma unroll
- for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
- amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
- sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
- }
- const float d = amax / 127;
- int q32 = 0;
- int8_t * q8 = (int8_t *) &q32;
- if (d != 0.0f) {
- #pragma unroll
- for (int l = 0; l < sizeof(int); ++l) {
- q8[l] = roundf(vals[l] / d);
- }
- }
- yq32[threadIdx.x] = q32;
- if (threadIdx.x % QI8_1 == 0) {
- if (std::is_same<Tds, half2>::value) {
- ((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
- } else {
- ((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
- }
- }
- }
- typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
- typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
- const block_q4_0 * x = (const block_q4_0 *) vx;
- const int64_t ib = i / QK4_0;
- const int iqs = i % (QK4_0/2);
- const int shift = (i % QK4_0) / (QK4_0/2);
- const T d = x[ib].d;
- const int q0 = x[ib].qs[iqs];
- const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- return ((half) d)*((half) q);
- }
- #endif // FP16_AVAILABLE
- return ((float) d)*((float) q);
- }
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
- const block_q4_1 * x = (const block_q4_1 *) vx;
- const int64_t ib = i / QK4_1;
- const int iqs = i % (QK4_1/2);
- const int shift = (i % QK4_1) / (QK4_1/2);
- const half2 dm = x[ib].dm;
- const int q0 = x[ib].qs[iqs];
- const int q = ((q0 >> (4*shift)) & 0x0F);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- return __low2half(dm)*((half) q) + __high2half(dm);
- }
- #endif // FP16_AVAILABLE
- return __low2float(dm)*((float) q) + __high2float(dm);
- }
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
- const block_q5_0 * x = (const block_q5_0 *) vx;
- const int64_t ib = i / QK5_0;
- const int idq = i % QK5_0;
- const int iqs = i % (QK5_0/2);
- const int shift = (i % QK5_0) / (QK5_0/2);
- const T d = x[ib].d;
- const int ql0 = x[ib].qs[iqs];
- const int qh0 = get_int_b2(x[ib].qh, 0);
- const int ql = ((ql0 >> (4*shift)) & 0x0F);
- const int qh = ((qh0 >> idq) << 4) & 0x10;
- const int q = (ql | qh) - 16;
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- return ((half) d)*((half) q);
- }
- #endif // FP16_AVAILABLE
- return ((float) d)*((float) q);
- }
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
- const block_q5_1 * x = (const block_q5_1 *) vx;
- const int64_t ib = i / QK5_1;
- const int idq = i % QK5_1;
- const int iqs = i % (QK5_1/2);
- const int shift = (i % QK5_1) / (QK5_1/2);
- const half2 dm = x[ib].dm;
- const int ql0 = x[ib].qs[iqs];
- const int qh0 = get_int_b4(x[ib].qh, 0);
- const int ql = ((ql0 >> (4*shift)) & 0x0F);
- const int qh = ((qh0 >> idq) << 4) & 0x10;
- const int q = (ql | qh);
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- return __low2half(dm)*((half) q) + __high2half(dm);
- }
- #endif // FP16_AVAILABLE
- return __low2float(dm)*((float) q) + __high2float(dm);
- }
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
- const block_q8_0 * x = (const block_q8_0 *) vx;
- const int64_t ib = i / QK8_0;
- const int iqs = i % QK8_0;
- const T d = x[ib].d;
- const int q = x[ib].qs[iqs];
- #ifdef FP16_AVAILABLE
- if (std::is_same<T, half>::value) {
- return ((half) d)*((half) q);
- }
- #endif // FP16_AVAILABLE
- return ((float) d)*((float) q);
- }
- template <typename T>
- static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
- const half * x = (const half *) vx;
- return x[i];
- }
- template <int D>
- constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
- return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D> :
- type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D> :
- type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D> :
- type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D> :
- type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D> :
- type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D> :
- nullptr;
- }
- template <int D>
- constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
- return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D> :
- type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D> :
- type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D> :
- type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D> :
- type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D> :
- type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D> :
- nullptr;
- }
- constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
- return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
- type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
- type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
- type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
- type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
- type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
- nullptr;
- }
- constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
- return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
- type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
- type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
- type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
- type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
- type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
- nullptr;
- }
- template<int D, int parallel_blocks> // D == head size
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- __launch_bounds__(D, 1)
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static __global__ void flash_attn_combine_results(
- const float * __restrict__ VKQ_parts,
- const float2 * __restrict__ VKQ_meta,
- float * __restrict__ dst) {
- VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
- VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
- dst += D * gridDim.y*blockIdx.x;
- const int tid = threadIdx.x;
- __builtin_assume(tid < D);
- __shared__ float2 meta[parallel_blocks];
- if (tid < 2*parallel_blocks) {
- ((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
- }
- __syncthreads();
- float kqmax = meta[0].x;
- #pragma unroll
- for (int l = 1; l < parallel_blocks; ++l) {
- kqmax = max(kqmax, meta[l].x);
- }
- float VKQ_numerator = 0.0f;
- float VKQ_denominator = 0.0f;
- #pragma unroll
- for (int l = 0; l < parallel_blocks; ++l) {
- const float diff = meta[l].x - kqmax;
- const float KQ_max_scale = expf(diff);
- const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
- *((uint32_t *) &KQ_max_scale) &= ftz_mask;
- VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
- VKQ_denominator += KQ_max_scale * meta[l].y;
- }
- dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
- }
- static void on_no_fattn_vec_case(const int D) {
- if (D == 64) {
- fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
- fprintf(stderr, "By default only f16 KV cache is supported.\n");
- fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
- GGML_ABORT("fatal error");
- } else if (D == 128) {
- fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
- fprintf(stderr, "Supported combinations:\n");
- fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
- fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
- fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
- fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
- GGML_ABORT("fatal error");
- } else {
- fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
- fprintf(stderr, "Only f16 is supported.\n");
- GGML_ABORT("fatal error");
- }
- }
- template <int D, int parallel_blocks>
- void launch_fattn(
- ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel,
- const int nwarps, const int cols_per_block, const bool need_f16_K, const bool need_f16_V
- ) {
- const ggml_tensor * Q = dst->src[0];
- const ggml_tensor * K = dst->src[1];
- const ggml_tensor * V = dst->src[2];
- const ggml_tensor * mask = dst->src[3];
- ggml_tensor * KQV = dst;
- GGML_ASSERT(Q->type == GGML_TYPE_F32);
- GGML_ASSERT(KQV->type == GGML_TYPE_F32);
- GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
- GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
- "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
- GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
- ggml_cuda_pool & pool = ctx.pool();
- cudaStream_t main_stream = ctx.stream();
- ggml_cuda_pool_alloc<half> K_f16(pool);
- ggml_cuda_pool_alloc<half> V_f16(pool);
- ggml_cuda_pool_alloc<float> dst_tmp(pool);
- ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
- char * K_data = (char *) K->data;
- size_t nb11 = K->nb[1];
- size_t nb12 = K->nb[2];
- size_t nb13 = K->nb[3];
- char * V_data = (char *) V->data;
- size_t nb21 = V->nb[1];
- size_t nb22 = V->nb[2];
- size_t nb23 = V->nb[3];
- if (need_f16_K && K->type != GGML_TYPE_F16) {
- K_f16.alloc(ggml_nelements(K));
- to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
- to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);
- K_data = (char *) K_f16.ptr;
- const size_t bs = ggml_blck_size(K->type);
- const size_t ts = ggml_type_size(K->type);
- nb11 = nb11*bs*sizeof(half)/ts;
- nb12 = nb12*bs*sizeof(half)/ts;
- nb13 = nb13*bs*sizeof(half)/ts;
- }
- if (need_f16_V && V->type != GGML_TYPE_F16) {
- V_f16.alloc(ggml_nelements(V));
- to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
- to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
- V_data = (char *) V_f16.ptr;
- const size_t bs = ggml_blck_size(V->type);
- const size_t ts = ggml_type_size(V->type);
- nb21 = nb21*bs*sizeof(half)/ts;
- nb22 = nb22*bs*sizeof(half)/ts;
- nb23 = nb23*bs*sizeof(half)/ts;
- }
- if (parallel_blocks > 1) {
- dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
- dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
- }
- const dim3 block_dim(WARP_SIZE, nwarps, 1);
- const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
- const int shmem = 0;
- float scale = 1.0f;
- float max_bias = 0.0f;
- float logit_softcap = 0.0f;
- memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
- memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
- if (logit_softcap != 0.0f) {
- scale /= logit_softcap;
- }
- const uint32_t n_head = Q->ne[2];
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
- (const char *) Q->data,
- K_data,
- V_data,
- mask ? ((const char *) mask->data) : nullptr,
- (parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
- scale, max_bias, m0, m1, n_head_log2, logit_softcap,
- Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
- K->ne[0], K->ne[1], K->ne[2], K->ne[3],
- mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
- Q->nb[1], Q->nb[2], Q->nb[3],
- nb11, nb12, nb13,
- nb21, nb22, nb23,
- KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
- );
- CUDA_CHECK(cudaGetLastError());
- if ((parallel_blocks) == 1) {
- return;
- }
- const dim3 block_dim_combine(D, 1, 1);
- const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
- const int shmem_combine = 0;
- flash_attn_combine_results<D, parallel_blocks>
- <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
- (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
- CUDA_CHECK(cudaGetLastError());
- }
|