123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "common.cuh"
- #include "fattn-common.cuh"
- #ifdef FP16_MMA_AVAILABLE
- #include <mma.h>
- #endif // FP16_MMA_AVAILABLE
- // D == head size, VKQ_stride == num VKQ rows calculated in parallel:
- template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- __launch_bounds__(nwarps*WARP_SIZE, 1)
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static __global__ void flash_attn_ext_f16(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const float logit_softcap,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int nb21,
- const int nb22,
- const int nb23,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
- #ifdef FP16_MMA_AVAILABLE
- // Skip unused kernel variants for faster compilation:
- if (use_logit_softcap && !(D == 128 || D == 256)) {
- NO_DEVICE_CODE;
- return;
- }
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
- const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
- static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
- static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
- constexpr int frag_m = ncols == 8 ? 32 : 16;
- constexpr int frag_n = ncols == 8 ? 8 : 16;
- static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
- typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
- constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
- constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
- static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
- // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
- constexpr int D_padded = D + 8;
- constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
- constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
- const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
- const int stride_Q = nb01 / sizeof(float);
- const int stride_KV = nb11 / sizeof(half);
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- const half slopeh = __float2half(slopef);
- const half2 slope2 = make_half2(slopef, slopef);
- const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
- frag_b Q_b[D/16][ncols/frag_n];
- // A single buffer for temporarily holding tiles of KQ and VKQ parts:
- constexpr int mem_KQ = ncols*kqs_padded*kqar;
- constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
- __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
- float * KQ_f = (float *) KQ;
- half2 * KQ2 = (half2 *) KQ;
- float KQ_rowsum_f[ncols/nwarps] = {0.0f};
- float KQ_max_f[ncols/nwarps];
- float KQ_max_scale_f[ncols/nwarps] = {0.0f};
- #pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_f[j] = -FLT_MAX/2.0f;
- }
- half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
- half2 KQ_max_h2[ncols/nwarps];
- half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
- #pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
- }
- __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
- half2 * VKQ2 = (half2 *) VKQ;
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
- VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
- }
- }
- // Convert Q to half and apply scale, temporarily store in KQ:
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
- break;
- }
- KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
- }
- }
- __syncthreads();
- // Load Q into tensor core fragments/registers since it will be used frequently:
- #pragma unroll
- for (int i0 = 0; i0 < D; i0 += 16) {
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
- }
- }
- __syncthreads();
- // Iterate over ne11 == previous tokens:
- for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
- // Calculate tile of KQ:
- #pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
- frag_c_KQ KQ_c[ncols/frag_n];
- #pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
- }
- #pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
- frag_a_K K_a;
- nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
- #pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
- }
- }
- __syncthreads();
- // Calculate softmax for each KQ column using the current max. value.
- // The divisor is stored in KQ_rowsum and will be applied at the end.
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- if (std::is_same<KQ_acc_t, float>::value) {
- float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
- if (use_logit_softcap) {
- KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
- }
- }
- float KQ_max_new = KQ_max_f[j0/nwarps];
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
- KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = warp_reduce_max(KQ_max_new);
- const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
- KQ_max_scale_f[j0/nwarps] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_max_scale_f[j0/nwarps] = 0.0f;
- }
- KQ_max_f[j0/nwarps] = KQ_max_new;
- float KQ_rowsum_add = 0.0f;
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
- KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
- }
- KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
- KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
- } else {
- half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
- if (use_logit_softcap) {
- // There is no dedicated tangens hyperbolicus function for half2.
- KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
- KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
- /(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
- KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
- }
- }
- half2 KQ_max_new = KQ_max_h2[j0/nwarps];
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
- KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
- const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
- KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
- KQ_max_h2[j0/nwarps] = KQ_max_new;
- half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
- const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
- KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
- KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
- KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
- }
- }
- __syncthreads();
- frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
- nvcuda::wmma::load_matrix_sync(
- KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
- KQ + j0*(kqar*kqs_padded) + k,
- kqar*kqs_padded);
- }
- }
- frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
- #pragma unroll
- for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
- #pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
- }
- #pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
- frag_a_V v_a;
- nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
- #pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
- }
- }
- }
- __syncthreads();
- const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
- #pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync(
- KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
- VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
- D_padded, nvcuda::wmma::mem_col_major);
- }
- }
- __syncthreads();
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- half2 VKQ_scale;
- if (std::is_same<KQ_acc_t, float>::value) {
- VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
- } else {
- VKQ_scale = KQ_max_scale_h2[j0/nwarps];
- }
- #pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
- half2 VKQ_add = make_half2(0.0f, 0.0f);
- #pragma unroll
- for (int l = 0; l < VKQ_ratio; ++l) {
- VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
- }
- VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
- }
- }
- __syncthreads();
- }
- #pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j_VKQ = j0 + threadIdx.y;
- if (ic0 + j_VKQ >= ne01) {
- return;
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- float KQ_rowsum_j;
- if (std::is_same<KQ_acc_t, float>::value) {
- KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
- } else {
- KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
- }
- #pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
- break;
- }
- float dst_val = VKQ[j_VKQ*D_padded + i];
- if (parallel_blocks == 1) {
- dst_val /= KQ_rowsum_j;
- }
- dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
- }
- if (parallel_blocks == 1 || threadIdx.x != 0) {
- continue;
- }
- float2 dst_meta_val;
- if (std::is_same<KQ_acc_t, float>::value) {
- dst_meta_val.x = KQ_max_f[j0/nwarps];
- } else {
- dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
- }
- dst_meta_val.y = KQ_rowsum_j;
- dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
- }
- #else
- NO_DEVICE_CODE;
- #endif // FP16_MMA_AVAILABLE
- }
- constexpr int get_max_power_of_2(int x) {
- return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
- }
- static_assert(get_max_power_of_2(1) == 1, "Test failed.");
- static_assert(get_max_power_of_2(2) == 2, "Test failed.");
- static_assert(get_max_power_of_2(4) == 4, "Test failed.");
- static_assert(get_max_power_of_2(6) == 2, "Test failed.");
- // Number of VKQ rows calculated in parallel:
- constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
- return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
- }
- static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
- static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
- static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
- static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
- static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
- static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
- static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
- static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
- static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
- template <int D, int cols_per_block, typename KQ_acc_t>
- void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * KQV = dst;
- const ggml_tensor * Q = dst->src[0];
- constexpr int nwarps = 4;
- constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
- const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
- const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
- float logit_softcap;
- memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
- if (4*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 4;
- fattn_kernel_t fattn_kernel;
- if (logit_softcap == 0.0f) {
- constexpr bool use_logit_softcap = false;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- } else {
- constexpr bool use_logit_softcap = true;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- }
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
- return;
- }
- if (2*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 2;
- fattn_kernel_t fattn_kernel;
- if (logit_softcap == 0.0f) {
- constexpr bool use_logit_softcap = false;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- } else {
- constexpr bool use_logit_softcap = true;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- }
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
- return;
- }
- constexpr int parallel_blocks = 1;
- fattn_kernel_t fattn_kernel;
- if (logit_softcap == 0.0f) {
- constexpr bool use_logit_softcap = false;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- } else {
- constexpr bool use_logit_softcap = true;
- fattn_kernel = flash_attn_ext_f16<
- D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
- }
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
- }
- #define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
- template void ggml_cuda_flash_attn_ext_wmma_f16_case \
- <D, cols_per_block, KQ_acc_t>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
- extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
- extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
- extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
- extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
- extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
- // extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
- extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
- extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
- extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
- extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
- extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
- extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
- extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
- extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
- extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
- extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
- extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|