1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "common.cuh"
- #include "vecdotq.cuh"
- #include "mma.cuh"
- #include <climits>
- #include <cstdint>
- #define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available.
- #define MMQ_ITER_K 256
- #define MMQ_NWARPS 8
- typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int & kbx0, const int & i_max, const int & stride);
- typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00);
- typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max);
- enum mmq_q8_1_ds_layout {
- MMQ_Q8_1_DS_LAYOUT_D4,
- MMQ_Q8_1_DS_LAYOUT_DS4,
- MMQ_Q8_1_DS_LAYOUT_D2S6,
- };
- struct block_q8_1_mmq {
- // The y float data is converted to a data layout that can simply be copied to shared memory as a contiguous block.
- // The y float data is first grouped as blocks of 128 values.
- // These blocks are then treated as individual data values and transposed.
- //
- // To avoid shared memory bank conflicts each block is padded with 16 bytes.
- // This padding is also used to store block scales/partial sums.
- // The scales multiplied with the quantized data are equal to the unquantized values.
- // The partial sums are obtained by summing up a subgroup of the contained values (prior to quantization)
- // and are only needed for performance reasons.
- //
- // The exact data stored depends on the x data type.
- union {
- float d4[4]; // 1 32 bit scale per 32 values, stored as d0,d1,d2,d3
- half2 ds4[4]; // 1 16 bit scale + 1 16 bit partial sum per 32 values, stored as d0,s0,d1,s1,d2,s2,d3,s3
- half d2s6[8]; // 1 16 bit scale per 64 values + 1 16 bit partial sum per 16 values for the first 96 values,
- // stored as d0,d1,s1,s2,s3,s4,s5
- };
- int8_t qs[4*QK8_1]; // 128 values quantized to 8 bit each
- };
- static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size");
- static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size");
- static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) {
- switch (type_x) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return MMQ_Q8_1_DS_LAYOUT_DS4;
- case GGML_TYPE_Q5_0:
- return MMQ_Q8_1_DS_LAYOUT_D4;
- case GGML_TYPE_Q5_1:
- return MMQ_Q8_1_DS_LAYOUT_DS4;
- case GGML_TYPE_Q8_0:
- return MMQ_Q8_1_DS_LAYOUT_D4;
- case GGML_TYPE_Q2_K:
- return MMQ_Q8_1_DS_LAYOUT_D2S6;
- case GGML_TYPE_Q3_K:
- return MMQ_Q8_1_DS_LAYOUT_D4;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- return MMQ_Q8_1_DS_LAYOUT_DS4;
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- return MMQ_Q8_1_DS_LAYOUT_D4;
- case GGML_TYPE_IQ1_S:
- return MMQ_Q8_1_DS_LAYOUT_DS4;
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ4_NL:
- return MMQ_Q8_1_DS_LAYOUT_D4;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- }
- struct tile_x_sizes {
- int qs;
- int dm;
- int sc;
- };
- static constexpr int get_mmq_x_max_host(const int cc) {
- return int8_mma_available(cc) ? 128 :
- #ifdef GGML_CUDA_FORCE_MMQ
- cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
- #else
- cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64;
- #endif // GGML_CUDA_FORCE_MMQ
- }
- static constexpr __device__ int get_mmq_x_max_device() {
- #ifdef INT8_MMA_AVAILABLE
- return 128;
- #else // INT8_MMA_AVAILABLE
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- return 128;
- #else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if __CUDA_ARCH__ >= CC_VOLTA
- #ifdef GGML_CUDA_FORCE_MMQ
- return MMQ_DP4A_MAX_BATCH_SIZE;
- #else // GGML_CUDA_FORCE_MMQ
- return 128;
- #endif // GGML_CUDA_FORCE_MMQ
- #else // __CUDA_ARCH__ >= CC_VOLTA
- return 64;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #endif // INT8_MMA_AVAILABLE
- }
- static constexpr int get_mmq_y_host(const int cc) {
- return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64);
- }
- static constexpr __device__ int get_mmq_y_device() {
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA1)
- return 64;
- #else
- return 128;
- #endif // defined RDNA1
- #else
- #if __CUDA_ARCH__ >= CC_VOLTA
- return 128;
- #else
- return 64;
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- #define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0}
- #define MMQ_DP4A_TXS_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0}
- #define MMQ_DP4A_TXS_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_0 + mmq_y/(QI8_0/2), 0}
- #define MMQ_DP4A_TXS_Q8_0_16 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*4/QI8_0 + mmq_y/(QI8_0/4), 0}
- #define MMQ_DP4A_TXS_Q8_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_1 + mmq_y/(QI8_1/2), 0}
- #define MMQ_DP4A_TXS_Q2_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE + mmq_y, 0}
- #define MMQ_DP4A_TXS_Q3_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y, mmq_y*WARP_SIZE/8 + mmq_y/8}
- #define MMQ_DP4A_TXS_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
- #define MMQ_DP4A_TXS_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
- #define MMQ_DP4A_TXS_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, mmq_y*WARP_SIZE/8 + mmq_y/8}
- static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) {
- return type == GGML_TYPE_Q4_0 ? MMQ_DP4A_TXS_Q4_0 :
- type == GGML_TYPE_Q4_1 ? MMQ_DP4A_TXS_Q4_1 :
- type == GGML_TYPE_Q5_0 ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_Q5_1 ? MMQ_DP4A_TXS_Q8_1 :
- type == GGML_TYPE_Q8_0 ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_Q2_K ? MMQ_DP4A_TXS_Q2_K :
- type == GGML_TYPE_Q3_K ? MMQ_DP4A_TXS_Q3_K :
- type == GGML_TYPE_Q4_K ? MMQ_DP4A_TXS_Q4_K :
- type == GGML_TYPE_Q5_K ? MMQ_DP4A_TXS_Q5_K :
- type == GGML_TYPE_Q6_K ? MMQ_DP4A_TXS_Q6_K :
- type == GGML_TYPE_IQ2_XXS ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_IQ2_XS ? MMQ_DP4A_TXS_Q8_0_16 :
- type == GGML_TYPE_IQ2_S ? MMQ_DP4A_TXS_Q8_0_16 :
- type == GGML_TYPE_IQ3_XXS ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_IQ3_S ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_IQ1_S ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_IQ4_XS ? MMQ_DP4A_TXS_Q8_0 :
- type == GGML_TYPE_IQ4_NL ? MMQ_DP4A_TXS_Q8_0 :
- tile_x_sizes{0, 0, 0};
- }
- #define MMQ_MMA_TILE_X_K_Q8_0 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4)
- #define MMQ_MMA_TILE_X_K_Q8_1 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4)
- #define MMQ_MMA_TILE_X_K_Q2_K (2*WARP_SIZE + WARP_SIZE + 4)
- #define MMQ_MMA_TILE_X_K_Q3_K (2*WARP_SIZE + WARP_SIZE/2 + 4)
- #define MMQ_MMA_TILE_X_K_Q6_K (2*WARP_SIZE + WARP_SIZE/QI6_K + WARP_SIZE/8 + 7)
- static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding.");
- static_assert(MMQ_MMA_TILE_X_K_Q8_1 % 8 == 4, "Wrong padding.");
- static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding.");
- static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding.");
- static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding.");
- static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) {
- return type == GGML_TYPE_Q4_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_Q4_1 ? MMQ_MMA_TILE_X_K_Q8_1 :
- type == GGML_TYPE_Q5_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_Q5_1 ? MMQ_MMA_TILE_X_K_Q8_1 :
- type == GGML_TYPE_Q8_0 ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_Q2_K ? MMQ_MMA_TILE_X_K_Q2_K :
- type == GGML_TYPE_Q3_K ? MMQ_MMA_TILE_X_K_Q3_K :
- type == GGML_TYPE_Q4_K ? MMQ_MMA_TILE_X_K_Q8_1 :
- type == GGML_TYPE_Q5_K ? MMQ_MMA_TILE_X_K_Q8_1 :
- type == GGML_TYPE_Q6_K ? MMQ_MMA_TILE_X_K_Q6_K :
- type == GGML_TYPE_IQ2_XXS ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_IQ2_XS ? MMQ_MMA_TILE_X_K_Q3_K :
- type == GGML_TYPE_IQ2_S ? MMQ_MMA_TILE_X_K_Q3_K :
- type == GGML_TYPE_IQ3_XXS ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_IQ3_S ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_IQ1_S ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_IQ4_XS ? MMQ_MMA_TILE_X_K_Q8_0 :
- type == GGML_TYPE_IQ4_NL ? MMQ_MMA_TILE_X_K_Q8_0 :
- 0;
- }
- #define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1)
- static int mmq_get_granularity_host(const int mmq_x, const int cc) {
- return int8_mma_available(cc) && mmq_x >= 48 ? 16 : 8;
- }
- #ifdef INT8_MMA_AVAILABLE
- static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) {
- return mmq_x >= 48 ? 16 : 8;
- }
- #else
- static constexpr __device__ int mmq_get_granularity_device(const int /* mmq_x */) {
- return 8;
- }
- #endif // INT8_MMA_AVAILABLE
- // ------------------------------------------------------------
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI4_0;
- const int kqsx = threadIdx.x % QI4_0;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx;
- const int qs0 = get_int_b2(bxi->qs, kqsx);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + 0] = __vsubss4((qs0 >> 0) & 0x0F0F0F0F, 0x08080808);
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + QI4_0] = __vsubss4((qs0 >> 4) & 0x0F0F0F0F, 0x08080808);
- #else
- x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
- int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
- #else
- x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_0*VDR_Q4_0_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
- int u[2*VDR_Q4_0_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
- u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_0)];
- }
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
- (&x_qs[i*(WARP_SIZE + 1) + k0/QR4_0], u,
- x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + k0/(QR4_0*QI4_0)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI4_1;
- const int kqsx = threadIdx.x % QI4_1;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx;
- const int qs0 = get_int_b4(bxi->qs, kqsx);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + 0] = (qs0 >> 0) & 0x0F0F0F0F;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + QI4_1] = (qs0 >> 4) & 0x0F0F0F0F;
- #else
- x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
- int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
- #else
- x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + kbxd] = bxi->dm;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_1*VDR_Q4_1_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2);
- int u[2*VDR_Q4_1_Q8_1_MMQ];
- #pragma unroll
- for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
- u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l];
- u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_1)];
- }
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
- (&x_qs[i*(WARP_SIZE + 1) + k0/QR4_1], u,
- x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + k0/(QR4_1*QI4_1)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI5_0;
- const int kqsx = threadIdx.x % QI5_0;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx;
- const int ql = get_int_b2(bxi->qs, kqsx);
- const int qh = get_int_b2(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0;
- x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1;
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
- int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
- #else
- x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + kbxd] = bxi->d;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI5_1;
- const int kqsx = threadIdx.x % QI5_1;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx;
- const int ql = get_int_b4(bxi->qs, kqsx);
- const int qh = get_int_b4(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1));
- int qs0 = (ql >> 0) & 0x0F0F0F0F;
- qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
- qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
- qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
- qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
- int qs1 = (ql >> 4) & 0x0F0F0F0F;
- qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
- qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
- qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
- qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0;
- x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1;
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
- int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm;
- #else
- x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + kbxd] = bxi->dm;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_tile + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI8_0;
- const int kqsx = threadIdx.x % QI8_0;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx);
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx);
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx);
- x_qs[i*(2*WARP_SIZE + 1) + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx);
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = 2*WARP_SIZE / QI8_0;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0/2) {
- int i = i0 + threadIdx.y * (QI8_0/2) + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d;
- #else
- x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + kbxd] = bxi->d;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
- (&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0 % WARP_SIZE],
- x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + (k0/QI8_1) % (WARP_SIZE/QI8_1)]);
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps, mmq_q8_1_ds_layout ds_layout>
- static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- typedef mma_int_A_I16K8 mma_A;
- typedef mma_int_B_J8K8 mma_B;
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + 2*WARP_SIZE;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- const half2 * y_ds = (const half2 *) y;
- mma_A A[ntx][WARP_SIZE/QI8_0];
- float dA[ntx][mma_C::ne/2][WARP_SIZE/QI8_0];
- const int i0 = (threadIdx.y/ntx)*rows_per_warp;
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
- const int k0 = k00 + k01;
- A[n][k01/QI8_0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0);
- }
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
- const int k0 = k00 + k01;
- dA[n][l][k01/QI8_0] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0];
- }
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
- mma_B B;
- float dB[mma_C::ne/2];
- B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) {
- dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
- } else {
- dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- mma_C C;
- C.mma_K8(A[n][k01/QI8_0], B);
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2];
- }
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q8_1_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
- (&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
- x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + k0/QI8_1], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- typedef mma_int_A_I16K8 mma_A;
- typedef mma_int_B_J8K8 mma_B;
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_dm = (const half2 *) y;
- mma_A A[ntx][WARP_SIZE/QI8_1];
- float2 dmA[ntx][mma_C::ne/2][WARP_SIZE/QI8_1];
- const int i0 = (threadIdx.y/ntx)*rows_per_warp;
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
- const int k0 = k00 + k01;
- A[n][k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1);
- }
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_A::I + mma_C::get_i(2*l);
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
- const int k0 = k00 + k01;
- dmA[n][l][k01/QI8_1] = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]);
- }
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
- mma_B B;
- float2 dsB[mma_C::ne/2];
- B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K);
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- mma_C C;
- C.mma_K8(A[n][k01/QI8_1], B);
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l];
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y;
- }
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_16_q8_1_impl<QI8_0>(
- &x_qs[i*(2*WARP_SIZE + 1) + k0],
- &y_qs[j*MMQ_TILE_Y_K + k01],
- &x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + k0/(QI8_0/2)],
- y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- #ifdef INT8_MMA_AVAILABLE
- typedef mma_int_A_I16K4 mma_A;
- typedef mma_int_A_I16K8 mma_A_K8;
- typedef mma_int_B_J8K4 mma_B;
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + WARP_SIZE*2;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
- mma_A A[ntx][8];
- float dA[ntx][mma_C::ne/2][8];
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
- const int k0 = k00 + k01;
- ((mma_A_K8 *) A[n])[k01/8].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K);
- }
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += 4) {
- const int k0 = k00 + k01;
- dA[n][l][k01/4] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4];
- }
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
- mma_B B[2];
- float dB[mma_C::ne/2];
- B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
- B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- mma_C C[2];
- C[0].mma_K4(A[n][k01/4 + 0], B[0]);
- C[1].mma_K4(A[n][k01/4 + 1], B[1]);
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]);
- }
- }
- }
- }
- #else
- GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
- NO_DEVICE_CODE;
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % QI2_K;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI2_K) {
- int i = i0 + threadIdx.y*(WARP_SIZE/QI2_K) + threadIdx.x/QI2_K;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride;
- const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
- #pragma unroll
- for (int l = 0; l < QR2_K; ++l) {
- const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
- const int x_qs_k = (x_ql_0 >> (2*l)) & 0x03030303;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k;
- #endif // INT8_MMA_AVAILABLE
- }
- const int sc_m = bxi->scales[kqsx];
- #ifdef FAST_FP16_AVAILABLE
- const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4));
- #else
- const float2 bxi_dmf = __half22float2(bxi->dm);
- const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4));
- #endif // FAST_FP16_AVAILABLE
- #ifdef INT8_MMA_AVAILABLE
- x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + kqsx] = x_dm_ik;
- #else
- x_dm[i*(WARP_SIZE + 1) + kqsx] = x_dm_ik;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + txs.qs;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- float2 y_df[mmq_x/nwarps];
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- y_df[j0/nwarps] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
- }
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (k01 < WARP_SIZE/2) {
- constexpr int ns = 2;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
- &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
- &x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
- &y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
- } else {
- constexpr int ns = 1;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq<ns>(
- &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01],
- &x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y,
- &y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
- }
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- #ifdef INT8_MMA_AVAILABLE
- typedef mma_int_A_I16K4 mma_A;
- typedef mma_int_A_I16K8 mma_A_K8;
- typedef mma_int_B_J8K4 mma_B;
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
- mma_A A[ntx][8];
- float dA[ntx][mma_C::ne/2][8];
- float mA[ntx][mma_C::ne/2][8];
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
- const int k0 = k00 + k01;
- ((mma_A_K8 *) A[n])[k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K);
- }
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1/2) {
- const int k0 = k00 + k01;
- const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/(QI8_1/2)]);
- dA[n][l][k01/(QI8_1/2)] = dm.x;
- mA[n][l][k01/(QI8_1/2)] = dm.y;
- }
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- float2 dB[mma_C::ne/2];
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]);
- }
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) {
- mma_B B[2];
- B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K);
- B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K);
- mma_C Cm[2];
- if (k01 >= WARP_SIZE * 3/4) {
- mma_A A1;
- A1.x[0] = 0x01010101;
- A1.x[1] = 0x01010101;
- Cm[0].mma_K4(A1, B[0]);
- Cm[1].mma_K4(A1, B[1]);
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- mma_C Cd[2];
- Cd[0].mma_K4(A[n][k01/4 + 0], B[0]);
- Cd[1].mma_K4(A[n][k01/4 + 1], B[1]);
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1];
- if (k01 >= WARP_SIZE * 3/4) {
- tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1];
- }
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y);
- }
- }
- }
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE * 3/4; k01 += QI8_1) {
- float2 sB[mma_C::ne/2];
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]);
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x;
- sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y;
- }
- }
- }
- }
- #else
- GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
- NO_DEVICE_CODE;
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- int * x_sc = (int *) (x_df + txs.dm);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % QI3_K;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI3_K) {
- int i = i0 + threadIdx.y * (WARP_SIZE/QI3_K) + threadIdx.x / QI3_K;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
- const int x_ql_0 = get_int_b2(bxi->qs, kqsx);
- const int x_qh_0 = get_int_b2(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2)));
- #pragma unroll
- for (int l = 0; l < QR3_K; ++l) {
- const int k = (kqsx/8)*32 + l*8 + kqsx % 8;
- const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303;
- const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404;
- const int x_qs_k = __vsubss4(x_ql_k | x_qh_k, 0x04040404);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k] = x_qs_k;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) {
- int i = i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
- const int ksc = threadIdx.x % (WARP_SIZE/8);
- const int ksc_low = ksc % (QI3_K/8);
- const int shift_low = 4 * (ksc / (QI3_K/8));
- const int sc_low = (get_int_b2(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
- const int ksc_high = QI3_K/8;
- const int shift_high = 2 * ksc;
- const int sc_high = ((get_int_b2(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
- const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
- #ifdef INT8_MMA_AVAILABLE
- const int8_t * sc8 = (const int8_t *) ≻
- const float d = bxi->d;
- #pragma unroll
- for (int l = 0; l < sizeof(int); ++l) {
- x_df[i*MMQ_MMA_TILE_X_K_Q3_K + sizeof(int)*(threadIdx.x % (WARP_SIZE/8)) + l] = d*sc8[l];
- }
- #else
- x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = sc;
- #endif // INT8_MMA_AVAILABLE
- }
- #ifndef INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*WARP_SIZE) {
- int i = (i0 + threadIdx.y*WARP_SIZE + threadIdx.x) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride;
- x_df[i] = bxi->d;
- }
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + txs.qs;
- const int * x_sc = (const int *) x_df + txs.dm;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const int8_t * scales = ((const int8_t *) (x_sc + i*(WARP_SIZE/8) + i/8)) + k0/4;
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq(
- &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], scales,
- x_df[i], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- static __device__ __forceinline__ int unpack_scales_q45_K(const int * scales, const int ksc) {
- // scale arrangement after the following two lines:
- // - ksc == 0: sc0, sc1, sc2, sc3
- // - ksc == 1: sc4, sc5, sc6, sc7
- // - ksc == 2: m0, m1, m2, m3
- // - ksc == 3: m4, m5, m6, m7
- return ((scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F) | // lower 4 bits
- ((scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030); // upper 2 bits
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + txs.qs);
- int * x_sc = (int *) (x_dm + txs.dm);
- #endif // INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
- const int qs0 = get_int_b4(bxi->qs, threadIdx.x);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 0] = (qs0 >> 0) & 0x0F0F0F0F;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 8] = (qs0 >> 4) & 0x0F0F0F0F;
- #else
- x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0;
- #endif // INT8_MMA_AVAILABLE
- }
- #ifdef INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) {
- int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
- const int * scales = (const int *) bxi->scales;
- const int ksc = threadIdx.x % (WARP_SIZE/16);
- const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
- const int m32 = unpack_scales_q45_K(scales, ksc + 2);
- const uint8_t * sc8 = (const uint8_t *) &sc32;
- const uint8_t * m8 = (const uint8_t *) &m32;
- const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
- #pragma unroll
- for (int l = 0; l < sizeof(int); ++l) {
- x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
- }
- }
- #else
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI4_K) {
- int i = (i0 + threadIdx.y*QI4_K + threadIdx.x) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride;
- x_dm[i] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8);
- const int * scales = (const int *) bxi->scales;
- const int ksc = threadIdx.x % (WARP_SIZE/8);
- const int scales8 = unpack_scales_q45_K(scales, ksc);
- x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8;
- }
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + txs.qs;
- const int * x_sc = (const int *) x_dm + txs.dm;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_K*VDR_Q4_K_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const uint8_t * sc = (const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/32] + 2*(k01/16);
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq(
- &x_qs[i*(WARP_SIZE + 1) + k0/2], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
- x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_dm = (half2 *) (x_qs + txs.qs);
- int * x_sc = (int *) (x_dm + txs.dm);
- #endif // INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
- const int ky = QR5_K*threadIdx.x;
- const int ql = get_int_b4(bxi->qs, threadIdx.x);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_b4(bxi->qh, threadIdx.x % (QI5_K/4));
- const int qh0 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 0)) << 4) & 0x10101010;
- const int qh1 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 1)) << 4) & 0x10101010;
- const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0;
- const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + QI5_K/4;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq0] = ql0 | qh0;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq1] = ql1 | qh1;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
- x_qs[i*(2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
- #endif // INT8_MMA_AVAILABLE
- }
- #ifdef INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) {
- int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
- const int * scales = (const int *) bxi->scales;
- const int ksc = threadIdx.x % (WARP_SIZE/16);
- const int sc32 = unpack_scales_q45_K(scales, ksc + 0);
- const int m32 = unpack_scales_q45_K(scales, ksc + 2);
- const uint8_t * sc8 = (const uint8_t *) &sc32;
- const uint8_t * m8 = (const uint8_t *) &m32;
- const half2 dm = bxi->dm * make_half2(1.0f, -1.0f);
- #pragma unroll
- for (int l = 0; l < sizeof(int); ++l) {
- x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]);
- }
- }
- #else
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI5_K) {
- int i = (i0 + threadIdx.y*QI5_K + threadIdx.x) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
- x_dm[i] = bxi->dm;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) {
- int i = (i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride;
- const int * scales = (const int *) bxi->scales;
- const int ksc = threadIdx.x % (WARP_SIZE/8);
- const int scales8 = unpack_scales_q45_K(scales, ksc);
- x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8;
- }
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y);
- const int * x_qs = (const int *) x;
- const half2 * x_dm = (const half2 *) x_qs + txs.qs;
- const int * x_sc = (const int *) x_dm + txs.dm;
- const int * y_qs = (const int *) y + 4;
- const half2 * y_ds = (const half2 *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR5_K*VDR_Q5_K_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k00/32]) + 2*(k01/16);
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq(
- &x_qs[i*(QR5_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8,
- x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- int * x_sc = (int *) (x_df + WARP_SIZE/QI6_K);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- int * x_sc = (int *) (x_df + txs.dm);
- #endif // INT8_MMA_AVAILABLE
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride;
- const int ql = get_int_b2(bxi->ql, threadIdx.x);
- const int ql0 = (ql >> 0) & 0x0F0F0F0F;
- const int ql1 = (ql >> 4) & 0x0F0F0F0F;
- const int qh = get_int_b2(bxi->qh, (QI6_K/4) * (threadIdx.x / (QI6_K/2)) + threadIdx.x % (QI6_K/4));
- const int qh0 = ((qh >> ((threadIdx.x & 0x08) >> 2)) << 4) & 0x30303030;
- const int qh1 = (qh >> ((threadIdx.x & 0x08) >> 2)) & 0x30303030;
- const int kq0 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + 0;
- const int kq1 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + QI6_K/2;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
- #else
- x_qs[i*(2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
- x_qs[i*(2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
- const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
- int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q6_K + kbxd] = bxi->d;
- #else
- x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + kbxd] = bxi->d;
- #endif // INT8_MMA_AVAILABLE
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
- int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4;
- #ifdef INT8_MMA_AVAILABLE
- x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8));
- #else
- x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8));
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + txs.qs;
- const int * x_sc = (const int *) x_df + txs.dm;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- // #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += QR6_K*VDR_Q6_K_Q8_1_MMQ) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]);
- sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq(
- &x_qs[i*(QR6_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc,
- x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + k01/QI8_1]);
- }
- }
- }
- }
- template <int mmq_x, int mmq_y, int nwarps>
- static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
- const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) {
- #ifdef INT8_MMA_AVAILABLE
- typedef mma_int_A_I16K4 mma_A;
- typedef mma_int_B_J8K4 mma_B;
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K);
- const int * x_qs = (const int *) x;
- const float * x_df = (const float *) x_qs + WARP_SIZE*2;
- const int * x_sc = (const int *) x_df + WARP_SIZE/QI6_K;
- const int * y_qs = (const int *) y + 4;
- const float * y_df = (const float *) y;
- const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I);
- mma_A A[ntx][8];
- int scA[ntx][mma_C::ne/2][8];
- float dA[ntx][mma_C::ne/2];
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
- const int k0 = k00 + k01;
- A[n][k01/4 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K);
- A[n][k01/4 + 1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K);
- }
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += 16) {
- const int k0 = k00 + k01;
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
- const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16];
- const int8_t * sc = (const int8_t *) &sc_packed;
- #pragma unroll
- for (int ksc = 0; ksc < sizeof(int); ++ksc) {
- scA[n][l][k01/4 + ksc] = sc[ksc];
- }
- }
- }
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int i = i0 + n*mma_C::I + mma_C::get_i(2*l);
- dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K];
- }
- }
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- float tmp[ntx][mma_C::ne] = {{0.0f}};
- #pragma unroll
- for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) {
- mma_B B[2];
- float dB[mma_C::ne/2];
- B[0].load(y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K);
- B[1].load(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k01, MMQ_TILE_Y_K);
- #pragma unroll
- for (int l = 0; l < mma_C::ne/2; ++l) {
- const int j = j0 + mma_C::get_j(l);
- dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1];
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- mma_C C[2];
- C[0].mma_K4(A[n][k01/4 + 0], B[0]);
- C[1].mma_K4(A[n][k01/4 + 1], B[1]);
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2];
- }
- }
- }
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2];
- }
- }
- }
- #else
- GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum);
- NO_DEVICE_CODE;
- #endif // INT8_MMA_AVAILABLE
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_nl(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_NL, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = threadIdx.x / QI4_NL;
- const int kqsx = threadIdx.x % QI4_NL;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx;
- const int aux_q4 = get_int_b2(bxi->qs, kqsx);
- const int2 v = get_int_from_table_16(aux_q4);
- const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x;
- x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y;
- #endif // INT8_MMA_AVAILABLE
- }
- const int blocks_per_tile_x_row = WARP_SIZE / QI4_NL;
- const int kbxd = threadIdx.x % blocks_per_tile_x_row;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_NL) {
- int i = i0 + threadIdx.y * QI4_NL + threadIdx.x / blocks_per_tile_x_row;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbxd;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = __half2float(bxi->d);
- #else
- x_df[i*(WARP_SIZE/4) + i/4 + kbxd] = __half2float(bxi->d);
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xxs(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_XXS, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % (QI2_XXS/2);
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XXS/2)) {
- int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XXS) + threadIdx.x/(QI2_XXS/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq2_xxs * bxi = (const block_iq2_xxs *) x + kbx0 + i*stride;
- const int q2 = get_int_b2(bxi->qs, 2*kqsx+0);
- const uint8_t * aux8 = (const uint8_t *) &q2;
- const uint32_t aux32 = get_int_b2(bxi->qs, 2*kqsx+1);
- #pragma unroll
- for (int l = 0; l < QR2_XXS; ++l) {
- const int * grid_pos = (const int *) (iq2xxs_grid + aux8[l]);
- const int signs_packed = ksigns_iq2xs[(aux32 >> (7*l)) & 0x7F];
- const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000);
- const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0);
- const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000);
- const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid0;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid1;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid0;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid1;
- #endif // INT8_MMA_AVAILABLE
- }
- const int ls = aux32 >> 28;
- const float d = bxi->d;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/4;
- #else
- x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/4;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_xs(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16;
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % (QI2_XS/2);
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XS/2)) {
- int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XS) + threadIdx.x/(QI2_XS/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq2_xs * bxi = (const block_iq2_xs *) x + kbx0 + i*stride;
- const int2 q2_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
- const uint16_t * q2 = (const uint16_t *) &q2_packed;
- #pragma unroll
- for (int l = 0; l < QR2_XS; ++l) {
- const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l] & 0x000001FF));
- const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
- const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
- #endif // INT8_MMA_AVAILABLE
- }
- const int ls = bxi->scales[kqsx];
- const float d = bxi->d;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
- x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
- #else
- x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
- x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq2_s(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_S, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % (QI2_S/2);
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_S/2)) {
- int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_S) + threadIdx.x/(QI2_S/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq2_s * bxi = (const block_iq2_s *) x + kbx0 + i*stride;
- const int qs_packed = get_int_b2(bxi->qs, kqsx);
- const uint8_t * qs = (const uint8_t *) &qs_packed;
- const int qh = bxi->qh[kqsx];
- const int signs_packed_32 = get_int_b2(bxi->qs, QK_K/32 + kqsx);
- const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
- #pragma unroll
- for (int l = 0; l < QR2_S; ++l) {
- const int * grid_pos = (const int *)(iq2s_grid + (qs[l] | ((qh << (8-2*l)) & 0x300)));
- const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
- const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
- const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0);
- const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
- #endif // INT8_MMA_AVAILABLE
- }
- const int ls = bxi->scales[kqsx];
- const float d = bxi->d;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
- x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
- #else
- x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4;
- x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_xxs(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_XXS, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % (QI3_XXS/2);
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_XXS/2)) {
- int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_XXS) + threadIdx.x/(QI3_XXS/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq3_xxs * bxi = (const block_iq3_xxs *) x + kbx0 + i*stride;
- const int2 q3_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
- const uint8_t * q3 = (const uint8_t *) &q3_packed;
- const uint32_t aux32 = get_int_b2(bxi->qs, QK_K/16 + kqsx);
- #pragma unroll
- for (int l = 0; l < QR3_XXS; ++l) {
- const int2 grid_pos = make_int2(iq3xxs_grid[q3[2*l+0]], iq3xxs_grid[q3[2*l+1]]);
- const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l)) & 0x7F));
- const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]);
- const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid_h;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h;
- #endif // INT8_MMA_AVAILABLE
- }
- const int ls = aux32 >> 28;
- const float d = bxi->d;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/2;
- #else
- x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/2;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq3_s(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % (QI3_S/2);
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_S/2)) {
- int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_S) + threadIdx.x/(QI3_S/2);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq3_s * bxi = (const block_iq3_s *) x + kbx0 + i*stride;
- const int2 qs_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1));
- const uint8_t * qs = (const uint8_t *) &qs_packed;
- const int qh = bxi->qh[kqsx];
- const int signs_packed_32 = get_int_b2(bxi->signs, kqsx);
- const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32;
- #pragma unroll
- for (int l = 0; l < QR3_S; ++l) {
- const int2 grid_pos = make_int2(
- iq3s_grid[qs[2*l+0] | ((qh << (8 - 2*l)) & 0x100)],
- iq3s_grid[qs[2*l+1] | ((qh << (7 - 2*l)) & 0x100)]);
- const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000);
- const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000);
- const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0);
- const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1);
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+0)] = grid_l;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+1)] = grid_h;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid_l;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid_h;
- #endif // INT8_MMA_AVAILABLE
- }
- const int ls = 1 + 2*((bxi->scales[kqsx/2] >> (((2*kqsx) << 1) & 0x04)) & 0x0F);
- const float d = bxi->d;
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = ls*d;
- #else
- x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = ls*d;
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq1_s(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- half2 * x_ds = (half2 *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y);
- int * x_qs = (int *) x_tile;
- half2 * x_ds = (half2 *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kqsx = threadIdx.x % QI1_S;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI1_S) {
- int i = i0 + threadIdx.y*(WARP_SIZE/QI1_S) + threadIdx.x/QI1_S;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq1_s * bxi = (const block_iq1_s *) x + kbx0 + i*stride;
- const int qs_packed = get_int_b2(bxi->qs, kqsx);
- const uint8_t * qs = (const uint8_t *) &qs_packed;
- const int qh = bxi->qh[kqsx];
- #pragma unroll
- for (int l = 0; l < QR1_S/2; ++l) {
- const int grid = iq1s_grid_gpu[qs[l] | (((qh >> (3*l)) & 0x07) << 8)];
- const int grid0 = (grid >> 0) & 0x0F0F0F0F;
- const int grid1 = (grid >> 4) & 0x0F0F0F0F;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+0)] = grid0;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+1)] = grid1;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid0;
- x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid1;
- #endif // INT8_MMA_AVAILABLE
- }
- const float d1q = __half2float(bxi->d) * (((qh >> 11) & 0x0E) + 1);
- const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000);
- #ifdef INT8_MMA_AVAILABLE
- x_ds[i*MMQ_MMA_TILE_X_K_Q8_1 + kqsx] = make_half2(d1q, d1q*delta);
- #else
- x_ds[i*(WARP_SIZE/4) + i/4 + kqsx] = make_half2(d1q, d1q*delta);
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_iq4_xs(
- const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) {
- #ifdef INT8_MMA_AVAILABLE
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + WARP_SIZE*2);
- #else
- constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_XS, mmq_y);
- int * x_qs = (int *) x_tile;
- float * x_df = (float *) (x_qs + txs.qs);
- #endif // INT8_MMA_AVAILABLE
- const int kbx = 0; // threadIdx.x / QI4_XS
- const int kqsx = threadIdx.x; // threadIdx.x % QI4_XS
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
- int i = i0 + threadIdx.y;
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride + kbx;
- const int aux_q4 = get_int_b4(bxi->qs, kqsx);
- const int2 v = get_int_from_table_16(aux_q4);
- const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4;
- #ifdef INT8_MMA_AVAILABLE
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x;
- x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y;
- #else
- x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x;
- x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y;
- #endif // INT8_MMA_AVAILABLE
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
- int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4);
- if (need_check) {
- i = min(i, i_max);
- }
- const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride;
- const float d = __half2float(bxi->d);
- const int ls = ((bxi->scales_l[(threadIdx.x % 8)/2] >> (4*(threadIdx.x % 2))) & 0x0F)
- | (((bxi->scales_h >> (2*(threadIdx.x % 8))) & 0x03) << 4);
- #ifdef INT8_MMA_AVAILABLE
- x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x % 8] = d * (ls - 32);
- #else
- x_df[i*(WARP_SIZE/4) + i/4 + threadIdx.x % 8] = d * (ls - 32);
- #endif // INT8_MMA_AVAILABLE
- }
- }
- template<int mmq_x, int mmq_y, int nwarps, bool need_check>
- static __device__ __forceinline__ void mmq_write_back_dp4a(
- const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- if (j > j_max) {
- return;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (need_check && i > i_max) {
- continue;
- }
- dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
- }
- }
- }
- template<int mmq_x, int mmq_y, int nwarps, bool need_check>
- static __device__ __forceinline__ void mmq_write_back_mma(
- const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) {
- typedef mma_int_C_I16J8 mma_C;
- constexpr int granularity = mmq_get_granularity_device(mmq_x);
- constexpr int rows_per_warp = 2 * granularity;
- constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp.
- const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I);
- #ifdef INT8_MMA_AVAILABLE
- static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y");
- #endif // INT8_MMA_AVAILABLE
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) {
- #pragma unroll
- for (int n = 0; n < ntx; ++n) {
- #pragma unroll
- for (int l = 0; l < mma_C::ne; ++l) {
- const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l);
- if (j > j_max) {
- continue;
- }
- const int i = i0 + n*mma_C::I + mma_C::get_i(l);
- if (need_check && i > i_max) {
- continue;
- }
- dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l];
- }
- }
- }
- }
- // -------------------------------------------------------------------------------------------------------------------------------------
- template <int mmq_x, int mmq_y, int nwarps, bool need_check, ggml_type type>
- struct mmq_type_traits;
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_0> {
- static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_DS4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_1> {
- static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_0> {
- static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_1> {
- static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q8_0> {
- static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q2_K> {
- static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q3_K> {
- static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q4_K> {
- static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q5_K> {
- static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_Q6_K> {
- static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XXS> {
- static constexpr int vdr = VDR_IQ2_XXS_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xxs<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_XS> {
- static constexpr int vdr = VDR_IQ2_XS_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xs<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ2_S> {
- static constexpr int vdr = VDR_IQ2_S_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_s<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_XXS> {
- static constexpr int vdr = VDR_IQ3_XXS_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_xxs<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ3_S> {
- static constexpr int vdr = VDR_IQ3_S_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_s<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ1_S> {
- static constexpr int vdr = VDR_IQ1_S_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma<mmq_x, mmq_y, nwarps>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_NL> {
- static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_nl<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <int mmq_x, int mmq_y, int nwarps, bool need_check>
- struct mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, GGML_TYPE_IQ4_XS> {
- static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ;
- static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_xs<mmq_y, nwarps, need_check>;
- static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma<mmq_x, mmq_y, nwarps, MMQ_Q8_1_DS_LAYOUT_D4>;
- static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a<mmq_x, mmq_y, nwarps>;
- };
- template <ggml_type type, int mmq_x, int nwarps, bool need_check, bool fixup>
- static __device__ void mul_mat_q_process_tile(
- const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
- const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0,
- const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) {
- constexpr int qk = ggml_cuda_type_traits<type>::qk;
- constexpr int mmq_y = get_mmq_y_device();
- constexpr load_tiles_mmq_t load_tiles = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::load_tiles;
- extern __shared__ char data_mul_mat_q[];
- int * tile_y = (int *) data_mul_mat_q;
- int * tile_x = tile_y + GGML_PAD(mmq_x*(WARP_SIZE + WARP_SIZE/QI8_1), nwarps*WARP_SIZE);
- #ifdef INT8_MMA_AVAILABLE
- constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_mma;
- constexpr mmq_write_back_t write_back = mmq_write_back_mma<mmq_x, mmq_y, nwarps, need_check>;
- #else
- constexpr vec_dot_mmq_t vec_dot = mmq_type_traits<mmq_x, mmq_y, nwarps, need_check, type>::vec_dot_dp4a;
- constexpr mmq_write_back_t write_back = mmq_write_back_dp4a<mmq_x, mmq_y, nwarps, need_check>;
- #endif // INT8_MMA_AVAILABLE
- constexpr int blocks_per_iter = MMQ_ITER_K / qk;
- float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
- const int tile_x_max_i = ne01 - it*mmq_y - 1;
- const int tile_y_max_j = ne11 - jt*mmq_x - 1;
- const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int));
- for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_iter) {
- load_tiles(x, tile_x, stride01*it*mmq_y + kb0, tile_x_max_i, stride01);
- {
- const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 0*sizeof(block_q8_1_mmq)/sizeof(int));
- #pragma unroll
- for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) {
- int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x;
- tile_y[l] = by0[l];
- }
- }
- __syncthreads();
- vec_dot(tile_x, tile_y, sum, 0);
- __syncthreads();
- {
- const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 1*sizeof(block_q8_1_mmq)/sizeof(int));
- #pragma unroll
- for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) {
- int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x;
- tile_y[l] = by0[l];
- }
- }
- __syncthreads();
- vec_dot(tile_x, tile_y, sum, WARP_SIZE);
- __syncthreads();
- }
- if (fixup) {
- write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x);
- } else {
- write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j);
- }
- }
- // The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598
- template <ggml_type type, int mmq_x, int nwarps, bool need_check>
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- #if defined(RDNA3) || defined(RDNA2)
- __launch_bounds__(WARP_SIZE*nwarps, 2)
- #endif // defined(RDNA3) || defined(RDNA2)
- #else
- #if __CUDA_ARCH__ >= CC_VOLTA
- __launch_bounds__(WARP_SIZE*nwarps, 1)
- #else
- __launch_bounds__(WARP_SIZE*nwarps, 2)
- #endif // __CUDA_ARCH__ >= CC_VOLTA
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- static __global__ void mul_mat_q(
- const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup,
- const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) {
- // Skip unused template specializations for faster compilation:
- if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) {
- NO_DEVICE_CODE;
- return;
- }
- constexpr int qk = ggml_cuda_type_traits<type>::qk;
- constexpr int mmq_y = get_mmq_y_device();
- // On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead:
- #if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
- {
- constexpr bool fixup = false;
- mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
- (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
- blockIdx.x, blockIdx.y, 0, ne00/qk);
- return;
- }
- #endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA
- const int64_t blocks_per_ne00 = ne00 / qk;
- constexpr int blocks_per_iter = MMQ_ITER_K / qk;
- const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x
- const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y
- // kbc == k block continuous, current index in continuous ijk space.
- int64_t kbc = (int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x;
- int64_t kbc_stop = (int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x;
- kbc -= (kbc % blocks_per_ne00) % blocks_per_iter;
- kbc_stop -= (kbc_stop % blocks_per_ne00) % blocks_per_iter;
- // kb0 == k index when doing the matrix multiplication for an output tile.
- int kb0_start = kbc % blocks_per_ne00;
- int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc);
- while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) {
- const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile.
- const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile.
- constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer.
- mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
- (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
- it, jt, kb0_start, kb0_stop);
- kbc += blocks_per_ne00;
- kbc -= kbc % blocks_per_ne00;
- kb0_start = 0;
- kb0_stop = min(blocks_per_ne00, kbc_stop - kbc);
- }
- if (kbc >= kbc_stop) {
- return;
- }
- const int jt = kbc / (blocks_per_ne00*nty);
- const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
- constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks.
- mul_mat_q_process_tile<type, mmq_x, nwarps, need_check, fixup>
- (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0,
- it, jt, kb0_start, kb0_stop);
- }
- template <ggml_type type, int mmq_x, int nwarps, bool need_check>
- static __global__ void mul_mat_q_stream_k_fixup(
- float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) {
- constexpr int mmq_y = get_mmq_y_device();
- constexpr int qk = ggml_cuda_type_traits<type>::qk;
- constexpr int blocks_per_iter = MMQ_ITER_K / qk;
- const int64_t blocks_per_ne00 = ne00 / qk;
- float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f};
- const int ntx = (ne11 + mmq_x - 1) / mmq_x;
- const int nty = (ne01 + mmq_y - 1) / mmq_y;
- bool any_fixup = false;
- const int bidx_start = ((blockIdx.y*nty + blockIdx.x) * block_num_mmq) / (gridDim.y*gridDim.x);
- const int bidx_stop = ((blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq + gridDim.y*gridDim.x - 1) / (gridDim.y*gridDim.x);
- int64_t kbc_0;
- int64_t kbc_stop_0 = (int64_t) bidx_start*blocks_per_ne00*ntx*nty / block_num_mmq;
- for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) {
- kbc_0 = kbc_stop_0;
- kbc_stop_0 = (int64_t) (bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq;
- const int64_t kbc = kbc_0 - (kbc_0 % blocks_per_ne00) % blocks_per_iter;
- const int64_t kbc_stop = kbc_stop_0 - (kbc_stop_0 % blocks_per_ne00) % blocks_per_iter;
- // Skip fixup tile if the MMQ CUDA block never wrote anything to it:
- if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) {
- continue;
- }
- const int jt = kbc_stop / (blocks_per_ne00*nty);
- const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00;
- // Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block:
- if (it != blockIdx.x || jt != blockIdx.y) {
- continue;
- }
- any_fixup = true;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i];
- }
- }
- }
- if (!any_fixup) {
- return;
- }
- dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y;
- const int i_max = ne01 - blockIdx.x*mmq_y - 1;
- const int j_max = ne11 - blockIdx.y*mmq_x - 1;
- #pragma unroll
- for (int j0 = 0; j0 < mmq_x; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
- if (j > j_max) {
- return;
- }
- #pragma unroll
- for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (need_check && i > i_max) {
- continue;
- }
- dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE];
- }
- }
- }
- struct mmq_args {
- const char * x; const char * y; float * dst;
- int64_t ne00; int64_t ne01; int64_t stride01;
- int64_t ne10; int64_t ne11; int64_t stride11;
- int64_t ne0;
- };
- template<ggml_type type>
- static int mmq_get_shmem(const int mmq_x, const int mmq_y, const int cc) {
- const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y);
- const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type);
- const int shmem_x = int8_mma_available(cc) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int);
- const int shmem_y = mmq_x*sizeof(block_q8_1_mmq);
- return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int));
- }
- template <ggml_type type, int mmq_x>
- static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
- const int id = ggml_cuda_get_device();
- const int cc = ggml_cuda_info().devices[id].cc;
- const int nsm = ggml_cuda_info().devices[id].nsm;
- const int mmq_y = get_mmq_y_host(cc);
- const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1);
- const int shmem = mmq_get_shmem<type>(mmq_x, mmq_y, cc);
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
- if (!shmem_limit_raised[id]) {
- CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, false>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
- CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q<type, mmq_x, MMQ_NWARPS, true>, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem));
- shmem_limit_raised[id] = true;
- }
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- const int nty = (args.ne01 + mmq_y - 1) / mmq_y;
- const int ntx = (args.ne11 + mmq_x - 1) / mmq_x;
- const dim3 block_nums_xy_tiling(nty, ntx, 1);
- const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
- if (!use_stream_k) {
- if (args.ne01 % mmq_y == 0) {
- constexpr bool need_check = false;
- mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
- (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
- } else {
- constexpr bool need_check = true;
- mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, shmem, stream>>>
- (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
- }
- return;
- }
- const dim3 block_nums_mmq(nsm, 1, 1);
- ggml_cuda_pool & pool = ctx.pool(id);
- ggml_cuda_pool_alloc<float> tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y);
- if (args.ne01 % mmq_y == 0) {
- constexpr bool need_check = false;
- mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
- (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
- mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
- (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
- } else {
- constexpr bool need_check = true;
- mul_mat_q<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_mmq, block_dims, shmem, stream>>>
- (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0);
- mul_mat_q_stream_k_fixup<type, mmq_x, MMQ_NWARPS, need_check><<<block_nums_xy_tiling, block_dims, 0, stream>>>
- (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x);
- }
- }
- template <ggml_type type>
- void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
- const int id = ggml_cuda_get_device();
- const int nsm = ggml_cuda_info().devices[id].nsm;
- const int cc = ggml_cuda_info().devices[id].cc;
- const int smpbo = ggml_cuda_info().devices[id].smpbo;
- const int mmq_x_max = get_mmq_x_max_host(cc);
- const int mmq_y = get_mmq_y_host(cc);
- const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y;
- const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD;
- int mmq_x_best = 0;
- int nparts_best = INT_MAX;
- for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) {
- const int granularity = mmq_get_granularity_host(mmq_x, cc);
- if (mmq_x % granularity != 0 || mmq_get_shmem<type>(mmq_x, mmq_y, cc) > smpbo) {
- continue;
- }
- const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x;
- const int nwaves_xy_tiling = ntiles_x*block_num_y;
- const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling;
- if (nparts < nparts_best) {
- mmq_x_best = mmq_x;
- nparts_best = nparts;
- }
- }
- switch (mmq_x_best) {
- case 8:
- launch_mul_mat_q<type, 8>(ctx, args, stream);
- break;
- case 16:
- launch_mul_mat_q<type, 16>(ctx, args, stream);
- break;
- case 24:
- launch_mul_mat_q<type, 24>(ctx, args, stream);
- break;
- case 32:
- launch_mul_mat_q<type, 32>(ctx, args, stream);
- break;
- case 40:
- launch_mul_mat_q<type, 40>(ctx, args, stream);
- break;
- case 48:
- launch_mul_mat_q<type, 48>(ctx, args, stream);
- break;
- case 56:
- launch_mul_mat_q<type, 56>(ctx, args, stream);
- break;
- case 64:
- launch_mul_mat_q<type, 64>(ctx, args, stream);
- break;
- case 72:
- launch_mul_mat_q<type, 72>(ctx, args, stream);
- break;
- case 80:
- launch_mul_mat_q<type, 80>(ctx, args, stream);
- break;
- case 88:
- launch_mul_mat_q<type, 88>(ctx, args, stream);
- break;
- case 96:
- launch_mul_mat_q<type, 96>(ctx, args, stream);
- break;
- case 104:
- launch_mul_mat_q<type, 104>(ctx, args, stream);
- break;
- case 112:
- launch_mul_mat_q<type, 112>(ctx, args, stream);
- break;
- case 120:
- launch_mul_mat_q<type, 120>(ctx, args, stream);
- break;
- case 128:
- launch_mul_mat_q<type, 128>(ctx, args, stream);
- break;
- default:
- fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best);
- GGML_ABORT("fatal error");
- break;
- }
- }
- #define DECL_MMQ_CASE(type) \
- template void mul_mat_q_case<type>(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \
- extern DECL_MMQ_CASE(GGML_TYPE_Q4_0);
- extern DECL_MMQ_CASE(GGML_TYPE_Q4_1);
- extern DECL_MMQ_CASE(GGML_TYPE_Q5_0);
- extern DECL_MMQ_CASE(GGML_TYPE_Q5_1);
- extern DECL_MMQ_CASE(GGML_TYPE_Q8_0);
- extern DECL_MMQ_CASE(GGML_TYPE_Q2_K);
- extern DECL_MMQ_CASE(GGML_TYPE_Q3_K);
- extern DECL_MMQ_CASE(GGML_TYPE_Q4_K);
- extern DECL_MMQ_CASE(GGML_TYPE_Q5_K);
- extern DECL_MMQ_CASE(GGML_TYPE_Q6_K);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XS);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ2_S);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ3_S);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ4_NL);
- extern DECL_MMQ_CASE(GGML_TYPE_IQ4_XS);
- // -------------------------------------------------------------------------------------------------------------------------
- void ggml_cuda_op_mul_mat_q(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);
- bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);
|