123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "mmvq.cuh"
- #include "vecdotq.cuh"
- typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
- static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
- return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
- type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
- type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
- type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
- type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
- type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
- type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
- type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
- type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
- type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
- type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
- type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
- type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
- type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
- type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
- type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
- type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
- type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
- type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
- nullptr;
- }
- static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
- return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
- type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
- type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
- type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
- type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ :
- type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ :
- type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ :
- type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ :
- type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ :
- type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ :
- type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ :
- 1;
- }
- template <ggml_type type, int ncols_y>
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- // tell the compiler to use as many registers as it wants, see nwarps definition below
- __launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
- static __global__ void mul_mat_vec_q(
- const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
- constexpr int qk = ggml_cuda_type_traits<type>::qk;
- constexpr int qi = ggml_cuda_type_traits<type>::qi;
- constexpr int vdr = get_vdr_mmvq(type);
- constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
- constexpr int nwarps = 1;
- constexpr int rows_per_cuda_block = 1;
- #else
- constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
- constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- const int row0 = rows_per_cuda_block*blockIdx.x;
- const int blocks_per_row_x = ncols_x / qk;
- const int blocks_per_col_y = nrows_y / QK8_1;
- constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
- // partial sum for each thread
- float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
- const block_q8_1 * y = (const block_q8_1 *) vy;
- for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
- const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
- // x block quant index when casting the quants to int
- const int kqs = vdr * (tid % (qi/vdr));
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
- }
- }
- }
- __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
- if (threadIdx.y > 0) {
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
- }
- }
- }
- __syncthreads();
- if (threadIdx.y > 0) {
- return;
- }
- // sum up partial sums and write back result
- #pragma unroll
- for (int j = 0; j < ncols_y; ++j) {
- #pragma unroll
- for (int i = 0; i < rows_per_cuda_block; ++i) {
- #pragma unroll
- for (int l = 0; l < nwarps-1; ++l) {
- tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
- }
- tmp[j][i] = warp_reduce_sum(tmp[j][i]);
- }
- if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
- dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
- }
- }
- }
- template <ggml_type type>
- static void mul_mat_vec_q_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
- GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
- int id = ggml_cuda_get_device();
- int64_t nwarps = 1;
- int64_t rows_per_cuda_block = 1;
- if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
- switch(ncols_y) {
- case 1:
- nwarps = 4;
- rows_per_cuda_block = 1;
- break;
- case 2:
- case 3:
- case 4:
- nwarps = 4;
- rows_per_cuda_block = 2;
- break;
- case 5:
- case 6:
- case 7:
- case 8:
- nwarps = 2;
- rows_per_cuda_block = 2;
- break;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- }
- const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
- const dim3 block_nums(nblocks, 1, 1);
- const dim3 block_dims(WARP_SIZE, nwarps, 1);
- switch (ncols_y) {
- case 1:
- mul_mat_vec_q<type, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 2:
- mul_mat_vec_q<type, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 3:
- mul_mat_vec_q<type, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 4:
- mul_mat_vec_q<type, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 5:
- mul_mat_vec_q<type, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 6:
- mul_mat_vec_q<type, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 7:
- mul_mat_vec_q<type, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- case 8:
- mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
- break;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- }
- static void mul_mat_vec_q4_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q4_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q5_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q5_1_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q8_0_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q2_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q3_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q4_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q5_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_q6_K_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq2_xxs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq2_xs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq2_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq3_xxs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq1_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq1_m_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq4_nl_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq4_xs_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- static void mul_mat_vec_iq3_s_q8_1_cuda(
- const void * vx, const void * vy, float * dst,
- const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
- mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
- }
- void ggml_cuda_op_mul_mat_vec_q(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- const int64_t ne00 = src0->ne[0];
- const int64_t row_diff = row_high - row_low;
- const int64_t ne10 = src1->ne[0];
- GGML_ASSERT(ne10 % QK8_1 == 0);
- const int64_t ne0 = dst->ne[0];
- int id = ggml_cuda_get_device();
- // the main device has a larger memory buffer to hold the results from all GPUs
- // nrows_dst == nrows of the matrix that the kernel writes into
- const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_1:
- mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_0:
- mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_1:
- mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q8_0:
- mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q2_K:
- mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q3_K:
- mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q4_K:
- mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q5_K:
- mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_Q6_K:
- mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XXS:
- mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_XS:
- mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ2_S:
- mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_XXS:
- mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_S:
- mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ1_M:
- mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_NL:
- mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ4_XS:
- mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- case GGML_TYPE_IQ3_S:
- mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
- break;
- default:
- GGML_ABORT("fatal error");
- break;
- }
- GGML_UNUSED(src1);
- GGML_UNUSED(dst);
- GGML_UNUSED(src1_ddf_i);
- GGML_UNUSED(src1_ncols);
- GGML_UNUSED(src1_padded_row_size);
- }
|