123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- /**
- * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "common.cuh"
- #include "softmax.cuh"
- template <typename T>
- static __device__ __forceinline__ float t2f32(T val) {
- return (float) val;
- }
- template <>
- __device__ float __forceinline__ t2f32<half>(half val) {
- return __half2float(val);
- }
- template <bool vals_smem, int ncols_template, int block_size_template, typename T>
- static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
- const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
- const int tid = threadIdx.x;
- const int rowx = blockIdx.x;
- const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
- const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
- const int warp_id = threadIdx.x / WARP_SIZE;
- const int lane_id = threadIdx.x % WARP_SIZE;
- const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
- extern __shared__ float data_soft_max_f32[];
- float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
- // shared memory buffer to cache values between iterations:
- float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
- float max_val = -INFINITY;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const int64_t ix = (int64_t)rowx*ncols + col;
- const int64_t iy = (int64_t)rowy*ncols + col;
- const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
- vals[col] = val;
- max_val = max(max_val, val);
- }
- // find the max value in the block
- max_val = warp_reduce_max(max_val);
- if (block_size > WARP_SIZE) {
- if (warp_id == 0) {
- buf_iw[lane_id] = -INFINITY;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf_iw[warp_id] = max_val;
- }
- __syncthreads();
- max_val = buf_iw[lane_id];
- max_val = warp_reduce_max(max_val);
- }
- float tmp = 0.0f; // partial sum
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- break;
- }
- const float val = expf(vals[col] - max_val);
- tmp += val;
- vals[col] = val;
- }
- // find the sum of exps in the block
- tmp = warp_reduce_sum(tmp);
- if (block_size > WARP_SIZE) {
- __syncthreads();
- if (warp_id == 0) {
- buf_iw[lane_id] = 0.0f;
- }
- __syncthreads();
- if (lane_id == 0) {
- buf_iw[warp_id] = tmp;
- }
- __syncthreads();
- tmp = buf_iw[lane_id];
- tmp = warp_reduce_sum(tmp);
- }
- const float inv_sum = 1.0f / tmp;
- #pragma unroll
- for (int col0 = 0; col0 < ncols; col0 += block_size) {
- const int col = col0 + tid;
- if (ncols_template == 0 && col >= ncols) {
- return;
- }
- const int64_t idst = (int64_t)rowx*ncols + col;
- dst[idst] = vals[col] * inv_sum;
- }
- }
- template<typename T>
- static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
- int nth = WARP_SIZE;
- while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
- const dim3 block_dims(nth, 1, 1);
- const dim3 block_nums(nrows_x, 1, 1);
- const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
- static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
- const uint32_t n_head = nrows_x/nrows_y;
- const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- // FIXME: this limit could be raised by ~2-4x on Ampere or newer
- if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
- switch (ncols_x) {
- case 32:
- soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 64:
- soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 128:
- soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 256:
- soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 512:
- soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 1024:
- soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 2048:
- soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- case 4096:
- soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- default:
- soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- break;
- }
- } else {
- const size_t shmem_low = WARP_SIZE*sizeof(float);
- soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
- }
- }
- void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const float * src0_d = (const float *)src0->data;
- const void * src1_d = src1 ? (const void *)src1->data : nullptr;
- float * dst_d = (float *)dst->data;
- cudaStream_t stream = ctx.stream();
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
- const int64_t ne00 = src0->ne[0];
- const int64_t nrows_x = ggml_nrows(src0);
- const int64_t nrows_y = src0->ne[1];
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- if (use_f16) {
- const half * src1_dd = (const half *)src1_d;
- soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
- } else {
- const float * src1_dd = (const float *)src1_d;
- soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
- }
- }
|