sumrows.cu 2.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. /**
  2. * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "sumrows.cuh"
  27. static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
  28. const int row = blockIdx.x;
  29. const int col = threadIdx.x;
  30. float sum = 0.0f;
  31. for (int i = col; i < ncols; i += blockDim.x) {
  32. sum += x[row * ncols + i];
  33. }
  34. sum = warp_reduce_sum(sum);
  35. if (col == 0) {
  36. dst[row] = sum;
  37. }
  38. }
  39. void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
  40. const dim3 block_dims(WARP_SIZE, 1, 1);
  41. const dim3 block_nums(nrows, 1, 1);
  42. k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
  43. }
  44. void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  45. const ggml_tensor * src0 = dst->src[0];
  46. const float * src0_d = (const float *)src0->data;
  47. float * dst_d = (float *)dst->data;
  48. cudaStream_t stream = ctx.stream();
  49. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  50. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  51. GGML_ASSERT(ggml_is_contiguous(src0));
  52. const int64_t ncols = src0->ne[0];
  53. const int64_t nrows = ggml_nrows(src0);
  54. sum_rows_f32_cuda(src0_d, dst_d, ncols, nrows, stream);
  55. }