123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856 |
- // Defines sigaction on msys:
- #ifndef _GNU_SOURCE
- #define _GNU_SOURCE
- #endif
- #include "common.h"
- #include "console.h"
- #include "llama.h"
- #include "build-info.h"
- #include "grammar-parser.h"
- #include "json.hpp"
- #include <cassert>
- #include <cinttypes>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <ctime>
- #include <fstream>
- #include <iostream>
- #include <string>
- #include <vector>
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- #include <signal.h>
- #include <unistd.h>
- #elif defined (_WIN32)
- #define WIN32_LEAN_AND_MEAN
- #ifndef NOMINMAX
- #define NOMINMAX
- #endif
- #include <windows.h>
- #include <signal.h>
- #endif
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- using json = nlohmann::json;
- static llama_context ** g_ctx;
- static bool is_interacting = false;
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
- void sigint_handler(int signo) {
- if (signo == SIGINT) {
- if (!is_interacting) {
- is_interacting=true;
- } else {
- console::cleanup();
- printf("\n");
- llama_print_timings(*g_ctx);
- _exit(130);
- }
- }
- }
- #endif
- int main(int argc, char ** argv) {
- gpt_params params;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- // save choice to use color for later
- // (note for later: this is a slightly awkward choice)
- console::init(params.simple_io, params.use_color);
- atexit([]() { console::cleanup(); });
- if (params.perplexity) {
- printf("\n************\n");
- printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
- printf("************\n\n");
- return 0;
- }
- if (params.rope_freq_base != 10000.0) {
- fprintf(stderr, "%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
- }
- if (params.rope_freq_scale != 1.0) {
- fprintf(stderr, "%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
- }
- if (params.n_ctx > 2048) {
- // TODO: determine the actual max context of the model (e.g. 4096 for LLaMA v2) and use that instead of 2048
- fprintf(stderr, "%s: warning: base model only supports context sizes no greater than 2048 tokens (%d specified)\n", __func__, params.n_ctx);
- } else if (params.n_ctx < 8) {
- fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
- params.n_ctx = 8;
- }
- // HACK: json is always interactive first
- params.interactive = true;
- params.interactive_first = true;
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.random_prompt) {
- params.prompt = gpt_random_prompt(rng);
- }
- llama_backend_init(params.numa);
- llama_model * model;
- llama_context * ctx;
- llama_context * ctx_guidance = NULL;
- g_ctx = &ctx;
- // load the model and apply lora adapter, if any
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (params.cfg_scale > 1.f) {
- struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
- ctx_guidance = llama_new_context_with_model(model, lparams);
- }
- if (model == NULL) {
- fprintf(stderr, "%s: error: unable to load model\n", __func__);
- return 1;
- }
- // print system information
- {
- fprintf(stderr, "\n");
- fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
- params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
- }
- // determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
- // uncomment the "used_mem" line in llama.cpp to see the results
- if (params.mem_test) {
- {
- fprintf(stderr, "%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
- const std::vector<llama_token> tmp(params.n_batch, llama_token_bos());
- llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
- }
- llama_print_timings(ctx);
- llama_free(ctx);
- llama_free_model(model);
- return 0;
- }
- // export the cgraph and exit
- if (params.export_cgraph) {
- llama_eval_export(ctx, "llama.ggml");
- llama_free(ctx);
- llama_free_model(model);
- return 0;
- }
- std::string path_session = params.path_prompt_cache;
- std::vector<llama_token> session_tokens;
- if (!path_session.empty()) {
- fprintf(stderr, "%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
- // fopen to check for existing session
- FILE * fp = std::fopen(path_session.c_str(), "rb");
- if (fp != NULL) {
- std::fclose(fp);
- session_tokens.resize(params.n_ctx);
- size_t n_token_count_out = 0;
- if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
- fprintf(stderr, "%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
- return 1;
- }
- session_tokens.resize(n_token_count_out);
- llama_set_rng_seed(ctx, params.seed);
- fprintf(stderr, "%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
- } else {
- fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
- }
- }
- // tokenize the prompt
- std::vector<llama_token> embd_inp;
- // Add a space in front of the first character to match OG llama tokenizer behavior
- params.prompt.insert(0, 1, ' ');
- if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
- embd_inp = ::llama_tokenize(ctx, params.prompt, true);
- } else {
- embd_inp = session_tokens;
- }
- int n_past = 0;
- if (params.embedding) {
- if (embd_inp.size() > 0) {
- if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- }
- const int n_embd = llama_n_embd(ctx);
- const auto embeddings = llama_get_embeddings(ctx);
- for (int i = 0; i < n_embd; i++) {
- printf("%f ", embeddings[i]);
- }
- printf("\n");
- llama_print_timings(ctx);
- return 0;
- }
- // Tokenize negative prompt
- std::vector<llama_token> guidance_inp;
- int guidance_offset = 0;
-
- int original_prompt_len = 0;
- if (ctx_guidance) {
- params.cfg_negative_prompt.insert(0, 1, ' ');
- guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, true);
- std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, true);
- original_prompt_len = original_inp.size();
- guidance_offset = (int)guidance_inp.size() - original_prompt_len;
- }
- const int n_ctx = llama_n_ctx(ctx);
- if ((int) embd_inp.size() > n_ctx - 4) {
- fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
- return 1;
- }
- // debug message about similarity of saved session, if applicable
- size_t n_matching_session_tokens = 0;
- if (session_tokens.size()) {
- for (llama_token id : session_tokens) {
- if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
- break;
- }
- n_matching_session_tokens++;
- }
- if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
- fprintf(stderr, "%s: using full prompt from session file\n", __func__);
- } else if (n_matching_session_tokens >= embd_inp.size()) {
- fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
- } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
- fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- } else {
- fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
- __func__, n_matching_session_tokens, embd_inp.size());
- }
- }
- // if we will use the cache for the full prompt without reaching the end of the cache, force
- // reevaluation of the last token token to recalculate the cached logits
- if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() &&
- session_tokens.size() > embd_inp.size()) {
- session_tokens.resize(embd_inp.size() - 1);
- }
- // number of tokens to keep when resetting context
- if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
- params.n_keep = (int)embd_inp.size();
- }
- // prefix & suffix for instruct mode
- const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
- const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
- // in instruct mode, we inject a prefix and a suffix to each input by the user
- if (params.instruct) {
- params.interactive_first = true;
- params.antiprompt.push_back("### Instruction:\n\n");
- }
- // enable interactive mode if interactive start is specified
- if (params.interactive_first) {
- params.interactive = true;
- }
- // determine newline token
- auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
- if (params.verbose_prompt) {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
- fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (int i = 0; i < (int) embd_inp.size(); i++) {
- fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
- }
- if (ctx_guidance) {
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
- fprintf(stderr, "%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
- for (int i = 0; i < (int) guidance_inp.size(); i++) {
- fprintf(stderr, "%6d -> '%s'\n", guidance_inp[i], llama_token_to_str(ctx, guidance_inp[i]));
- }
- }
- if (params.n_keep > 0) {
- fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
- for (int i = 0; i < params.n_keep; i++) {
- fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
- }
- fprintf(stderr, "'\n");
- }
- fprintf(stderr, "\n");
- }
- if (params.interactive) {
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = sigint_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- #elif defined (_WIN32)
- auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
- return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
- };
- SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
- #endif
- fprintf(stderr, "%s: interactive mode on.\n", __func__);
- if (params.antiprompt.size()) {
- for (auto antiprompt : params.antiprompt) {
- fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
- }
- }
- if (params.input_prefix_bos) {
- fprintf(stderr, "Input prefix with BOS\n");
- }
- if (!params.input_prefix.empty()) {
- fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
- }
- if (!params.input_suffix.empty()) {
- fprintf(stderr, "Input suffix: '%s'\n", params.input_suffix.c_str());
- }
- }
- fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
- params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
- fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
- fprintf(stderr, "\n\n");
- grammar_parser::parse_state parsed_grammar;
- llama_grammar * grammar = NULL;
- if (!params.grammar.empty()) {
- parsed_grammar = grammar_parser::parse(params.grammar.c_str());
- // will be empty (default) if there are parse errors
- if (parsed_grammar.rules.empty()) {
- return 1;
- }
- fprintf(stderr, "%s: grammar:\n", __func__);
- grammar_parser::print_grammar(stderr, parsed_grammar);
- fprintf(stderr, "\n");
- {
- auto it = params.logit_bias.find(llama_token_eos());
- if (it != params.logit_bias.end() && it->second == -INFINITY) {
- fprintf(stderr,
- "%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
- }
- }
- std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
- grammar = llama_grammar_init(
- grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
- }
- // TODO: replace with ring-buffer
- std::vector<llama_token> last_n_tokens(n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- if (params.interactive) {
- const char *control_message;
- if (params.multiline_input) {
- control_message = " - To return control to LLaMa, end your input with '\\'.\n"
- " - To return control without starting a new line, end your input with '/'.\n";
- } else {
- control_message = " - Press Return to return control to LLaMa.\n"
- " - To return control without starting a new line, end your input with '/'.\n"
- " - If you want to submit another line, end your input with '\\'.\n";
- }
- fprintf(stderr, "== Running in interactive mode. ==\n"
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
- " - Press Ctrl+C to interject at any time.\n"
- #endif
- "%s\n", control_message);
- is_interacting = params.interactive_first;
- }
- bool is_antiprompt = false;
- bool input_echo = true;
- bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
- // int n_past = 0;
- int n_remain = params.n_predict;
- int n_consumed = 0;
- int n_session_consumed = 0;
- int n_past_guidance = 0;
- // the first thing we will do is to output the prompt, so set color accordingly
- console::set_display(console::prompt);
- std::vector<llama_token> embd;
- std::vector<llama_token> embd_guidance;
- // do one empty run to warm up the model
- {
- const std::vector<llama_token> tmp = { llama_token_bos(), };
- llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
- llama_reset_timings(ctx);
- }
- while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
- // predict
- if (embd.size() > 0) {
- // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
- // --prompt or --file which uses the same value.
- auto max_embd_size = n_ctx - 4;
- // Ensure the input doesn't exceed the context size by truncating embd if necessary.
- if ((int)embd.size() > max_embd_size) {
- auto skipped_tokens = embd.size() - max_embd_size;
- console::set_display(console::error);
- printf("<<input too long: skipped %zu token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
- console::set_display(console::reset);
- fflush(stdout);
- embd.resize(max_embd_size);
- }
- // infinite text generation via context swapping
- // if we run out of context:
- // - take the n_keep first tokens from the original prompt (via n_past)
- // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
- if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
- if (params.n_predict == -2) {
- fprintf(stderr, "\n\n%s: context full, stopping generation\n", __func__);
- break;
- }
- const int n_left = n_past - params.n_keep;
- // always keep the first token - BOS
- n_past = std::max(1, params.n_keep);
- n_past_guidance = std::max(1, params.n_keep + guidance_offset);
- // insert n_left/2 tokens at the start of embd from last_n_tokens
- embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
- // stop saving session if we run out of context
- path_session.clear();
- }
- // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
- if (n_session_consumed < (int) session_tokens.size()) {
- size_t i = 0;
- for ( ; i < embd.size(); i++) {
- if (embd[i] != session_tokens[n_session_consumed]) {
- session_tokens.resize(n_session_consumed);
- break;
- }
- n_past++;
- n_session_consumed++;
- if (n_session_consumed >= (int) session_tokens.size()) {
- ++i;
- break;
- }
- }
- if (i > 0) {
- embd.erase(embd.begin(), embd.begin() + i);
- }
- }
- // evaluate tokens in batches
- // embd is typically prepared beforehand to fit within a batch, but not always
- if (ctx_guidance) {
- int input_size = 0;
- llama_token* input_buf = NULL;
- if (n_past_guidance < (int) guidance_inp.size()) {
- // Guidance context should have the same data with these modifications:
- //
- // * Replace the initial prompt
- // * Shift everything by guidance_offset
- embd_guidance = guidance_inp;
- if (embd.begin() + original_prompt_len < embd.end()) {
- embd_guidance.insert(
- embd_guidance.end(),
- embd.begin() + original_prompt_len,
- embd.end()
- );
- }
- input_buf = embd_guidance.data();
- input_size = embd_guidance.size();
- } else {
- input_buf = embd.data();
- input_size = embd.size();
- }
- for (int i = 0; i < input_size; i += params.n_batch) {
- int n_eval = std::min(input_size - i, params.n_batch);
- if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- n_past_guidance += n_eval;
- }
- }
- for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
- int n_eval = (int) embd.size() - i;
- if (n_eval > params.n_batch) {
- n_eval = params.n_batch;
- }
- if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- n_past += n_eval;
- }
- if (embd.size() > 0 && !path_session.empty()) {
- session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
- n_session_consumed = session_tokens.size();
- }
- }
- embd.clear();
- embd_guidance.clear();
- if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
- // out of user input, sample next token
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- // optionally save the session on first sample (for faster prompt loading next time)
- if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
- need_to_save_session = false;
- llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
- }
- llama_token id = 0;
- {
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- // Apply params.logit_bias map
- for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
- logits[it->first] += it->second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- if (ctx_guidance) {
- llama_sample_classifier_free_guidance(ctx, &candidates_p, ctx_guidance, params.cfg_scale);
- }
- // Apply penalties
- float nl_logit = logits[llama_token_nl()];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl) {
- logits[llama_token_nl()] = nl_logit;
- }
- if (grammar != NULL) {
- llama_sample_grammar(ctx, &candidates_p, grammar);
- }
- if (temp <= 0) {
- // Greedy sampling
- id = llama_sample_token_greedy(ctx, &candidates_p);
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- llama_sample_top_k(ctx, &candidates_p, top_k, 1);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
- llama_sample_typical(ctx, &candidates_p, typical_p, 1);
- llama_sample_top_p(ctx, &candidates_p, top_p, 1);
- llama_sample_temperature(ctx, &candidates_p, temp);
- id = llama_sample_token(ctx, &candidates_p);
- }
- }
- if (grammar != NULL) {
- llama_grammar_accept_token(ctx, grammar, id);
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- }
- // add it to the context
- embd.push_back(id);
- // echo this to console
- input_echo = true;
- // decrement remaining sampling budget
- --n_remain;
- } else {
- // some user input remains from prompt or interaction, forward it to processing
- while ((int) embd_inp.size() > n_consumed) {
- embd.push_back(embd_inp[n_consumed]);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(embd_inp[n_consumed]);
- ++n_consumed;
- if ((int) embd.size() >= params.n_batch) {
- break;
- }
- }
- }
- // display text
- if (input_echo) {
- for (auto id : embd) {
- json obj = {
- {"content", llama_token_to_str(ctx, id)},
- };
- printf("%s\n", obj.dump().c_str());
- }
- fflush(stdout);
- }
- // reset color to default if we there is no pending user input
- if (input_echo && (int)embd_inp.size() == n_consumed) {
- console::set_display(console::reset);
- }
- // if not currently processing queued inputs;
- if ((int) embd_inp.size() <= n_consumed) {
- // check for reverse prompt
- if (params.antiprompt.size()) {
- std::string last_output;
- for (auto id : last_n_tokens) {
- last_output += llama_token_to_str(ctx, id);
- }
- is_antiprompt = false;
- // Check if each of the reverse prompts appears at the end of the output.
- // If we're not running interactively, the reverse prompt might be tokenized with some following characters
- // so we'll compensate for that by widening the search window a bit.
- for (std::string & antiprompt : params.antiprompt) {
- size_t extra_padding = params.interactive ? 0 : 2;
- size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
- ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
- : 0;
- if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
- if (params.interactive) {
- is_interacting = true;
- console::set_display(console::user_input);
- }
- is_antiprompt = true;
- fflush(stdout);
- break;
- }
- }
- }
- // deal with end of text token in interactive mode
- if (last_n_tokens.back() == llama_token_eos()) {
- if (params.interactive) {
- if (params.antiprompt.size() != 0) {
- // tokenize and inject first reverse prompt
- const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
- embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
- is_antiprompt = true;
- }
- is_interacting = true;
- printf("\n");
- console::set_display(console::user_input);
- fflush(stdout);
- } else if (params.instruct) {
- is_interacting = true;
- }
- }
- if (n_past > 0 && is_interacting) {
- if (params.instruct) {
- printf("\n> ");
- }
- if (params.input_prefix_bos) {
- embd_inp.push_back(llama_token_bos());
- }
- std::string buffer;
- if (!params.input_prefix.empty()) {
- buffer += params.input_prefix;
- printf("%s", buffer.c_str());
- }
- std::string line;
- bool another_line = true;
- do {
- another_line = console::readline(line, params.multiline_input);
- buffer += line;
- } while (another_line);
- // Parse the json object
- json obj;
- try {
- obj = json::parse(buffer);
- } catch (json::parse_error& e) {
- // TODO: print a json formatted error to stderr
- printf("%s\n", e.what());
- continue;
- }
- // parse out prompt
- if (!obj.contains("prompt")) {
- printf("missing 'prompt'\n");
- continue;
- }
- std::string prompt = obj["prompt"];
- // TODO: don't use a separate variable
- buffer = prompt;
- // done taking input, reset color
- console::set_display(console::reset);
- // Add tokens to embd only if the input buffer is non-empty
- // Entering a empty line lets the user pass control back
- if (buffer.length() > 1) {
- // append input suffix if any
- if (!params.input_suffix.empty()) {
- buffer += params.input_suffix;
- printf("%s", params.input_suffix.c_str());
- }
- // instruct mode: insert instruction prefix
- if (params.instruct && !is_antiprompt) {
- n_consumed = embd_inp.size();
- embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
- }
- auto line_inp = ::llama_tokenize(ctx, buffer, false);
- embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
- // instruct mode: insert response suffix
- if (params.instruct) {
- embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
- }
- n_remain -= line_inp.size();
- }
- input_echo = false; // do not echo this again
- }
- if (n_past > 0) {
- if (is_interacting) {
- // reset grammar state if we're restarting generation
- if (grammar != NULL) {
- llama_grammar_free(grammar);
- std::vector<const llama_grammar_element *> grammar_rules(
- parsed_grammar.c_rules());
- grammar = llama_grammar_init(
- grammar_rules.data(), grammar_rules.size(),
- parsed_grammar.symbol_ids.at("root"));
- }
- }
- is_interacting = false;
- }
- }
- // end of text token
- if (!embd.empty() && embd.back() == llama_token_eos() && !(params.instruct || params.interactive)) {
- fprintf(stderr, " [end of text]\n");
- break;
- }
- // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
- if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
- n_remain = params.n_predict;
- is_interacting = true;
- }
- }
- if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
- fprintf(stderr, "\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
- llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
- }
- llama_print_timings(ctx);
- if (ctx_guidance) { llama_free(ctx_guidance); }
- llama_free(ctx);
- llama_free_model(model);
- if (grammar != NULL) {
- llama_grammar_free(grammar);
- }
- llama_backend_free();
- return 0;
- }
|