1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144 |
- #include "llama-model.h"
- #include "llama-impl.h"
- #include "llama-mmap.h"
- #include "llama-model-loader.h"
- #include "ggml-cpp.h"
- #include <algorithm>
- #include <cassert>
- #include <cstring>
- #include <functional>
- #include <map>
- #include <sstream>
- #include <stdexcept>
- const char * llm_type_name(llm_type type) {
- switch (type) {
- case LLM_TYPE_14M: return "14M";
- case LLM_TYPE_17M: return "17M";
- case LLM_TYPE_22M: return "22M";
- case LLM_TYPE_33M: return "33M";
- case LLM_TYPE_60M: return "60M";
- case LLM_TYPE_70M: return "70M";
- case LLM_TYPE_80M: return "80M";
- case LLM_TYPE_109M: return "109M";
- case LLM_TYPE_137M: return "137M";
- case LLM_TYPE_160M: return "160M";
- case LLM_TYPE_220M: return "220M";
- case LLM_TYPE_250M: return "250M";
- case LLM_TYPE_270M: return "270M";
- case LLM_TYPE_335M: return "335M";
- case LLM_TYPE_410M: return "410M";
- case LLM_TYPE_450M: return "450M";
- case LLM_TYPE_770M: return "770M";
- case LLM_TYPE_780M: return "780M";
- case LLM_TYPE_0_5B: return "0.5B";
- case LLM_TYPE_1B: return "1B";
- case LLM_TYPE_1_3B: return "1.3B";
- case LLM_TYPE_1_4B: return "1.4B";
- case LLM_TYPE_1_5B: return "1.5B";
- case LLM_TYPE_1_6B: return "1.6B";
- case LLM_TYPE_2B: return "2B";
- case LLM_TYPE_2_8B: return "2.8B";
- case LLM_TYPE_3B: return "3B";
- case LLM_TYPE_4B: return "4B";
- case LLM_TYPE_6B: return "6B";
- case LLM_TYPE_6_9B: return "6.9B";
- case LLM_TYPE_7B: return "7B";
- case LLM_TYPE_8B: return "8B";
- case LLM_TYPE_9B: return "9B";
- case LLM_TYPE_11B: return "11B";
- case LLM_TYPE_12B: return "12B";
- case LLM_TYPE_13B: return "13B";
- case LLM_TYPE_14B: return "14B";
- case LLM_TYPE_15B: return "15B";
- case LLM_TYPE_16B: return "16B";
- case LLM_TYPE_20B: return "20B";
- case LLM_TYPE_30B: return "30B";
- case LLM_TYPE_32B: return "32B";
- case LLM_TYPE_34B: return "34B";
- case LLM_TYPE_35B: return "35B";
- case LLM_TYPE_40B: return "40B";
- case LLM_TYPE_65B: return "65B";
- case LLM_TYPE_70B: return "70B";
- case LLM_TYPE_236B: return "236B";
- case LLM_TYPE_314B: return "314B";
- case LLM_TYPE_671B: return "671B";
- case LLM_TYPE_SMALL: return "0.1B";
- case LLM_TYPE_MEDIUM: return "0.4B";
- case LLM_TYPE_LARGE: return "0.8B";
- case LLM_TYPE_XL: return "1.5B";
- case LLM_TYPE_A1_7B: return "A1.7B";
- case LLM_TYPE_A2_7B: return "A2.7B";
- case LLM_TYPE_8x7B: return "8x7B";
- case LLM_TYPE_8x22B: return "8x22B";
- case LLM_TYPE_16x12B: return "16x12B";
- case LLM_TYPE_16x3_8B: return "16x3.8B";
- case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
- case LLM_TYPE_57B_A14B: return "57B.A14B";
- case LLM_TYPE_27B: return "27B";
- default: return "?B";
- }
- }
- static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
- switch (type) {
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
- case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
- default: return "unknown";
- }
- }
- static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
- { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
- { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
- { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
- { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
- };
- static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
- for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
- if (kv.second == name) {
- return (llama_rope_scaling_type) kv.first;
- }
- }
- return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
- }
- // checks if the weight tensor can be used with the specified buffer type and device
- static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
- GGML_ASSERT(w != nullptr);
- if (op == GGML_OP_NONE) {
- return true;
- }
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx_ptr { ggml_init(params) };
- if (!ctx_ptr) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_context * ctx = ctx_ptr.get();
- ggml_tensor * op_tensor = nullptr;
- switch (op) {
- case GGML_OP_GET_ROWS:
- {
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_get_rows(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
- op_tensor = ggml_mul_mat(ctx, w, b);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- int n_expert_used = hparams.n_expert_used;
- ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
- ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
- op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
- } break;
- case GGML_OP_ADD:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_add(ctx, a, w);
- } break;
- case GGML_OP_MUL:
- {
- ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
- op_tensor = ggml_mul(ctx, a, w);
- } break;
- case GGML_OP_DIV:
- {
- ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
- op_tensor = ggml_div(ctx, a, w);
- } break;
- case GGML_OP_ROPE:
- {
- int n_embd_head = hparams.n_embd_head_v;
- int n_head = hparams.n_head();
- ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
- ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
- op_tensor = ggml_rope_ext(
- ctx, a, b, w,
- 0, 0, 0, 0, 0,
- 0, 0, 0, 0
- );
- } break;
- case GGML_OP_SSM_CONV:
- {
- // FIXME
- ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
- op_tensor = ggml_ssm_conv(ctx, conv_x, w);
- } break;
- case GGML_OP_SSM_SCAN:
- {
- // FIXME
- const int64_t d_state = w->ne[0];
- const int64_t d_inner = w->ne[1];
- const int64_t n_seq_tokens = 512;
- const int64_t n_seqs = 1;
- ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
- ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
- ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
- ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
- ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
- op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
- } break;
- case GGML_OP_RWKV_WKV6:
- {
- // FIXME
- const int64_t S = 123;
- const int64_t H = 123;
- const int64_t n_tokens = 123;
- const int64_t n_seqs = 123;
- ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * tf = w;
- ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
- ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
- op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
- } break;
- case GGML_OP_IM2COL:
- {
- const int n_embd = hparams.n_embd;
- ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
- op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
- } break;
- default:
- GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
- }
- // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
- GGML_ASSERT(w->buffer == nullptr);
- w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- ggml_backend_buffer_free(w->buffer);
- w->buffer = nullptr;
- return op_supported;
- }
- // lists of buffer types used for each layer
- using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
- // find the first buffer type in the list that can use the tensor
- static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
- GGML_ASSERT(!buft_list.empty());
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
- return cur_buft;
- }
- }
- return nullptr;
- }
- // CPU: ACCEL -> CPU extra -> GPU host -> CPU
- static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
- buft_list_t buft_list;
- // add ACCEL buffer types
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
- auto * buft = ggml_backend_dev_buffer_type(dev);
- // skip
- if (buft != ggml_backend_cpu_buffer_type()) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add extra buffer types
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
- auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
- ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
- if (ggml_backend_dev_get_extra_bufts_fn) {
- ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
- while (extra_bufts && *extra_bufts) {
- buft_list.emplace_back(cpu_dev, *extra_bufts);
- ++extra_bufts;
- }
- }
- // add a host buffer type
- // storing the tensors in a host buffer is useful when the processing of large batches
- // is offloaded to a GPU device, since it reduces the time spent on data transfers
- // generally, this will be done using the first device in the list
- // a better approach would be to handle this on a weight-by-weight basis using the offload_op
- // function of the device to determine if it would benefit from being stored in a host buffer
- for (auto * dev : devices) {
- ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
- if (buft) {
- buft_list.emplace_back(dev, buft);
- break;
- }
- }
- // add the CPU buffer type
- for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
- ggml_backend_dev_t dev = ggml_backend_dev_get(i);
- if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- }
- }
- return buft_list;
- }
- // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
- static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, enum llama_split_mode split_mode, const float * tensor_split) {
- buft_list_t buft_list;
- // add the device split buffer type if requested and available
- if (split_mode == LLAMA_SPLIT_MODE_ROW) {
- ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
- auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
- ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
- if (ggml_backend_split_buffer_type_fn) {
- size_t dev_index = [&]() {
- auto * reg = ggml_backend_dev_backend_reg(dev);
- for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
- if (ggml_backend_reg_dev_get(reg, i) == dev) {
- return i;
- }
- }
- throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
- }();
- auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
- if (buft != nullptr) {
- buft_list.emplace_back(dev, buft);
- }
- }
- }
- // add the device default buffer type
- buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
- return buft_list;
- }
- struct llama_model::impl {
- impl() {}
- ~impl() {}
- uint64_t n_elements = 0;
- size_t n_bytes = 0;
- std::string desc_str;
- // model memory mapped files
- llama_mmaps mappings;
- // objects representing data potentially being locked in memory
- llama_mlocks mlock_bufs;
- llama_mlocks mlock_mmaps;
- // contexts where the model tensors metadata is stored
- std::vector<ggml_context_ptr> ctxs;
- // the model memory buffers for the tensor data
- std::vector<ggml_backend_buffer_ptr> bufs;
- buft_list_t cpu_buft_list;
- std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
- struct layer_dev {
- ggml_backend_dev_t dev;
- buft_list_t * buft_list;
- };
- layer_dev dev_input = {};
- layer_dev dev_output = {};
- std::vector<layer_dev> dev_layer;
- };
- llama_model::llama_model(const struct llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
- }
- llama_model::~llama_model() {}
- void llama_model::load_stats(llama_model_loader & ml) {
- pimpl->n_elements = ml.n_elements;
- pimpl->n_bytes = ml.n_bytes;
- }
- void llama_model::load_arch(llama_model_loader & ml) {
- arch = ml.get_arch();
- if (arch == LLM_ARCH_UNKNOWN) {
- throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
- }
- }
- void llama_model::load_hparams(llama_model_loader & ml) {
- const gguf_context * ctx = ml.meta.get();
- // get metadata as string
- for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
- enum gguf_type type = gguf_get_kv_type(ctx, i);
- if (type == GGUF_TYPE_ARRAY) {
- continue;
- }
- const char * name = gguf_get_key(ctx, i);
- const std::string value = gguf_kv_to_str(ctx, i);
- gguf_kv.emplace(name, value);
- }
- // get general kv
- ml.get_key(LLM_KV_GENERAL_NAME, name, false);
- ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab, false);
- // everything past this point is not vocab-related
- if (hparams.vocab_only) {
- return;
- }
- ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
- ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
- ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
- ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
- ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
- ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false);
- if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
- ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
- ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
- ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
- ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
- ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
- }
- GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
- GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
- if (hparams.n_expert > 0) {
- GGML_ASSERT(hparams.n_expert_used > 0);
- } else {
- GGML_ASSERT(hparams.n_expert_used == 0);
- }
- // zero-out the array hparams
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
- std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
- ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
- // n_head_kv is optional, default to n_head
- hparams.n_head_kv_arr = hparams.n_head_arr;
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
- bool rope_finetuned = false;
- ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
- hparams.rope_finetuned = rope_finetuned;
- hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
- ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
- // rope_freq_base (optional)
- hparams.rope_freq_base_train = 10000.0f;
- ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
- std::string rope_scaling("linear");
- ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
- hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
- GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
- // rope_freq_scale (inverse of the kv) is optional
- float ropescale = 0.0f;
- if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
- // try the old key name
- ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
- }
- hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
- ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
- // non-transformer models do not have attention heads
- if (hparams.n_head() > 0) {
- // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
- // gpt-j n_rot = rotary_dim
- hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
- hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
- ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
- // sanity check for n_rot (optional)
- hparams.n_rot = hparams.n_embd_head_k;
- ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
- if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_MLLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
- if (hparams.n_rot != hparams.n_embd_head_k) {
- throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
- }
- }
- } else {
- hparams.n_rot = 0;
- hparams.n_embd_head_k = 0;
- hparams.n_embd_head_v = 0;
- }
- // for differentiating model types
- uint32_t n_vocab = 0;
- ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
- // arch-specific KVs
- switch (arch) {
- case LLM_ARCH_LLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 8) {
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8x7B; break;
- case 56: type = LLM_TYPE_8x22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
- case 22: type = LLM_TYPE_1B; break;
- case 26: type = LLM_TYPE_3B; break;
- case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
- // granite uses a vocab with len 49152
- case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
- case 36: type = LLM_TYPE_8B; break; // granite
- case 40: type = LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_34B; break;
- case 60: type = LLM_TYPE_30B; break;
- case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- }
- } break;
- case LLM_ARCH_MLLAMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_11B; break;
- case 100: type = LLM_TYPE_90B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DECI:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- switch (hparams.n_layer) {
- case 52: type = LLM_TYPE_1B; break;
- case 40: type = LLM_TYPE_2B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- switch (hparams.n_layer) {
- case 62: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GROK:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_314B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 60: type = LLM_TYPE_40B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- if (type == LLM_TYPE_13B) {
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 42: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_REFACT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- switch (hparams.n_layer) {
- case 3:
- type = LLM_TYPE_17M; break; // bge-micro
- case 6:
- type = LLM_TYPE_22M; break; // MiniLM-L6
- case 12:
- switch (hparams.n_embd) {
- case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
- case 768: type = LLM_TYPE_109M; break; // bge-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- type = LLM_TYPE_335M; break; // bge-large
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
- hparams.f_max_alibi_bias = 8.0f;
- switch (hparams.n_layer) {
- case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
- case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NOMIC_BERT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
- if (hparams.n_layer == 12 && hparams.n_embd == 768) {
- type = LLM_TYPE_137M;
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 30:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // TODO: become GGUF KV parameter
- hparams.f_max_alibi_bias = 8.0f;
- } break;
- case LLM_ARCH_MPT:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_30B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2VL:
- {
- ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
- }
- // fall through
- case LLM_ARCH_QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
- case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 36: type = LLM_TYPE_3B; break;
- case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
- case 48: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
- ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_A2_7B; break;
- case 28: type = LLM_TYPE_57B_A14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- // for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
- if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
- // default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
- hparams.n_swa = 2047;
- } else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
- // default value for Phi-3-mini-128k-instruct
- hparams.n_swa = 262144;
- } else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
- // default value for Phi-3-medium-128k-instruct
- hparams.n_swa = 131072;
- }
- bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- if (!found_swa && hparams.n_swa == 0) {
- throw std::runtime_error("invalid value for sliding_window");
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_16x3_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 12: type = LLM_TYPE_SMALL; break;
- case 24: type = LLM_TYPE_MEDIUM; break;
- case 36: type = LLM_TYPE_LARGE; break;
- case 48: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 42: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ORION:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_14B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 18: type = LLM_TYPE_2B; break;
- case 28: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- hparams.n_swa = 4096; // default value of gemma 2
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
- ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
- hparams.attn_soft_cap = true;
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_2B; break;
- case 42: type = LLM_TYPE_9B; break;
- case 46: type = LLM_TYPE_27B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 30: type = LLM_TYPE_3B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_15B; break;
- case 52: type = LLM_TYPE_20B; break; // granite
- case 88: type = LLM_TYPE_34B; break; // granite
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
- ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
- ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
- ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
- ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 24:
- switch (hparams.n_embd) {
- case 768: type = LLM_TYPE_SMALL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 48:
- switch (hparams.n_embd) {
- case 1024: type = LLM_TYPE_MEDIUM; break;
- case 1536: type = LLM_TYPE_LARGE; break;
- case 2048: type = LLM_TYPE_XL; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 64:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- case 80: type = LLM_TYPE_65B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_35B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
- switch (hparams.n_layer) {
- case 40: type = LLM_TYPE_16x12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
- switch (hparams.n_layer) {
- case 22: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 80: type = LLM_TYPE_70B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_1B; break;
- case 32: type = LLM_TYPE_7B; break;
- case 40: type = LLM_TYPE_13B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_A1_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 16: type = LLM_TYPE_270M; break;
- case 20: type = LLM_TYPE_450M; break;
- case 28: type = LLM_TYPE_1B; break;
- case 36: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
- switch (hparams.n_layer) {
- case 6:
- switch (hparams.n_ff()) {
- case 512: type = LLM_TYPE_14M; break;
- case 2048: type = LLM_TYPE_70M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_160M; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 16:
- switch (hparams.n_ff()) {
- case 8192: type = LLM_TYPE_1B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_410M; break;
- case 8192: type = LLM_TYPE_1_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 32:
- switch (hparams.n_ff()) {
- case 10240: type = LLM_TYPE_2_8B; break;
- case 16384: type = LLM_TYPE_6_9B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 36:
- switch (hparams.n_ff()) {
- case 20480: type = LLM_TYPE_12B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 44:
- switch (hparams.n_ff()) {
- case 24576: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- if (hparams.n_expert == 128) {
- switch (hparams.n_layer) {
- case 35: type = LLM_TYPE_10B_128x3_66B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } else {
- type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- switch (hparams.n_layer) {
- case 28: type = LLM_TYPE_20B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- bool is_lite = (hparams.n_layer == 27);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
- if (!is_lite) {
- ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
- }
- ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
- ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
- ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
- ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
- ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
- if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
- // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
- // that have no expert_gating_func model parameter set
- hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
- }
- ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
- switch (hparams.n_layer) {
- case 27: type = LLM_TYPE_16B; break;
- case 60: type = LLM_TYPE_236B; break;
- case 61: type = LLM_TYPE_671B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 28: {
- if (hparams.n_head(0) == 16) {
- type = LLM_TYPE_1_5B;
- } else {
- type = LLM_TYPE_6B;
- }
- } break;
- case 40: {
- if (hparams.n_head(0) == 24) {
- type = LLM_TYPE_4B;
- } else {
- type = LLM_TYPE_9B;
- }
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 26: type = LLM_TYPE_3B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- uint32_t dec_start_token_id;
- if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
- hparams.dec_start_token_id = dec_start_token_id;
- }
- switch (hparams.n_layer) {
- case 6: type = LLM_TYPE_60M; break; // t5-small
- case 8: type = LLM_TYPE_80M; break; // flan-t5-small
- case 12:
- switch (hparams.n_ff()) {
- case 3072: type = LLM_TYPE_220M; break; // t5-base
- case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 24:
- switch (hparams.n_ff()) {
- case 4096: type = LLM_TYPE_770M; break; // t5-large
- case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
- case 16384: type = LLM_TYPE_3B; break; // t5-3b
- case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
- case 65536: type = LLM_TYPE_11B; break; // t5-11b
- case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
- type = LLM_TYPE_UNKNOWN;
- } break;
- case LLM_ARCH_JAIS:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_3B; break;
- case 40: type = LLM_TYPE_13B; break;
- /* TODO: add variants */
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_4B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_8B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
- ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
- ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
- ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
- ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
- ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
- switch (hparams.n_layer) {
- case 24: type = LLM_TYPE_1_6B; break;
- case 32:
- switch (hparams.n_embd) {
- case 2560: type = LLM_TYPE_3B; break;
- case 4096: type = LLM_TYPE_7B; break;
- default: type = LLM_TYPE_UNKNOWN;
- } break;
- case 61: type = LLM_TYPE_14B; break;
- case 64: type = LLM_TYPE_32B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
- ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
- ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
- ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_3B; break;
- case 40: type = LLM_TYPE_3B; break;
- // Add additional layer/vocab/etc checks here for other model sizes
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
- ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
- switch (hparams.n_layer) {
- case 32: type = LLM_TYPE_7B; break;
- case 48: type = LLM_TYPE_34B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_SOLAR:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
- for (size_t i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
- auto & bskcn = hparams.n_bskcn_arr[i];
- bskcn.fill(0);
- auto kv = LLM_KV(arch);
- ml.get_key_or_arr(format((kv(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION) + ".%d").c_str(), i), bskcn, hparams.n_layer, false);
- }
- switch (hparams.n_layer) {
- case 64: type = LLM_TYPE_22B; break;
- default: type = LLM_TYPE_UNKNOWN;
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
- ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
- ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
- } break;
- default: throw std::runtime_error("unsupported model architecture");
- }
- pimpl->n_bytes = ml.n_bytes;
- pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
- if (hparams.f_max_alibi_bias > 0.0f) {
- hparams.use_alibi = true;
- }
- hparams.rope_type = llama_model_rope_type(this);
- }
- void llama_model::load_vocab(llama_model_loader & ml) {
- const auto kv = LLM_KV(arch);
- vocab.load(ml, kv);
- }
- bool llama_model::load_tensors(llama_model_loader & ml) {
- const auto & split_mode = params.split_mode;
- const auto & n_gpu_layers = params.n_gpu_layers;
- const auto & use_mlock = params.use_mlock;
- const auto & tensor_split = params.tensor_split;
- const int n_layer = hparams.n_layer;
- const bool use_mmap_buffer = true;
- LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
- // build a list of buffer types for the CPU and GPU devices
- pimpl->cpu_buft_list = make_cpu_buft_list(devices);
- for (auto * dev : devices) {
- buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
- // add CPU buffer types as a fallback
- buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
- pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
- }
- // calculate the split points
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
- std::vector<float> splits(n_devices());
- if (all_zero) {
- // default split, by free memory
- for (size_t i = 0; i < n_devices(); ++i) {
- ggml_backend_dev_t dev = devices[i];
- size_t total;
- size_t free;
- ggml_backend_dev_memory(dev, &free, &total);
- splits[i] = free;
- }
- } else {
- std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
- }
- // sum and normalize the splits to get the split points
- float split_sum = 0.0f;
- for (size_t i = 0; i < n_devices(); ++i) {
- split_sum += splits[i];
- splits[i] = split_sum;
- }
- for (size_t i = 0; i < n_devices(); ++i) {
- splits[i] /= split_sum;
- }
- ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
- const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
- auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
- if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s\n", il, ggml_backend_dev_name(cpu_dev));
- return {cpu_dev, &pimpl->cpu_buft_list};
- }
- const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
- auto * dev = devices.at(layer_gpu);
- LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s\n", il, ggml_backend_dev_name(dev));
- return {dev, &pimpl->gpu_buft_list.at(dev)};
- };
- // assign the input layer
- // there is very little benefit to offloading the input layer, so always keep it on the CPU
- pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
- // assign the repeating layers to the devices according to the splits
- pimpl->dev_layer.resize(n_layer);
- for (int il = 0; il < n_layer; ++il) {
- pimpl->dev_layer[il] = get_layer_buft_list(il);
- }
- // assign the output layer
- pimpl->dev_output = get_layer_buft_list(n_layer);
- // one ggml context per buffer type
- int max_n_tensors = ml.n_tensors;
- max_n_tensors += 1; // duplicated output tensor
- max_n_tensors += n_layer*2; // duplicated rope freq tensors
- const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ctx_map[buft] = ctx;
- pimpl->ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
- const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
- // create tensors for the weights
- {
- // note: cast to int64_t since we will use these for the tensor dimensions
- const int64_t n_head = hparams.n_head();
- const int64_t n_head_kv = hparams.n_head_kv();
- const int64_t n_embd = hparams.n_embd;
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
- const int64_t n_embd_head_k = hparams.n_embd_head_k;
- const int64_t n_embd_head_v = hparams.n_embd_head_v;
- const int64_t n_ff = hparams.n_ff();
- const int64_t n_embd_gqa = n_embd_v_gqa;
- const int64_t n_vocab = hparams.n_vocab;
- const int64_t n_token_types = vocab.n_token_types();
- const int64_t n_rot = hparams.n_rot;
- const int64_t n_expert = hparams.n_expert;
- const int64_t n_expert_used = hparams.n_expert_used;
- const int64_t n_ctx_train = hparams.n_ctx_train;
- if (n_expert > 0 && hparams.n_expert_used == 0) {
- throw std::runtime_error("model has expert layers but no expert layers are used");
- }
- int n_moved_tensors = 0;
- ggml_tensor * first_moved_tensor = nullptr;
- ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
- ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
- auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
- ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
- if (!t_meta) {
- if (flags & TENSOR_NOT_REQUIRED) {
- return nullptr;
- }
- throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
- }
- // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
- // the tensor is duplicated
- // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
- llm_tensor tn_tensor = tn.tensor;
- if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
- tn_tensor = LLM_TENSOR_OUTPUT;
- }
- llm_tensor_info info;
- try {
- info = llm_tensor_info_for(tn_tensor);
- } catch (const std::out_of_range & e) {
- throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
- }
- // skip unused tensors
- if (info.op == GGML_OP_NONE) {
- LLAMA_LOG_WARN("model has unused tensor %s -- ignoring\n", tn.str().c_str());
- ml.n_created++;
- return nullptr;
- }
- // tensors with "bias" suffix are always used with GGML_OP_ADD
- ggml_op op;
- bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
- if (bias) {
- op = GGML_OP_ADD;
- } else {
- op = info.op;
- }
- // sanity checks
- if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
- if (tn.bid != -1) {
- GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
- }
- } else {
- if (tn.bid == -1) {
- GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
- }
- }
- // select the buffer type for this tensor
- buft_list_t * buft_list;
- switch (info.layer) {
- case LLM_TENSOR_LAYER_INPUT:
- buft_list = pimpl->dev_input.buft_list;
- break;
- case LLM_TENSOR_LAYER_OUTPUT:
- buft_list = pimpl->dev_output.buft_list;
- break;
- case LLM_TENSOR_LAYER_REPEATING:
- buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
- break;
- default:
- GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
- }
- ggml_backend_buffer_type_t buft = select_weight_buft(hparams, t_meta, op, *buft_list);
- if (!buft) {
- throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
- }
- // avoid using a host buffer when using mmap
- auto * buft_dev = ggml_backend_buft_get_device(buft);
- if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
- auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- buft = ggml_backend_dev_buffer_type(cpu_dev);
- }
- if (buft != buft_list->front().second) {
- n_moved_tensors++;
- if (!first_moved_tensor) {
- first_moved_tensor = t_meta;
- first_moved_from_buft = buft_list->front().second;
- first_moved_to_buft = buft;
- }
- }
- ggml_context * ctx = ctx_for_buft(buft);
- // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
- if (flags & TENSOR_DUPLICATED) {
- ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
- if (t) {
- return t;
- }
- }
- return ml.create_tensor(ctx, tn, ne, flags);
- };
- layers.resize(n_layer);
- // TODO: move to a separate function
- const auto tn = LLM_TN(arch);
- switch (arch) {
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- if (n_expert == 0) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- }
- } break;
- case LLM_ARCH_MLLAMA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- if (hparams.cross_attention_layers(i)) {
- layer.cross_attn_k_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128}, 0);
- layer.cross_attn_k_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024}, 0);
- layer.cross_attn_o_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd}, 0);
- layer.cross_attn_q_norm = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128}, 0);
- layer.cross_attn_q_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd}, 0);
- layer.cross_attn_v_proj = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024}, 0);
- layer.cross_attn_attn_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1}, 0);
- layer.cross_attn_mlp_gate = create_tensor(tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1}, 0);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- } else {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- }
- } break;
- case LLM_ARCH_DECI:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
- const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
- const int64_t n_ff = hparams.n_ff(i);
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_kv = hparams.n_head_kv(i);
- if (n_head_kv == 0 && n_head > 0) {
- // linear attention for DeciLMCausalModel
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- }
- else if (n_head_kv > 0) {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- }
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- else {
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_MINICPM3:
- {
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_GROK:
- {
- if (n_expert == 0) {
- throw std::runtime_error("Grok model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_DBRX:
- {
- if (n_expert == 0) {
- throw std::runtime_error("DBRX model cannot have zero experts");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_BAICHUAN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_FALCON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- // needs to be on GPU
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0);
- if (arch == LLM_ARCH_BERT) {
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
- cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {1}, TENSOR_NOT_REQUIRED);
- }
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- if (arch == LLM_ARCH_BERT) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- } else {
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- if (arch == LLM_ARCH_BERT) {
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- } else {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- }
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_JINA_BERT_V2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
- type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
- cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
- cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i]; // JinaBertLayer
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
- layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
- layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
- layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_BLOOM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MPT:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- if (!output) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- // AWQ ScaleActivation layer
- layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_STABLELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors, present in Stable LM 2 1.6B
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- // optional q and k layernorms, present in StableLM 2 12B
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_QWEN2VL:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_QWEN2MOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
- }
- // MoE branch
- const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
- layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
- }
- } break;
- case LLM_ARCH_PHI2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_PHI3:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PHIMOE:
- {
- const int64_t n_embd_head = n_embd / n_head;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- }
- } break;
- case LLM_ARCH_PLAMO:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GPT2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CODESHELL:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ORION:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_INTERNLM2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_GEMMA2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_STARCODER2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional bias tensors
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
- }
- } break;
- case LLM_ARCH_MAMBA:
- {
- const int64_t d_conv = hparams.ssm_d_conv;
- const int64_t d_inner = hparams.ssm_d_inner;
- const int64_t d_state = hparams.ssm_d_state;
- const int64_t dt_rank = hparams.ssm_dt_rank;
- // only an expansion factor of 2 is supported for now
- if (2 * n_embd != d_inner) {
- throw std::runtime_error("only an expansion factor of 2 is supported for now");
- }
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed, duplicated to allow offloading
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- // norm
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
- layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
- layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
- layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
- layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
- layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
- // no "weight" suffix for these
- layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
- layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
- // out_proj
- layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_XVERSE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COMMAND_R:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (n_layer >= 64){
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- }
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_COHERE2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
- TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
- }
- }
- break;
- case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_OLMO2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
- layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
- }
- } break;
- case LLM_ARCH_OLMOE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_OPENELM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- // init output from the input tok embed
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- for (int i = 0; i < n_layer; ++i) {
- const int64_t n_head = hparams.n_head(i);
- const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
- const int64_t n_ff = hparams.n_ff(i);
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_GPTNEOX:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_ARCTIC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
- }
- } break;
- case LLM_ARCH_DEEPSEEK:
- {
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_DEEPSEEK2:
- {
- const bool is_lite = (hparams.n_layer == 27);
- const int64_t n_embd_head_qk_rope = hparams.n_rot;
- const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
- const int64_t q_lora_rank = hparams.n_lora_q;
- const int64_t kv_lora_rank = hparams.n_lora_kv;
- const int64_t n_ff_exp = hparams.n_ff_exp;
- const int64_t n_expert_shared = hparams.n_expert_shared;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- if (!is_lite) {
- layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
- }
- layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
- if (!is_lite) {
- layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
- layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
- } else {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- }
- layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
- layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- if (i < (int) hparams.n_layer_dense_lead) {
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- } else {
- layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
- layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
- if (n_expert == 0) {
- throw std::runtime_error("n_expert must be > 0");
- }
- if (n_expert_used == 0) {
- throw std::runtime_error("n_expert_used must be > 0");
- }
- // MoE branch
- layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
- layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
- // Shared expert branch
- layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
- layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
- }
- }
- } break;
- case LLM_ARCH_BITNET:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_T5:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
- // this tensor seems to be unused in HF transformers implementation
- layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_T5ENCODER:
- {
- const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
- layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
- layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
- layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_JAIS:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHATGLM:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
- if (layer.wqkv == nullptr) {
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
- }
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_NEMOTRON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- // optional bias tensors
- layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
- layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- // optional MLP bias
- layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
- layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
- }
- } break;
- case LLM_ARCH_EXAONE:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // Block 0, LN0
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int ffn_size = hparams.n_ff_arr[0];
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
- layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
- layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, llama_model_loader::TENSOR_NOT_REQUIRED);
- GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
- layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
- layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
- layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
- layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
- }
- } break;
- case LLM_ARCH_RWKV6QWEN2:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
- const int time_mix_extra_dim = hparams.time_mix_extra_dim;
- const int time_decay_extra_dim = hparams.time_decay_extra_dim;
- const int head_size = hparams.wkv_head_size;
- const int attn_hidden_size = n_embd;
- const int n_head_kv = hparams.n_head_kv();
- int attn_key_value_size;
- if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
- attn_key_value_size = attn_hidden_size;
- } else {
- attn_key_value_size = n_head_kv * head_size;
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
- layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
- layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
- layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
- layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
- layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
- layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
- layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
- layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
- layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
- // optional bias tensors
- layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, llama_model_loader::TENSOR_NOT_REQUIRED);
- layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_CHAMELEON:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
- // if output is NULL, init from the input tok embed
- if (output == NULL) {
- output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
- layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
- layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
- layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_SOLAR:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
- // output
- {
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
- }
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = layers[i];
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
- layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
- layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
- layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
- layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
- layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
- layer.bskcn_tv = create_tensor(tn(LLM_TENSOR_BSKCN_TV, "weight", i), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
- layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
- layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
- layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
- }
- } break;
- case LLM_ARCH_WAVTOKENIZER_DEC:
- {
- tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
- conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
- conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
- // posnet
- {
- const int64_t n_embd = hparams.posnet.n_embd;
- for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
- auto & layer = layers[i].posnet;
- // posnet:
- //
- // - resnet
- // - resnet
- // - attn
- // - resnet
- // - resnet
- // - norm
- //
- switch (i) {
- case 0:
- case 1:
- case 3:
- case 4:
- {
- layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
- layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
- layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
- layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
- layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
- layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
- layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
- } break;
- case 2:
- {
- layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
- layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
- layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
- layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
- layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
- } break;
- case 5:
- {
- layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
- } break;
- default: GGML_ABORT("unknown posnet layer");
- };
- }
- }
- GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
- tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
- tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
- // convnext
- {
- const int64_t n_embd = hparams.convnext.n_embd;
- for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
- auto & layer = layers[i].convnext;
- layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
- layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
- layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
- layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
- layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
- layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
- layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
- layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
- layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
- }
- // output
- output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
- output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
- }
- output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
- output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
- } break;
- default:
- throw std::runtime_error("unknown architecture");
- }
- if (n_moved_tensors > 0) {
- LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
- __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
- ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
- }
- }
- ml.done_getting_tensors();
- ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
- pimpl->mappings.reserve(ml.mappings.size());
- // create the backend buffers
- std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
- ctx_bufs.reserve(ctx_map.size());
- // Ensure we have enough capacity for the maximum backend buffer we will potentially create
- const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
- pimpl->bufs.reserve(n_max_backend_buffer);
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- // skip contexts without tensors
- if (ggml_get_first_tensor(ctx) == nullptr) {
- continue;
- }
- llama_buf_map buf_map;
- buf_map.reserve(n_max_backend_buffer);
- // check if it is possible to use buffer_from_host_ptr with this buffer type
- ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
- if (!dev) {
- // FIXME: workaround for CPU backend buft having a NULL device
- dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
- }
- ggml_backend_dev_props props;
- ggml_backend_dev_get_props(dev, &props);
- bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
- bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
- if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- // only the mmap region containing the tensors in the model is mapped to the backend buffer
- // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
- // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
- void * addr = nullptr;
- size_t first, last; // NOLINT
- ml.get_mapping_range(&first, &last, &addr, idx, ctx);
- if (first >= last) {
- continue;
- }
- const size_t max_size = ggml_get_max_tensor_size(ctx);
- ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- pimpl->bufs.emplace_back(buf);
- buf_map.emplace(idx, buf);
- }
- }
- else {
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (buf == nullptr) {
- throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
- }
- pimpl->bufs.emplace_back(buf);
- if (use_mlock && ggml_backend_buffer_is_host(buf)) {
- pimpl->mlock_bufs.emplace_back(new llama_mlock);
- auto & mlock_buf = pimpl->mlock_bufs.back();
- mlock_buf->init (ggml_backend_buffer_get_base(buf));
- mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
- }
- for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
- buf_map.emplace(idx, buf);
- }
- }
- if (pimpl->bufs.empty()) {
- throw std::runtime_error("failed to allocate buffer");
- }
- for (auto & buf : buf_map) {
- // indicate that this buffer contains weights
- // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
- ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- }
- ctx_bufs.emplace_back(ctx, buf_map);
- }
- if (llama_supports_gpu_offload()) {
- const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
- LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
- if (n_gpu_layers > (int) hparams.n_layer) {
- LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
- }
- const int max_backend_supported_layers = hparams.n_layer + 1;
- const int max_offloadable_layers = hparams.n_layer + 1;
- LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
- }
- // print memory requirements per buffer type
- for (auto & buf : pimpl->bufs) {
- LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
- }
- // populate tensors_by_name
- for (auto & ctx : pimpl->ctxs) {
- for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
- tensors_by_name.emplace_back(ggml_get_name(cur), cur);
- }
- }
- // load tensor data
- for (auto & it : ctx_bufs) {
- ggml_context * ctx = it.first;
- auto & bufs = it.second;
- if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
- return false;
- }
- }
- if (use_mmap_buffer) {
- for (auto & mapping : ml.mappings) {
- pimpl->mappings.emplace_back(std::move(mapping));
- }
- }
- return true;
- }
- std::string llama_model::arch_name() const {
- return llm_arch_name(arch);
- }
- std::string llama_model::type_name() const {
- return llm_type_name(type);
- }
- std::string llama_model::desc() const {
- return pimpl->desc_str;
- }
- size_t llama_model::size() const {
- return pimpl->n_bytes;
- }
- size_t llama_model::max_nodes() const {
- return std::max<size_t>(8192, tensors_by_name.size()*5);
- }
- size_t llama_model::n_devices() const {
- return devices.size();
- }
- uint64_t llama_model::n_elements() const {
- return pimpl->n_elements;
- }
- void llama_model::print_info() const {
- const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
- auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
- bool is_var = false;
- std::vector<uint32_t> v;
- for (uint32_t i = 0; i < n; ++i) {
- v.push_back(f(i));
- if (v[i] != v[0]) {
- is_var = true;
- }
- }
- std::stringstream ss;
- if (is_var) {
- ss << "[";
- for (uint32_t i = 0; i < n; ++i) {
- ss << v[i];
- if (i < n - 1) {
- ss << ", ";
- }
- }
- ss << "]";
- } else {
- ss << v[0];
- }
- return ss.str();
- };
- // hparams
- LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
- LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
- if (!hparams.vocab_only) {
- LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
- LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
- LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
- LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
- LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
- LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
- LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
- LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
- LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
- LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
- LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
- LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
- LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
- LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
- LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
- LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
- LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
- LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
- LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
- LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
- LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
- LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
- LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
- LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
- LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
- LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
- LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
- LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
- }
- LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
- if (pimpl->n_elements >= 1e12) {
- LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
- } else if (pimpl->n_elements >= 1e9) {
- LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
- } else if (pimpl->n_elements >= 1e6) {
- LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
- } else {
- LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
- }
- // general kv
- LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
- if (arch == LLM_ARCH_DEEPSEEK) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- }
- if (arch == LLM_ARCH_DEEPSEEK2) {
- LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
- LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
- LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
- LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
- LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
- LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((enum llama_expert_gating_func_type) hparams.expert_gating_func));
- LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
- }
- if (arch == LLM_ARCH_QWEN2MOE) {
- LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
- LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
- }
- if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
- LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
- LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
- LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
- }
- vocab.print_info();
- }
- ggml_backend_dev_t llama_model::dev_layer(int il) const {
- return pimpl->dev_layer.at(il).dev;
- }
- ggml_backend_dev_t llama_model::dev_output() const {
- return pimpl->dev_output.dev;
- }
- template<typename F>
- static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
- ggml_init_params params = {
- /*.mem_size =*/ ggml_tensor_overhead()*8,
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context_ptr ctx { ggml_init(params) };
- if (!ctx) {
- throw std::runtime_error(format("failed to create ggml context"));
- }
- ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
- ggml_tensor * op_tensor = fn(ctx.get());
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- if (op_tensor->src[i] != nullptr) {
- assert(op_tensor->src[i]->buffer == nullptr);
- op_tensor->src[i]->buffer = buf.get();
- }
- }
- bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
- return op_supported;
- }
- template<typename F>
- static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
- for (const auto & cur : buft_list) {
- ggml_backend_dev_t cur_dev = cur.first;
- ggml_backend_buffer_type_t cur_buft = cur.second;
- if (buft_supported(cur_buft, cur_dev, fn)) {
- return cur_buft;
- }
- }
- throw std::runtime_error(format("no suitable buffer type found"));
- }
- ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
- return ::select_buft(
- *pimpl->dev_layer.at(il).buft_list,
- [&](ggml_context * ctx) {
- ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- return ggml_add(ctx, cur, layer_dir);
- });
- }
- const struct ggml_tensor * llama_model::get_tensor(const char * name) const {
- auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
- [name](const std::pair<std::string, struct ggml_tensor *> & it) {
- return it.first == name;
- });
- if (it == tensors_by_name.end()) {
- return nullptr;
- }
- return it->second;
- }
- //
- // interface implementation
- //
- struct llama_model_params llama_model_default_params() {
- struct llama_model_params result = {
- /*.devices =*/ nullptr,
- /*.n_gpu_layers =*/ 0,
- /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
- /*.main_gpu =*/ 0,
- /*.tensor_split =*/ nullptr,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- /*.kv_overrides =*/ nullptr,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.check_tensors =*/ false,
- };
- #ifdef GGML_USE_METAL
- // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
- result.n_gpu_layers = 999;
- #endif
- return result;
- }
- const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model) {
- return &model->vocab;
- }
- void llama_free_model(struct llama_model * model) {
- llama_model_free(model);
- }
- void llama_model_free(struct llama_model * model) {
- delete model;
- }
- int32_t llama_model_n_ctx_train(const struct llama_model * model) {
- return model->hparams.n_ctx_train;
- }
- int32_t llama_model_n_embd(const struct llama_model * model) {
- return model->hparams.n_embd;
- }
- int32_t llama_model_n_layer(const struct llama_model * model) {
- return model->hparams.n_layer;
- }
- int32_t llama_model_n_head(const struct llama_model * model) {
- return model->hparams.n_head();
- }
- int32_t llama_model_n_head_kv(const struct llama_model * model) {
- return model->hparams.n_head_kv();
- }
- // deprecated
- int32_t llama_n_ctx_train(const struct llama_model * model) {
- return llama_model_n_ctx_train(model);
- }
- // deprecated
- int32_t llama_n_embd(const struct llama_model * model) {
- return llama_model_n_embd(model);
- }
- // deprecated
- int32_t llama_n_layer(const struct llama_model * model) {
- return llama_model_n_layer(model);
- }
- // deprecated
- int32_t llama_n_head(const struct llama_model * model) {
- return llama_model_n_head(model);
- }
- enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
- switch (model->arch) {
- // these models do not use RoPE
- case LLM_ARCH_GPT2:
- case LLM_ARCH_GPTJ:
- case LLM_ARCH_MPT:
- case LLM_ARCH_REFACT:
- case LLM_ARCH_BLOOM:
- case LLM_ARCH_MAMBA:
- case LLM_ARCH_JINA_BERT_V2:
- case LLM_ARCH_T5:
- case LLM_ARCH_T5ENCODER:
- case LLM_ARCH_JAIS:
- case LLM_ARCH_RWKV6:
- case LLM_ARCH_RWKV6QWEN2:
- case LLM_ARCH_WAVTOKENIZER_DEC:
- return LLAMA_ROPE_TYPE_NONE;
- // use what we call a normal RoPE, operating on pairs of consecutive head values
- case LLM_ARCH_LLAMA:
- case LLM_ARCH_MLLAMA:
- case LLM_ARCH_DECI:
- case LLM_ARCH_BAICHUAN:
- case LLM_ARCH_STARCODER:
- case LLM_ARCH_PLAMO:
- case LLM_ARCH_ORION:
- case LLM_ARCH_INTERNLM2:
- case LLM_ARCH_MINICPM:
- case LLM_ARCH_XVERSE:
- case LLM_ARCH_COMMAND_R:
- case LLM_ARCH_COHERE2:
- case LLM_ARCH_OLMO:
- case LLM_ARCH_ARCTIC:
- case LLM_ARCH_DEEPSEEK:
- case LLM_ARCH_DEEPSEEK2:
- case LLM_ARCH_CHATGLM:
- case LLM_ARCH_GRANITE:
- case LLM_ARCH_GRANITE_MOE:
- case LLM_ARCH_CHAMELEON:
- case LLM_ARCH_SOLAR:
- return LLAMA_ROPE_TYPE_NORM;
- // the pairs of head values are offset by n_rot/2
- case LLM_ARCH_FALCON:
- case LLM_ARCH_GROK:
- case LLM_ARCH_DBRX:
- case LLM_ARCH_BERT:
- case LLM_ARCH_NOMIC_BERT:
- case LLM_ARCH_STABLELM:
- case LLM_ARCH_BITNET:
- case LLM_ARCH_QWEN:
- case LLM_ARCH_QWEN2:
- case LLM_ARCH_QWEN2MOE:
- case LLM_ARCH_OLMO2:
- case LLM_ARCH_OLMOE:
- case LLM_ARCH_PHI2:
- case LLM_ARCH_PHI3:
- case LLM_ARCH_PHIMOE:
- case LLM_ARCH_GEMMA:
- case LLM_ARCH_GEMMA2:
- case LLM_ARCH_STARCODER2:
- case LLM_ARCH_OPENELM:
- case LLM_ARCH_GPTNEOX:
- case LLM_ARCH_CODESHELL:
- case LLM_ARCH_NEMOTRON:
- case LLM_ARCH_EXAONE:
- case LLM_ARCH_MINICPM3:
- return LLAMA_ROPE_TYPE_NEOX;
- case LLM_ARCH_QWEN2VL:
- return LLAMA_ROPE_TYPE_MROPE;
- // all model arches should be listed explicitly here
- case LLM_ARCH_UNKNOWN:
- GGML_ABORT("unknown architecture");
- }
- return LLAMA_ROPE_TYPE_NONE;
- }
- float llama_model_rope_freq_scale_train(const struct llama_model * model) {
- return model->hparams.rope_freq_scale_train;
- }
- int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_meta_count(const struct llama_model * model) {
- return (int)model->gguf_kv.size();
- }
- int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->first.c_str());
- }
- int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
- if (i < 0 || i >= (int)model->gguf_kv.size()) {
- if (buf_size > 0) {
- buf[0] = '\0';
- }
- return -1;
- }
- auto it = model->gguf_kv.begin();
- std::advance(it, i);
- return snprintf(buf, buf_size, "%s", it->second.c_str());
- }
- int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
- return snprintf(buf, buf_size, "%s", model->desc().c_str());
- }
- uint64_t llama_model_size(const struct llama_model * model) {
- return model->size();
- }
- const char * llama_model_chat_template(const struct llama_model * model, const char * name) {
- const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
- : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
- const auto & it = model->gguf_kv.find(key);
- if (it == model->gguf_kv.end()) {
- return nullptr;
- }
- return it->second.c_str();
- }
- uint64_t llama_model_n_params(const struct llama_model * model) {
- return model->n_elements();
- }
- bool llama_model_has_encoder(const struct llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5: return true;
- case LLM_ARCH_T5ENCODER: return true;
- default: return false;
- }
- }
- bool llama_model_has_decoder(const struct llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_T5ENCODER: return false;
- default: return true;
- }
- }
- llama_token llama_model_decoder_start_token(const struct llama_model * model) {
- return model->hparams.dec_start_token_id;
- }
- bool llama_model_is_recurrent(const struct llama_model * model) {
- switch (model->arch) {
- case LLM_ARCH_MAMBA: return true;
- case LLM_ARCH_RWKV6: return true;
- case LLM_ARCH_RWKV6QWEN2: return true;
- default: return false;
- }
- }
|