oai.hpp 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225
  1. #pragma once
  2. #include <string>
  3. #include <vector>
  4. #include <set>
  5. #include <mutex>
  6. #include <condition_variable>
  7. #include <unordered_map>
  8. #include "json.hpp"
  9. #include "utils.hpp"
  10. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
  11. using json = nlohmann::json;
  12. inline static json oaicompat_completion_params_parse(
  13. const struct llama_model * model,
  14. const json &body, /* openai api json semantics */
  15. const std::string &chat_template)
  16. {
  17. json llama_params;
  18. llama_params["__oaicompat"] = true;
  19. // Map OpenAI parameters to llama.cpp parameters
  20. //
  21. // For parameters that are defined by the OpenAI documentation (e.g.
  22. // temperature), we explicitly specify OpenAI's intended default; we
  23. // need to do that because sometimes OpenAI disagrees with llama.cpp
  24. //
  25. // https://platform.openai.com/docs/api-reference/chat/create
  26. llama_sampling_params default_sparams;
  27. llama_params["model"] = json_value(body, "model", std::string("unknown"));
  28. llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
  29. llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
  30. llama_params["temperature"] = json_value(body, "temperature", 0.0);
  31. llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
  32. llama_params["top_p"] = json_value(body, "top_p", 1.0);
  33. llama_params["n_predict"] = json_value(body, "max_tokens", -1);
  34. llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
  35. llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
  36. llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
  37. llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
  38. llama_params["stream"] = json_value(body, "stream", false);
  39. llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
  40. llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
  41. llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
  42. llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
  43. llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
  44. llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
  45. llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
  46. llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
  47. if (body.count("grammar") != 0) {
  48. llama_params["grammar"] = json_value(body, "grammar", json::object());
  49. }
  50. // Handle 'stop' field
  51. if (body.contains("stop") && body["stop"].is_string()) {
  52. llama_params["stop"] = json::array({body["stop"].get<std::string>()});
  53. } else {
  54. llama_params["stop"] = json_value(body, "stop", json::array());
  55. }
  56. // Ensure there is ChatML-specific end sequence among stop words
  57. llama_params["stop"].push_back("<|im_end|>");
  58. return llama_params;
  59. }
  60. inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
  61. {
  62. json result = response.result_json;
  63. bool stopped_word = result.count("stopped_word") != 0;
  64. bool stopped_eos = json_value(result, "stopped_eos", false);
  65. int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
  66. int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
  67. std::string content = json_value(result, "content", std::string(""));
  68. std::string finish_reason = "length";
  69. if (stopped_word || stopped_eos) {
  70. finish_reason = "stop";
  71. }
  72. json choices =
  73. streaming ? json::array({json{{"finish_reason", finish_reason},
  74. {"index", 0},
  75. {"delta", json::object()}}})
  76. : json::array({json{{"finish_reason", finish_reason},
  77. {"index", 0},
  78. {"message", json{{"content", content},
  79. {"role", "assistant"}}}}});
  80. std::time_t t = std::time(0);
  81. json res =
  82. json{{"choices", choices},
  83. {"created", t},
  84. {"model",
  85. json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  86. {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
  87. {"usage",
  88. json{{"completion_tokens", num_tokens_predicted},
  89. {"prompt_tokens", num_prompt_tokens},
  90. {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
  91. {"id", gen_chatcmplid()}};
  92. if (server_verbose) {
  93. res["__verbose"] = result;
  94. }
  95. if (result.contains("completion_probabilities")) {
  96. res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
  97. }
  98. return res;
  99. }
  100. // return value is vector as there is one case where we might need to generate two responses
  101. inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
  102. json result = response.result_json;
  103. if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
  104. return std::vector<json>({response.result_json});
  105. }
  106. bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
  107. std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  108. bool stopped_word = json_value(result, "stopped_word", false);
  109. bool stopped_eos = json_value(result, "stopped_eos", false);
  110. bool stopped_limit = json_value(result, "stopped_limit", false);
  111. std::string content = json_value(result, "content", std::string(""));
  112. std::string finish_reason;
  113. if (stopped_word || stopped_eos) {
  114. finish_reason = "stop";
  115. }
  116. if (stopped_limit) {
  117. finish_reason = "length";
  118. }
  119. std::time_t t = std::time(0);
  120. json choices;
  121. if (!finish_reason.empty()) {
  122. choices = json::array({json{{"finish_reason", finish_reason},
  123. {"index", 0},
  124. {"delta", json::object()}}});
  125. } else {
  126. if (first) {
  127. if (content.empty()) {
  128. choices = json::array({json{{"finish_reason", nullptr},
  129. {"index", 0},
  130. {"delta", json{{"role", "assistant"}}}}});
  131. } else {
  132. // We have to send this as two updates to conform to openai behavior
  133. json initial_ret = json{{"choices", json::array({json{
  134. {"finish_reason", nullptr},
  135. {"index", 0},
  136. {"delta", json{
  137. {"role", "assistant"}
  138. }}}})},
  139. {"created", t},
  140. {"id", gen_chatcmplid()},
  141. {"model", modelname},
  142. {"object", "chat.completion.chunk"}};
  143. json second_ret = json{
  144. {"choices", json::array({json{{"finish_reason", nullptr},
  145. {"index", 0},
  146. {"delta", json{
  147. {"content", content}}}
  148. }})},
  149. {"created", t},
  150. {"id", gen_chatcmplid()},
  151. {"model", modelname},
  152. {"object", "chat.completion.chunk"}};
  153. return std::vector<json>({initial_ret, second_ret});
  154. }
  155. } else {
  156. // Some idiosyncrasy in task processing logic makes several trailing calls
  157. // with empty content, we ignore these at the calee site.
  158. if (content.empty()) {
  159. return std::vector<json>({json::object()});
  160. }
  161. choices = json::array({json{
  162. {"finish_reason", nullptr},
  163. {"index", 0},
  164. {"delta",
  165. json{
  166. {"content", content},
  167. }},
  168. }});
  169. }
  170. }
  171. json ret = json{{"choices", choices},
  172. {"created", t},
  173. {"id", gen_chatcmplid()},
  174. {"model", modelname},
  175. {"object", "chat.completion.chunk"}};
  176. return std::vector<json>({ret});
  177. }
  178. inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
  179. {
  180. json res =
  181. json{
  182. {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  183. {"object", "list"},
  184. {"usage",
  185. json{{"prompt_tokens", 0},
  186. {"total_tokens", 0}}},
  187. {"data", embeddings}
  188. };
  189. return res;
  190. }