123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- #pragma once
- #include <string>
- #include <vector>
- #include <set>
- #include <mutex>
- #include <condition_variable>
- #include <unordered_map>
- #include "json.hpp"
- #include "utils.hpp"
- #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
- using json = nlohmann::json;
- inline static json oaicompat_completion_params_parse(
- const struct llama_model * model,
- const json &body, /* openai api json semantics */
- const std::string &chat_template)
- {
- json llama_params;
- llama_params["__oaicompat"] = true;
- // Map OpenAI parameters to llama.cpp parameters
- //
- // For parameters that are defined by the OpenAI documentation (e.g.
- // temperature), we explicitly specify OpenAI's intended default; we
- // need to do that because sometimes OpenAI disagrees with llama.cpp
- //
- // https://platform.openai.com/docs/api-reference/chat/create
- llama_sampling_params default_sparams;
- llama_params["model"] = json_value(body, "model", std::string("unknown"));
- llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
- llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
- llama_params["temperature"] = json_value(body, "temperature", 0.0);
- llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
- llama_params["top_p"] = json_value(body, "top_p", 1.0);
- llama_params["n_predict"] = json_value(body, "max_tokens", -1);
- llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
- llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
- llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
- llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
- llama_params["stream"] = json_value(body, "stream", false);
- llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
- llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
- llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
- llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
- llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
- llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
- llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
- llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
- if (body.count("grammar") != 0) {
- llama_params["grammar"] = json_value(body, "grammar", json::object());
- }
- // Handle 'stop' field
- if (body.contains("stop") && body["stop"].is_string()) {
- llama_params["stop"] = json::array({body["stop"].get<std::string>()});
- } else {
- llama_params["stop"] = json_value(body, "stop", json::array());
- }
- // Ensure there is ChatML-specific end sequence among stop words
- llama_params["stop"].push_back("<|im_end|>");
- return llama_params;
- }
- inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
- {
- json result = response.result_json;
- bool stopped_word = result.count("stopped_word") != 0;
- bool stopped_eos = json_value(result, "stopped_eos", false);
- int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
- int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
- std::string content = json_value(result, "content", std::string(""));
- std::string finish_reason = "length";
- if (stopped_word || stopped_eos) {
- finish_reason = "stop";
- }
- json choices =
- streaming ? json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()}}})
- : json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"message", json{{"content", content},
- {"role", "assistant"}}}}});
- std::time_t t = std::time(0);
- json res =
- json{{"choices", choices},
- {"created", t},
- {"model",
- json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
- {"usage",
- json{{"completion_tokens", num_tokens_predicted},
- {"prompt_tokens", num_prompt_tokens},
- {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
- {"id", gen_chatcmplid()}};
- if (server_verbose) {
- res["__verbose"] = result;
- }
- if (result.contains("completion_probabilities")) {
- res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
- }
- return res;
- }
- // return value is vector as there is one case where we might need to generate two responses
- inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
- json result = response.result_json;
- if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
- return std::vector<json>({response.result_json});
- }
- bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
- std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
- bool stopped_word = json_value(result, "stopped_word", false);
- bool stopped_eos = json_value(result, "stopped_eos", false);
- bool stopped_limit = json_value(result, "stopped_limit", false);
- std::string content = json_value(result, "content", std::string(""));
- std::string finish_reason;
- if (stopped_word || stopped_eos) {
- finish_reason = "stop";
- }
- if (stopped_limit) {
- finish_reason = "length";
- }
- std::time_t t = std::time(0);
- json choices;
- if (!finish_reason.empty()) {
- choices = json::array({json{{"finish_reason", finish_reason},
- {"index", 0},
- {"delta", json::object()}}});
- } else {
- if (first) {
- if (content.empty()) {
- choices = json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{{"role", "assistant"}}}}});
- } else {
- // We have to send this as two updates to conform to openai behavior
- json initial_ret = json{{"choices", json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{
- {"role", "assistant"}
- }}}})},
- {"created", t},
- {"id", gen_chatcmplid()},
- {"model", modelname},
- {"object", "chat.completion.chunk"}};
- json second_ret = json{
- {"choices", json::array({json{{"finish_reason", nullptr},
- {"index", 0},
- {"delta", json{
- {"content", content}}}
- }})},
- {"created", t},
- {"id", gen_chatcmplid()},
- {"model", modelname},
- {"object", "chat.completion.chunk"}};
- return std::vector<json>({initial_ret, second_ret});
- }
- } else {
- // Some idiosyncrasy in task processing logic makes several trailing calls
- // with empty content, we ignore these at the calee site.
- if (content.empty()) {
- return std::vector<json>({json::object()});
- }
- choices = json::array({json{
- {"finish_reason", nullptr},
- {"index", 0},
- {"delta",
- json{
- {"content", content},
- }},
- }});
- }
- }
- json ret = json{{"choices", choices},
- {"created", t},
- {"id", gen_chatcmplid()},
- {"model", modelname},
- {"object", "chat.completion.chunk"}};
- return std::vector<json>({ret});
- }
- inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
- {
- json res =
- json{
- {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
- {"object", "list"},
- {"usage",
- json{{"prompt_tokens", 0},
- {"total_tokens", 0}}},
- {"data", embeddings}
- };
- return res;
- }
|