llama.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. package llama
  2. /*
  3. #cgo CFLAGS: -std=c11 -DNDEBUG -DLOG_DISABLE_LOGS
  4. #cgo CXXFLAGS: -std=c++11 -DNDEBUG -DLOG_DISABLE_LOGS
  5. #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  6. #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  7. #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
  8. #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  9. #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
  10. #cgo darwin,amd64 LDFLAGS: -framework Foundation
  11. #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  12. #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
  13. #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
  14. #cgo linux CFLAGS: -D_GNU_SOURCE
  15. #cgo linux CXXFLAGS: -D_GNU_SOURCE
  16. #cgo windows CFLAGS: -Wno-discarded-qualifiers
  17. #cgo windows LDFLAGS: -lmsvcrt
  18. #cgo avx CFLAGS: -mavx
  19. #cgo avx CXXFLAGS: -mavx
  20. #cgo avx2 CFLAGS: -mavx2 -mfma
  21. #cgo avx2 CXXFLAGS: -mavx2 -mfma
  22. #cgo cuda CFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  23. #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  24. #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  25. #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
  26. #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  27. #cgo windows,cuda LDFLAGS: -L${SRCDIR} -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt
  28. #cgo windows,rocm LDFLAGS: -L${SRCDIR} -lggml_hipblas -lhipblas -lamdhip64 -lrocblas
  29. #cgo linux,cuda LDFLAGS: -L${SRCDIR} -L/usr/local/cuda/lib64 -lggml_cuda -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt
  30. #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib
  31. #include <stdlib.h>
  32. #include "llama.h"
  33. #include "clip.h"
  34. #include "llava.h"
  35. #include "sampling_ext.h"
  36. bool llamaProgressCallback(float progress, void *user_data);
  37. extern const char *ggml_metallib_start;
  38. extern const char *ggml_metallib_end;
  39. */
  40. import "C"
  41. import (
  42. _ "embed"
  43. "errors"
  44. "fmt"
  45. "runtime"
  46. "runtime/cgo"
  47. "strings"
  48. "unsafe"
  49. )
  50. //go:embed ggml-common.h
  51. var ggmlCommon string
  52. //go:embed ggml-metal.metal
  53. var ggmlMetal string
  54. func init() {
  55. metal := strings.ReplaceAll(ggmlMetal, `#include "ggml-common.h"`, ggmlCommon)
  56. cMetal := C.CString(metal)
  57. C.ggml_metallib_start = cMetal
  58. C.ggml_metallib_end = (*C.char)(unsafe.Pointer(uintptr(unsafe.Pointer(cMetal)) + uintptr(len(metal))))
  59. }
  60. func BackendInit() {
  61. C.llama_backend_init()
  62. }
  63. func PrintSystemInfo() string {
  64. return C.GoString(C.llama_print_system_info())
  65. }
  66. type ContextParams struct {
  67. c C.struct_llama_context_params
  68. }
  69. func NewContextParams(numCtx int, threads int, flashAttention bool) ContextParams {
  70. params := C.llama_context_default_params()
  71. params.n_ctx = C.uint(numCtx)
  72. params.n_threads = C.uint(runtime.NumCPU())
  73. params.n_threads_batch = params.n_threads
  74. params.embeddings = C.bool(true)
  75. params.flash_attn = C.bool(flashAttention)
  76. params.n_threads = C.uint(threads)
  77. return ContextParams{c: params}
  78. }
  79. type ModelParams struct {
  80. c C.struct_llama_model_params
  81. }
  82. //export llamaProgressCallback
  83. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  84. handle := cgo.Handle(userData)
  85. callback := handle.Value().(func(float32))
  86. callback(float32(progress))
  87. return true
  88. }
  89. func NewModelParams(numGpuLayers int, mainGpu int, callback func(float32)) ModelParams {
  90. params := C.llama_model_default_params()
  91. params.n_gpu_layers = C.int(numGpuLayers)
  92. params.main_gpu = C.int32_t(mainGpu)
  93. handle := cgo.NewHandle(callback)
  94. params.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  95. params.progress_callback_user_data = unsafe.Pointer(handle)
  96. runtime.SetFinalizer(&params, func(p *C.struct_llama_model_params) {
  97. handle.Delete()
  98. })
  99. return ModelParams{c: params}
  100. }
  101. type Context struct {
  102. c *C.struct_llama_context
  103. }
  104. func (c *Context) KvCacheClear() {
  105. C.llama_kv_cache_clear(c.c)
  106. }
  107. func (c *Context) Decode(batch Batch) error {
  108. // Positive return values does not mean a fatal error, but rather a warning.
  109. // 0 - success
  110. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  111. // < 0 - error
  112. code := int(C.llama_decode(c.c, batch.c))
  113. if code < 0 {
  114. return fmt.Errorf("llama_decode failed with code %d", code)
  115. }
  116. if code > 0 {
  117. return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code)
  118. }
  119. return nil
  120. }
  121. func (c *Context) Model() *Model {
  122. return &Model{c: C.llama_get_model(c.c)}
  123. }
  124. func (c *Context) GetLogitsIth(i int) []float32 {
  125. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_logits_ith(c.c, C.int(i)))), c.Model().NumVocab())
  126. }
  127. func (c *Context) SampleTokenGreedy(logits []float32) int {
  128. candidates := (*C.struct_llama_token_data)(C.malloc(C.size_t(len(logits)) * C.size_t(unsafe.Sizeof(C.struct_llama_token_data{}))))
  129. defer C.free(unsafe.Pointer(candidates))
  130. for i, logit := range logits {
  131. ptr := (*C.struct_llama_token_data)(unsafe.Pointer(uintptr(unsafe.Pointer(candidates)) + uintptr(i)*unsafe.Sizeof(C.struct_llama_token_data{})))
  132. ptr.id = C.int(i)
  133. ptr.logit = C.float(logit)
  134. ptr.p = 0.0
  135. }
  136. return int(C.llama_sample_token_greedy(c.c, &C.llama_token_data_array{
  137. data: candidates,
  138. size: C.size_t(len(logits)),
  139. sorted: C.bool(false),
  140. }))
  141. }
  142. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  143. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  144. }
  145. // Get the embeddings for a sequence id
  146. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  147. embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  148. if embeddings == nil {
  149. return nil
  150. }
  151. return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
  152. }
  153. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  154. return unsafe.Slice((*float32)(unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))), c.Model().NEmbd())
  155. }
  156. func LoadModelFromFile(modelPath string, params ModelParams) *Model {
  157. return &Model{c: C.llama_load_model_from_file(C.CString(modelPath), params.c)}
  158. }
  159. func NewContextWithModel(model *Model, params ContextParams) *Context {
  160. return &Context{c: C.llama_new_context_with_model(model.c, params.c)}
  161. }
  162. func (m *Model) NumVocab() int {
  163. return int(C.llama_n_vocab(m.c))
  164. }
  165. func (m *Model) TokenIsEog(token int) bool {
  166. return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
  167. }
  168. func (m *Model) ApplyLoraFromFile(loraPath string, scale float32, baseModelPath string, threads int) error {
  169. cLoraPath := C.CString(loraPath)
  170. defer C.free(unsafe.Pointer(cLoraPath))
  171. var cBaseModelPath *C.char
  172. if baseModelPath != "" {
  173. cBaseModelPath = C.CString(baseModelPath)
  174. }
  175. code := int(C.llama_model_apply_lora_from_file(m.c, cLoraPath, C.float(scale), cBaseModelPath, C.int32_t(threads)))
  176. if code != 0 {
  177. return errors.New("error applying lora from file")
  178. }
  179. return nil
  180. }
  181. type Batch struct {
  182. c C.struct_llama_batch
  183. }
  184. func NewBatch(nTokens int, embd int, maxSeq int) Batch {
  185. return Batch{c: C.llama_batch_init(C.int(nTokens), C.int(embd), C.int(maxSeq))}
  186. }
  187. func (b *Batch) NumTokens() int {
  188. return int(b.c.n_tokens)
  189. }
  190. // Add adds a token to the batch with the given position for the given
  191. // sequence ids, and optionally instructs to include logits.
  192. func (b *Batch) Add(token int, pos int, seqIds []int, logits bool) {
  193. unsafe.Slice(b.c.token, 512)[b.c.n_tokens] = C.llama_token(token)
  194. unsafe.Slice(b.c.pos, 512)[b.c.n_tokens] = C.llama_pos(pos)
  195. unsafe.Slice(b.c.n_seq_id, 512)[b.c.n_tokens] = C.int(len(seqIds))
  196. for i, s := range seqIds {
  197. unsafe.Slice((unsafe.Slice(b.c.seq_id, 512)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  198. }
  199. if logits {
  200. unsafe.Slice(b.c.logits, 512)[b.c.n_tokens] = 1
  201. }
  202. b.c.n_tokens += 1
  203. }
  204. func (b *Batch) Clear() {
  205. b.c.n_tokens = 0
  206. }
  207. func (b *Batch) Free() {
  208. C.llama_batch_free(b.c)
  209. }
  210. func BatchGetOne(tokens []int, pos0 int, seqId int) Batch {
  211. return Batch{c: C.llama_batch_get_one((*C.int)(unsafe.Pointer(&tokens[0])), C.int32_t(len(tokens)), C.int(pos0), C.int(seqId))}
  212. }
  213. type Model struct {
  214. c *C.struct_llama_model
  215. }
  216. func (m *Model) TokenToPiece(token int) string {
  217. buf := make([]byte, 12)
  218. C.llama_token_to_piece(
  219. m.c,
  220. C.int32_t(token),
  221. (*C.char)(unsafe.Pointer(&buf[0])),
  222. C.int32_t(12),
  223. C.bool(true),
  224. )
  225. return strings.TrimRight(string(buf), "\x00")
  226. }
  227. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  228. maxTokens := len(text) + 2
  229. cTokens := make([]C.llama_token, maxTokens)
  230. cText := C.CString(text)
  231. defer C.free(unsafe.Pointer(cText))
  232. result := C.llama_tokenize(
  233. m.c,
  234. cText,
  235. C.int32_t(len(text)),
  236. &cTokens[0],
  237. C.int32_t(maxTokens),
  238. C.bool(addSpecial),
  239. C.bool(parseSpecial),
  240. )
  241. if result < 0 {
  242. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  243. }
  244. tokens := make([]int, result)
  245. for i := range result {
  246. tokens[i] = int(cTokens[i])
  247. }
  248. return tokens, nil
  249. }
  250. func (m *Model) NEmbd() int {
  251. return int(C.llama_n_embd(m.c))
  252. }
  253. func Quantize(infile, outfile string, ftype uint32) error {
  254. cinfile := C.CString(infile)
  255. defer C.free(unsafe.Pointer(cinfile))
  256. coutfile := C.CString(outfile)
  257. defer C.free(unsafe.Pointer(coutfile))
  258. params := C.llama_model_quantize_default_params()
  259. params.nthread = -1
  260. params.ftype = ftype
  261. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  262. return fmt.Errorf("llama_model_quantize: %d", rc)
  263. }
  264. return nil
  265. }
  266. // llava
  267. type ClipContext struct {
  268. c *C.struct_clip_ctx
  269. }
  270. func NewClipContext(modelPath string) *ClipContext {
  271. mp := C.CString(modelPath)
  272. defer C.free(unsafe.Pointer(mp))
  273. cc := C.clip_model_load(mp, 1)
  274. return &ClipContext{c: cc}
  275. }
  276. type LlavaContext struct {
  277. c *C.struct_llava_context
  278. }
  279. type LlavaImageEmbed struct {
  280. c *C.struct_llava_image_embed
  281. }
  282. func NewLlavaImageEmbed(clipContext *ClipContext, data []byte) *LlavaImageEmbed {
  283. return &LlavaImageEmbed{c: C.llava_image_embed_make_with_bytes(clipContext.c, C.int(runtime.NumCPU()), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))}
  284. }
  285. func LlavaEvalImageEmbed(llamaContext *Context, embed *LlavaImageEmbed, nBatch int, nPast *int) {
  286. C.llava_eval_image_embed(llamaContext.c, embed.c, C.int(nBatch), (*C.int)(unsafe.Pointer(nPast)))
  287. }
  288. // sampling
  289. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  290. type SamplingContext struct {
  291. c *C.struct_llama_sampling_context
  292. }
  293. type SamplingParams struct {
  294. TopK int
  295. TopP float32
  296. TfsZ float32
  297. TypicalP float32
  298. Temp float32
  299. PenaltyRepeat float32
  300. PenaltyFreq float32
  301. PenaltyPresent float32
  302. Mirostat int
  303. MirostatTau float32
  304. MirostatEta float32
  305. PenalizeNl bool
  306. Seed uint32
  307. Grammar string
  308. }
  309. func NewSamplingContext(params SamplingParams) *SamplingContext {
  310. var cparams C.struct_llama_sampling_cparams
  311. cparams.top_k = C.int32_t(params.TopK)
  312. cparams.top_p = C.float(params.TopP)
  313. cparams.tfs_z = C.float(params.TfsZ)
  314. cparams.typical_p = C.float(params.TypicalP)
  315. cparams.temp = C.float(params.Temp)
  316. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  317. cparams.penalty_freq = C.float(params.PenaltyFreq)
  318. cparams.penalty_present = C.float(params.PenaltyFreq)
  319. cparams.mirostat = C.int32_t(params.Mirostat)
  320. cparams.mirostat_tau = C.float(params.MirostatTau)
  321. cparams.mirostat_eta = C.float(params.MirostatEta)
  322. cparams.penalize_nl = C.bool(params.PenalizeNl)
  323. cparams.seed = C.uint32_t(params.Seed)
  324. grammar := C.CString(params.Grammar)
  325. defer C.free(unsafe.Pointer(grammar))
  326. cparams.grammar = grammar
  327. return &SamplingContext{c: C.llama_sampling_cinit(&cparams)}
  328. }
  329. func (s *SamplingContext) Free() {
  330. C.llama_sampling_cfree(s.c)
  331. }
  332. func (s *SamplingContext) Reset() {
  333. C.llama_sampling_creset(s.c)
  334. }
  335. func (s *SamplingContext) Sample(ctxMain *Context, ctxConfig *Context, idx int) int {
  336. // TODO (jmorganca): handle nil for all args
  337. if ctxConfig == nil {
  338. return int(C.llama_sampling_csample(s.c, ctxMain.c, nil, C.int(idx)))
  339. }
  340. return int(C.llama_sampling_csample(s.c, ctxMain.c, ctxConfig.c, C.int(idx)))
  341. }
  342. func (s *SamplingContext) Accept(ctxMain *Context, id int, applyGrammar bool) {
  343. C.llama_sampling_caccept(s.c, ctxMain.c, C.llama_token(id), C.bool(applyGrammar))
  344. }