ggml.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. package ggml
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "log/slog"
  8. "slices"
  9. "strings"
  10. "github.com/ollama/ollama/fs/util/bufioutil"
  11. )
  12. type GGML struct {
  13. container
  14. model
  15. }
  16. type model interface {
  17. KV() KV
  18. Tensors() Tensors
  19. }
  20. type KV map[string]any
  21. func (kv KV) Architecture() string {
  22. return kv.String("general.architecture", "unknown")
  23. }
  24. func (kv KV) Kind() string {
  25. return kv.String("general.type", "unknown")
  26. }
  27. func (kv KV) ParameterCount() uint64 {
  28. return keyValue[uint64](kv, "general.parameter_count")
  29. }
  30. func (kv KV) FileType() fileType {
  31. if t := kv.Uint("general.file_type"); t > 0 {
  32. return fileType(t)
  33. }
  34. return fileTypeUnknown
  35. }
  36. func (kv KV) BlockCount() uint64 {
  37. return uint64(kv.Uint("block_count"))
  38. }
  39. func (kv KV) EmbeddingLength() uint64 {
  40. return uint64(kv.Uint("embedding_length"))
  41. }
  42. func (kv KV) HeadCount() uint64 {
  43. return uint64(kv.Uint("attention.head_count"))
  44. }
  45. func (kv KV) HeadCountKV() uint64 {
  46. return uint64(kv.Uint("attention.head_count_kv", 1))
  47. }
  48. func (kv KV) EmbeddingHeadCount() uint64 {
  49. if heads := kv.HeadCount(); heads > 0 {
  50. return kv.EmbeddingLength() / heads
  51. }
  52. return 0
  53. }
  54. func (kv KV) EmbeddingHeadCountK() uint64 {
  55. return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
  56. }
  57. func (kv KV) EmbeddingHeadCountV() uint64 {
  58. return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
  59. }
  60. func (kv KV) GQA() uint64 {
  61. return kv.HeadCount() / kv.HeadCountKV()
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return uint64(kv.Uint("context_length"))
  65. }
  66. func (kv KV) ChatTemplate() string {
  67. return kv.String("tokenizer.chat_template")
  68. }
  69. func (kv KV) String(key string, defaultValue ...string) string {
  70. return keyValue(kv, key, append(defaultValue, "")...)
  71. }
  72. func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
  73. return keyValue(kv, key, append(defaultValue, 0)...)
  74. }
  75. func (kv KV) Float(key string, defaultValue ...float32) float32 {
  76. return keyValue(kv, key, append(defaultValue, 0)...)
  77. }
  78. func (kv KV) Bool(key string, defaultValue ...bool) bool {
  79. return keyValue(kv, key, append(defaultValue, false)...)
  80. }
  81. func (kv KV) Strings(key string, defaultValue ...[]string) []string {
  82. r := keyValue(kv, key, &array{})
  83. s := make([]string, r.size)
  84. for i := range r.size {
  85. s[i] = r.values[i].(string)
  86. }
  87. return s
  88. }
  89. func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
  90. r := keyValue(kv, key, &array{})
  91. s := make([]uint32, r.size)
  92. for i := range r.size {
  93. s[i] = uint32(r.values[i].(int32))
  94. }
  95. return s
  96. }
  97. func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
  98. r := keyValue(kv, key, &array{})
  99. s := make([]float32, r.size)
  100. for i := range r.size {
  101. s[i] = float32(r.values[i].(float32))
  102. }
  103. return s
  104. }
  105. func (kv KV) OllamaEngineRequired() bool {
  106. return kv.Architecture() == "gemma3"
  107. }
  108. func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
  109. if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
  110. key = kv.Architecture() + "." + key
  111. }
  112. if val, ok := kv[key]; ok {
  113. return val.(T)
  114. }
  115. slog.Warn("key not found", "key", key, "default", defaultValue[0])
  116. return defaultValue[0]
  117. }
  118. type Tensors struct {
  119. items []*Tensor
  120. Offset uint64
  121. }
  122. func (s Tensors) Items(prefix ...string) []*Tensor {
  123. if len(prefix) == 0 {
  124. return s.items
  125. }
  126. var items []*Tensor
  127. for _, t := range s.items {
  128. if strings.HasPrefix(t.Name, prefix[0]) {
  129. items = append(items, t)
  130. }
  131. }
  132. return items
  133. }
  134. func (ts Tensors) GroupLayers() map[string]Layer {
  135. layers := make(map[string]Layer)
  136. for _, t := range ts.items {
  137. parts := strings.Split(t.Name, ".")
  138. if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
  139. if len(parts) > index+2 {
  140. // blk and mm should have a number after them, join it
  141. parts = append(
  142. []string{strings.Join(parts[:index+2], ".")},
  143. parts[index+2:]...)
  144. }
  145. }
  146. if _, ok := layers[parts[0]]; !ok {
  147. layers[parts[0]] = make(Layer)
  148. }
  149. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  150. }
  151. return layers
  152. }
  153. type Layer map[string]*Tensor
  154. func (l Layer) Size() (size uint64) {
  155. for _, t := range l {
  156. size += t.Size()
  157. }
  158. return size
  159. }
  160. type Tensor struct {
  161. Name string `json:"name"`
  162. Kind uint32 `json:"kind"`
  163. Offset uint64 `json:"-"`
  164. // Shape is the number of elements in each dimension
  165. Shape []uint64 `json:"shape"`
  166. io.WriterTo `json:"-"`
  167. }
  168. func (t Tensor) block() (n int) {
  169. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  170. return -1
  171. }
  172. return
  173. }
  174. func (t Tensor) blockSize() uint64 {
  175. switch t.Kind {
  176. case
  177. 0, // F32
  178. 1, // F16
  179. 24, // I8
  180. 25, // I16
  181. 26, // I32
  182. 27, // I64
  183. 28, // F64
  184. 30: // BF16
  185. return 1
  186. case
  187. 2, // Q4_0
  188. 3, // Q4_1
  189. 6, // Q5_0
  190. 7, // Q5_1
  191. 8, // Q8_0
  192. 9, // Q8_1
  193. 20: // IQ4_NL
  194. return 32
  195. default:
  196. return 256
  197. }
  198. }
  199. func (t Tensor) typeSize() uint64 {
  200. blockSize := t.blockSize()
  201. switch t.Kind {
  202. case 0: // FP32
  203. return 4
  204. case 1: // FP16
  205. return 2
  206. case 2: // Q4_0
  207. return 2 + blockSize/2
  208. case 3: // Q4_1
  209. return 2 + 2 + blockSize/2
  210. case 6: // Q5_0
  211. return 2 + 4 + blockSize/2
  212. case 7: // Q5_1
  213. return 2 + 2 + 4 + blockSize/2
  214. case 8: // Q8_0
  215. return 2 + blockSize
  216. case 9: // Q8_1
  217. return 2 + 2 + blockSize
  218. case 10: // Q2_K
  219. return blockSize/16 + blockSize/4 + 2 + 2
  220. case 11: // Q3_K
  221. return blockSize/8 + blockSize/4 + 12 + 2
  222. case 12: // Q4_K
  223. return 2 + 2 + 12 + blockSize/2
  224. case 13: // Q5_K
  225. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  226. case 14: // Q6_K
  227. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  228. case 15: // Q8_K
  229. return 4 + blockSize + 2*blockSize/16
  230. case 16: // IQ2_XXS
  231. return 2 + 2*blockSize/8
  232. case 17: // IQ2_XS
  233. return 2 + 2*blockSize/8 + blockSize/32
  234. case 18: // IQ3_XXS
  235. return 2 + blockSize/4 + blockSize/8
  236. case 19: // IQ1_S
  237. return 2 + blockSize/8 + blockSize/16
  238. case 20: // IQ4_NL
  239. return 2 + blockSize/2
  240. case 21: // IQ3_S
  241. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  242. case 22: // IQ2_S
  243. return 2 + blockSize/4 + blockSize/16
  244. case 23: // IQ4_XS
  245. return 2 + 2 + blockSize/2 + blockSize/64
  246. case 24: // I8
  247. return 1
  248. case 25: // I16
  249. return 2
  250. case 26: // I32
  251. return 4
  252. case 27: // I64
  253. return 8
  254. case 28: // F64
  255. return 8
  256. case 29: // IQ1_M
  257. return blockSize/8 + blockSize/16 + blockSize/32
  258. case 30: // BF16
  259. return 2
  260. default:
  261. return 0
  262. }
  263. }
  264. func (t Tensor) parameters() uint64 {
  265. var count uint64 = 1
  266. for _, n := range t.Shape {
  267. count *= n
  268. }
  269. return count
  270. }
  271. func (t Tensor) Size() uint64 {
  272. return t.parameters() * t.typeSize() / t.blockSize()
  273. }
  274. type container interface {
  275. Name() string
  276. Decode(io.ReadSeeker) (model, error)
  277. }
  278. const (
  279. // Magic constant for `ggml` files (unversioned).
  280. FILE_MAGIC_GGML = 0x67676d6c
  281. // Magic constant for `ggml` files (versioned, ggmf).
  282. FILE_MAGIC_GGMF = 0x67676d66
  283. // Magic constant for `ggml` files (versioned, ggjt).
  284. FILE_MAGIC_GGJT = 0x67676a74
  285. // Magic constant for `ggla` files (LoRA adapter).
  286. FILE_MAGIC_GGLA = 0x67676C61
  287. // Magic constant for `gguf` files (versioned, gguf)
  288. FILE_MAGIC_GGUF_LE = 0x46554747
  289. FILE_MAGIC_GGUF_BE = 0x47475546
  290. )
  291. var ErrUnsupportedFormat = errors.New("unsupported model format")
  292. func DetectContentType(b []byte) string {
  293. switch binary.LittleEndian.Uint32(b[:4]) {
  294. case FILE_MAGIC_GGML:
  295. return "ggml"
  296. case FILE_MAGIC_GGMF:
  297. return "ggmf"
  298. case FILE_MAGIC_GGJT:
  299. return "ggjt"
  300. case FILE_MAGIC_GGLA:
  301. return "ggla"
  302. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  303. return "gguf"
  304. default:
  305. return ""
  306. }
  307. }
  308. // Decode decodes a GGML model from the given reader.
  309. //
  310. // It collects array values for arrays with a size less than or equal to
  311. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  312. // the maxArraySize is negative, all arrays are collected.
  313. func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  314. if maxArraySize == 0 {
  315. maxArraySize = 1024
  316. }
  317. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  318. var magic uint32
  319. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  320. return nil, 0, err
  321. }
  322. var c container
  323. switch magic {
  324. case FILE_MAGIC_GGUF_LE:
  325. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  326. case FILE_MAGIC_GGUF_BE:
  327. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  328. default:
  329. return nil, 0, errors.New("invalid file magic")
  330. }
  331. model, err := c.Decode(rs)
  332. if err != nil {
  333. return nil, 0, err
  334. }
  335. offset, err := rs.Seek(0, io.SeekCurrent)
  336. if err != nil {
  337. return nil, 0, err
  338. }
  339. // final model type
  340. return &GGML{
  341. container: c,
  342. model: model,
  343. }, offset, nil
  344. }
  345. func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
  346. embedding := f.KV().EmbeddingLength()
  347. heads := f.KV().HeadCount()
  348. headsKV := f.KV().HeadCountKV()
  349. vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
  350. embeddingHeads := f.KV().EmbeddingHeadCount()
  351. embeddingHeadsK := f.KV().EmbeddingHeadCountK()
  352. embeddingHeadsV := f.KV().EmbeddingHeadCountV()
  353. layers := f.Tensors().GroupLayers()
  354. bytesPerElement := kvCacheBytesPerElement(kvCacheType)
  355. kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
  356. switch f.KV().Architecture() {
  357. case "llama":
  358. fullOffload = max(
  359. 4*batch*(1+4*embedding+context*(1+heads)),
  360. 4*batch*(embedding+vocab),
  361. )
  362. partialOffload = 4 * batch * embedding
  363. partialOffload += max(
  364. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  365. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  366. )
  367. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  368. // mixtral 8x22b
  369. ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
  370. partialOffload = max(
  371. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  372. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  373. )
  374. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  375. // mixtral 8x7b
  376. ffnGateWeight1 := ffnGateWeight.Shape[1]
  377. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  378. partialOffload = max(
  379. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  380. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  381. )
  382. }
  383. case "mllama":
  384. var visionTokens, tiles uint64 = 1601, 4
  385. if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
  386. kv = headsKV *
  387. (embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
  388. (2* // sizeof(float16)
  389. (f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
  390. context +
  391. 4* // sizeof(float32)
  392. uint64(crossAttentionLayers.size)* // num cross attention layers
  393. visionTokens*
  394. tiles)
  395. }
  396. fullOffload = max(
  397. 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
  398. // vocab graph
  399. 4*batch*(embedding+vocab),
  400. )
  401. var ropeFreqsCount uint64
  402. if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
  403. if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
  404. ropeFreqsCount = ropeFreqsWeights.parameters()
  405. }
  406. }
  407. partialOffload = max(
  408. 4*(batch*
  409. (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
  410. ropeFreqsCount+
  411. embeddingHeadsK*context*headsKV),
  412. // vocab graph
  413. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  414. )
  415. case "gemma", "gemma2", "gemma3":
  416. fullOffload = max(
  417. 4*batch*(embedding+vocab),
  418. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  419. )
  420. partialOffload = max(
  421. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  422. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  423. 4*embeddingHeadsK*context*8+
  424. embedding*embeddingHeadsK*heads*9/16,
  425. )
  426. case "command-r":
  427. fullOffload = max(
  428. 4*batch*(embedding+vocab),
  429. 4*batch*(2+4*embedding+context*(1+heads)),
  430. )
  431. partialOffload = max(
  432. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  433. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  434. )
  435. case "qwen2":
  436. fullOffload = max(
  437. 4*batch*(embedding+vocab),
  438. 4*batch*(1+2*embedding+context+context*heads),
  439. )
  440. partialOffload = max(
  441. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  442. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  443. )
  444. case "phi2":
  445. fullOffload = max(
  446. 4*batch*(embedding+vocab),
  447. 4*batch*(1+4*embedding+context+context*heads),
  448. )
  449. partialOffload = max(
  450. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  451. 4*batch*(2+3*embedding+context+context*heads),
  452. )
  453. case "stablelm":
  454. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  455. partialOffload = max(
  456. 4*batch*(vocab+2*embedding),
  457. fullOffload,
  458. )
  459. case "deepseek2":
  460. fullOffload = max(
  461. 4*batch*(3*embedding+vocab),
  462. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  463. )
  464. partialOffload = max(
  465. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  466. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  467. )
  468. case "chatglm":
  469. fullOffload = 4 * batch * (embedding + vocab)
  470. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  471. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  472. fullOffload = max(
  473. fullOffload,
  474. 4*batch*(2+
  475. 2*embedding+
  476. context+
  477. context*heads+
  478. embeddingHeadsK*heads+
  479. qkvBias.Shape[0]),
  480. )
  481. partialOffload = max(
  482. partialOffload,
  483. 4*batch*(1+
  484. 2*embedding+
  485. embeddingHeadsK*heads+
  486. context+
  487. context*heads)+
  488. 4*embeddingHeadsK*context+
  489. 4*context*embeddingHeadsK+
  490. 4*qkvBias.Shape[0],
  491. )
  492. }
  493. }
  494. return
  495. }
  496. func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
  497. for name, layer := range llm.Tensors().GroupLayers() {
  498. if strings.HasPrefix(name, "v.") {
  499. for _, tensor := range layer {
  500. weights += tensor.Size()
  501. }
  502. }
  503. }
  504. imageSize := uint64(llm.KV().Uint("vision.image_size"))
  505. patchSize := uint64(llm.KV().Uint("vision.patch_size"))
  506. numPatches := (imageSize / patchSize) * (imageSize / patchSize)
  507. if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
  508. numPatches++
  509. }
  510. headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
  511. switch llm.KV().Architecture() {
  512. case "mllama":
  513. numPaddedPatches := numPatches + 8 - (numPatches%8)%8
  514. maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
  515. numChannels := uint64(llm.KV().Uint("vision.num_channels"))
  516. embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
  517. graphSize = 4 * (8 +
  518. imageSize*imageSize*numChannels*maxNumTiles +
  519. embeddingLength*numPatches*maxNumTiles +
  520. 9*embeddingLength*numPaddedPatches*maxNumTiles +
  521. numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
  522. case "gemma3":
  523. graphSize = 4 * (numPatches * numPatches * headCount)
  524. }
  525. return weights, graphSize
  526. }
  527. // SupportsKVCacheType checks if the requested cache type is supported
  528. func (f GGML) SupportsKVCacheType(cacheType string) bool {
  529. return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
  530. }
  531. // SupportsFlashAttention checks if the model supports flash attention
  532. func (f GGML) SupportsFlashAttention() bool {
  533. _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
  534. if isEmbedding {
  535. return false
  536. }
  537. // Check head counts match and are non-zero
  538. headCountK := f.KV().EmbeddingHeadCountK()
  539. headCountV := f.KV().EmbeddingHeadCountV()
  540. return headCountK != 0 && headCountV != 0 && headCountK == headCountV
  541. }
  542. // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
  543. func kvCacheBytesPerElement(cacheType string) float64 {
  544. switch cacheType {
  545. case "q8_0":
  546. return 1 // 1/2 of fp16
  547. case "q4_0":
  548. return 0.5 // 1/4 of fp16
  549. default:
  550. return 2 // f16 (default)
  551. }
  552. }