model.go 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160
  1. package mllama
  2. import (
  3. "bytes"
  4. "encoding/binary"
  5. "fmt"
  6. "hash/fnv"
  7. "image"
  8. "slices"
  9. "github.com/ollama/ollama/kvcache"
  10. "github.com/ollama/ollama/ml"
  11. "github.com/ollama/ollama/ml/nn"
  12. "github.com/ollama/ollama/model"
  13. )
  14. type Model struct {
  15. model.Base
  16. model.BytePairEncoding
  17. *VisionModel `gguf:"v,vision"`
  18. *TextModel
  19. Projector *nn.Linear `gguf:"mm.0"`
  20. ImageProcessor
  21. }
  22. const (
  23. crossAttentionLayer = iota
  24. selfAttentionLayer
  25. )
  26. func New(c ml.Config) (model.Model, error) {
  27. // Verify unified config
  28. if c.Uint("vision.block_count") == 0 {
  29. return nil, fmt.Errorf("non-unified vision model not supported")
  30. }
  31. m := Model{
  32. BytePairEncoding: model.NewBytePairEncoding(
  33. c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
  34. &model.Vocabulary{
  35. Values: c.Strings("tokenizer.ggml.tokens"),
  36. Types: c.Uints("tokenizer.ggml.token_type"),
  37. Merges: c.Strings("tokenizer.ggml.merges"),
  38. BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
  39. AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
  40. EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
  41. AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
  42. },
  43. ),
  44. ImageProcessor: newImageProcessor(c),
  45. VisionModel: newVisionModel(c),
  46. TextModel: newTextModel(c),
  47. }
  48. encoderCache := kvcache.NewEncoderCache()
  49. encoderCache.SetConfig(ml.CacheConfig{})
  50. m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
  51. return &m, nil
  52. }
  53. func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
  54. image, _, err := image.Decode(bytes.NewReader(multimodalData))
  55. if err != nil {
  56. return nil, err
  57. }
  58. f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
  59. if err != nil {
  60. return nil, err
  61. }
  62. pixelValues, err := ctx.FromFloatSlice(f32s,
  63. m.ImageProcessor.imageSize,
  64. m.ImageProcessor.imageSize,
  65. m.ImageProcessor.numChannels,
  66. m.ImageProcessor.maxNumTiles,
  67. )
  68. if err != nil {
  69. return nil, err
  70. }
  71. aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
  72. if err != nil {
  73. return nil, err
  74. }
  75. positions := make([]int32, 1601)
  76. for i := range positions {
  77. positions[i] = int32(i)
  78. }
  79. positionIDs, err := ctx.FromIntSlice(positions, len(positions))
  80. if err != nil {
  81. return nil, err
  82. }
  83. crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
  84. return m.Projector.Forward(ctx, crossAttentionStates), nil
  85. }
  86. func (m *Model) PostTokenize(ctx ml.Context, inputs []model.Input) ([]model.Input, error) {
  87. var images []model.Input
  88. fnvHash := fnv.New64a()
  89. for i := range inputs {
  90. if inputs[i].Multimodal == nil {
  91. if len(images) > 0 {
  92. inputs[i].Multimodal = images[0].Multimodal
  93. inputs[i].MultimodalHash = images[0].MultimodalHash
  94. for j := 1; j < len(images); j++ {
  95. inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
  96. fnvHash.Reset()
  97. binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
  98. binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
  99. inputs[i].MultimodalHash = fnvHash.Sum64()
  100. }
  101. images = nil
  102. }
  103. } else {
  104. images = append(images, inputs[i])
  105. inputs[i].Token = -1
  106. }
  107. }
  108. inputs = slices.DeleteFunc(inputs, func(input model.Input) bool { return input.Token == -1 })
  109. return inputs, nil
  110. }
  111. func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
  112. var crossAttentionStates ml.Tensor
  113. if opts.Multimodal != nil {
  114. crossAttentionStates = opts.Multimodal[0].Multimodal.(ml.Tensor)
  115. }
  116. inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
  117. if err != nil {
  118. return nil, err
  119. }
  120. positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
  121. if err != nil {
  122. return nil, err
  123. }
  124. outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
  125. if err != nil {
  126. return nil, err
  127. }
  128. // TODO: attention mask, cross attention mask
  129. return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
  130. }
  131. func init() {
  132. model.Register("mllama", New)
  133. }