privateGPT.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. #!/usr/bin/env python3
  2. from langchain.chains import RetrievalQA
  3. from langchain.embeddings import HuggingFaceEmbeddings
  4. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  5. from langchain.vectorstores import Chroma
  6. from langchain.llms import Ollama
  7. import os
  8. import argparse
  9. import time
  10. model = os.environ.get("MODEL", "llama2-uncensored")
  11. # For embeddings model, the example uses a sentence-transformers model
  12. # https://www.sbert.net/docs/pretrained_models.html
  13. # "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
  14. embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
  15. persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
  16. target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
  17. from constants import CHROMA_SETTINGS
  18. def main():
  19. # Parse the command line arguments
  20. args = parse_arguments()
  21. embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
  22. db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
  23. retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
  24. # activate/deactivate the streaming StdOut callback for LLMs
  25. callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
  26. llm = Ollama(model=model, callbacks=callbacks)
  27. qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
  28. # Interactive questions and answers
  29. while True:
  30. query = input("\nEnter a query: ")
  31. if query == "exit":
  32. break
  33. if query.strip() == "":
  34. continue
  35. # Get the answer from the chain
  36. start = time.time()
  37. res = qa(query)
  38. answer, docs = res['result'], [] if args.hide_source else res['source_documents']
  39. end = time.time()
  40. # Print the result
  41. print("\n\n> Question:")
  42. print(query)
  43. print(answer)
  44. # Print the relevant sources used for the answer
  45. for document in docs:
  46. print("\n> " + document.metadata["source"] + ":")
  47. print(document.page_content)
  48. def parse_arguments():
  49. parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
  50. 'using the power of LLMs.')
  51. parser.add_argument("--hide-source", "-S", action='store_true',
  52. help='Use this flag to disable printing of source documents used for answers.')
  53. parser.add_argument("--mute-stream", "-M",
  54. action='store_true',
  55. help='Use this flag to disable the streaming StdOut callback for LLMs.')
  56. return parser.parse_args()
  57. if __name__ == "__main__":
  58. main()