sched.go 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. package server
  2. import (
  3. "context"
  4. "errors"
  5. "fmt"
  6. "log/slog"
  7. "os"
  8. "reflect"
  9. "runtime"
  10. "sort"
  11. "strconv"
  12. "strings"
  13. "sync"
  14. "time"
  15. "github.com/ollama/ollama/api"
  16. "github.com/ollama/ollama/discover"
  17. "github.com/ollama/ollama/envconfig"
  18. "github.com/ollama/ollama/format"
  19. "github.com/ollama/ollama/llm"
  20. )
  21. type LlmRequest struct {
  22. ctx context.Context //nolint:containedctx
  23. model *Model
  24. opts api.Options
  25. origNumCtx int // Track the initial ctx request
  26. sessionDuration *api.Duration
  27. successCh chan *runnerRef
  28. errCh chan error
  29. schedAttempts uint
  30. }
  31. type Scheduler struct {
  32. pendingReqCh chan *LlmRequest
  33. finishedReqCh chan *LlmRequest
  34. expiredCh chan *runnerRef
  35. unloadedCh chan interface{}
  36. loaded map[string]*runnerRef
  37. loadedMu sync.Mutex
  38. loadFn func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int)
  39. newServerFn func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
  40. getGpuFn func() discover.GpuInfoList
  41. getCpuFn func() discover.GpuInfoList
  42. reschedDelay time.Duration
  43. }
  44. // Default automatic value for number of models we allow per GPU
  45. // Model will still need to fit in VRAM, but loading many small models
  46. // on a large GPU can cause stalling
  47. var defaultModelsPerGPU = 3
  48. // Default automatic value for parallel setting
  49. // Model will still need to fit in VRAM. If this setting won't fit
  50. // we'll back off down to 1 to try to get it to fit
  51. var defaultParallel = 4
  52. var ErrMaxQueue = errors.New("server busy, please try again. maximum pending requests exceeded")
  53. func InitScheduler(ctx context.Context) *Scheduler {
  54. maxQueue := envconfig.MaxQueue()
  55. sched := &Scheduler{
  56. pendingReqCh: make(chan *LlmRequest, maxQueue),
  57. finishedReqCh: make(chan *LlmRequest, maxQueue),
  58. expiredCh: make(chan *runnerRef, maxQueue),
  59. unloadedCh: make(chan interface{}, maxQueue),
  60. loaded: make(map[string]*runnerRef),
  61. newServerFn: llm.NewLlamaServer,
  62. getGpuFn: discover.GetGPUInfo,
  63. getCpuFn: discover.GetCPUInfo,
  64. reschedDelay: 250 * time.Millisecond,
  65. }
  66. sched.loadFn = sched.load
  67. return sched
  68. }
  69. // context must be canceled to decrement ref count and release the runner
  70. func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
  71. if opts.NumCtx < 4 {
  72. opts.NumCtx = 4
  73. }
  74. req := &LlmRequest{
  75. ctx: c,
  76. model: model,
  77. opts: opts,
  78. sessionDuration: sessionDuration,
  79. successCh: make(chan *runnerRef),
  80. errCh: make(chan error, 1),
  81. }
  82. select {
  83. case s.pendingReqCh <- req:
  84. default:
  85. req.errCh <- ErrMaxQueue
  86. }
  87. return req.successCh, req.errCh
  88. }
  89. // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
  90. func (s *Scheduler) Run(ctx context.Context) {
  91. slog.Debug("starting llm scheduler")
  92. go func() {
  93. s.processPending(ctx)
  94. }()
  95. go func() {
  96. s.processCompleted(ctx)
  97. }()
  98. }
  99. func (s *Scheduler) processPending(ctx context.Context) {
  100. for {
  101. select {
  102. case <-ctx.Done():
  103. slog.Debug("shutting down scheduler pending loop")
  104. return
  105. case pending := <-s.pendingReqCh:
  106. // Block other requests until we get this pending request running
  107. pending.schedAttempts++
  108. if pending.origNumCtx == 0 {
  109. pending.origNumCtx = pending.opts.NumCtx
  110. }
  111. if pending.ctx.Err() != nil {
  112. slog.Debug("pending request cancelled or timed out, skipping scheduling")
  113. continue
  114. }
  115. numParallel := int(envconfig.NumParallel())
  116. // TODO (jmorganca): mllama doesn't support parallel yet
  117. // see https://github.com/ollama/ollama/issues/4165
  118. if checkMllamaModelFamily(pending.model) && numParallel != 1 {
  119. numParallel = 1
  120. slog.Warn("mllama doesn't support parallel requests yet")
  121. }
  122. for {
  123. var runnerToExpire *runnerRef
  124. s.loadedMu.Lock()
  125. runner := s.loaded[pending.model.ModelPath]
  126. loadedCount := len(s.loaded)
  127. s.loadedMu.Unlock()
  128. if runner != nil {
  129. if runner.needsReload(ctx, pending) {
  130. runnerToExpire = runner
  131. } else {
  132. // Runner is usable, return it
  133. pending.useLoadedRunner(runner, s.finishedReqCh)
  134. break
  135. }
  136. } else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
  137. slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
  138. runnerToExpire = s.findRunnerToUnload()
  139. } else {
  140. // Either no models are loaded or below envconfig.MaxRunners
  141. // Get a refreshed GPU list
  142. var gpus discover.GpuInfoList
  143. if pending.opts.NumGPU == 0 {
  144. gpus = s.getCpuFn()
  145. } else {
  146. gpus = s.getGpuFn()
  147. }
  148. if envconfig.MaxRunners() <= 0 {
  149. // No user specified MaxRunners, so figure out what automatic setting to use
  150. // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
  151. // if any GPU has unreliable free memory reporting, 1x the number of GPUs
  152. allReliable := true
  153. for _, gpu := range gpus {
  154. if gpu.UnreliableFreeMemory {
  155. allReliable = false
  156. break
  157. }
  158. }
  159. if allReliable {
  160. // HACK
  161. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
  162. slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
  163. } else {
  164. // HACK
  165. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
  166. slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
  167. }
  168. }
  169. // Load model for fitting
  170. ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
  171. if err != nil {
  172. pending.errCh <- err
  173. break
  174. }
  175. // Embedding models should always be loaded with parallel=1
  176. if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
  177. numParallel = 1
  178. }
  179. // Evaluate if the model will fit in the available system memory, or if we should unload a model first
  180. if len(gpus) == 1 && gpus[0].Library == "cpu" {
  181. // simplifying assumption of defaultParallel when in CPU mode
  182. if numParallel <= 0 {
  183. numParallel = defaultParallel
  184. }
  185. pending.opts.NumCtx = pending.origNumCtx * numParallel
  186. if loadedCount == 0 {
  187. slog.Debug("cpu mode with first model, loading")
  188. s.loadFn(pending, ggml, gpus, numParallel)
  189. break
  190. }
  191. runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
  192. if runnerToExpire == nil {
  193. slog.Debug("cpu mode with available system memory or first model, loading")
  194. s.loadFn(pending, ggml, gpus, numParallel)
  195. break
  196. }
  197. // else we need to expire a runner
  198. } else if loadedCount == 0 {
  199. // No models loaded. Load the model but prefer the best fit.
  200. slog.Debug("loading first model", "model", pending.model.ModelPath)
  201. g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
  202. if g != nil {
  203. gpus = g
  204. } else {
  205. // Only allow partial loads when this is the first model
  206. gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
  207. }
  208. s.loadFn(pending, ggml, gpus, numParallel)
  209. break
  210. }
  211. if runnerToExpire == nil {
  212. // More than one loaded model, so we have to see if the
  213. // new one fits
  214. //
  215. // We want to avoid loading on any GPUs that have other
  216. // models still loading on them to avoid potential races
  217. // with VRAM consumption ramping up during load
  218. availGpus := s.filterGPUsWithoutLoadingModels(gpus)
  219. // Update free memory from currently loaded models
  220. s.updateFreeSpace(availGpus)
  221. fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
  222. if fitGpus != nil {
  223. slog.Debug("new model fits with existing models, loading")
  224. s.loadFn(pending, ggml, fitGpus, numParallel)
  225. break
  226. }
  227. // We couldn't find a set of GPUs to fully load the new
  228. // model. If no other models are loading (both GPU lists
  229. // are the same) then we need to unload another model to
  230. // make room
  231. if len(availGpus) < len(gpus) {
  232. // There are other requests pending, and this one
  233. // needs more time, so put it on the back of the
  234. // queue so that we might satisfy other pending
  235. // requests that aren't blocked
  236. go func() {
  237. // Process in a go routine to avoid deadlocking
  238. // the scheduler if our queue is full
  239. slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
  240. time.Sleep(s.reschedDelay)
  241. s.pendingReqCh <- pending
  242. }()
  243. break
  244. }
  245. runnerToExpire = s.findRunnerToUnload()
  246. }
  247. }
  248. if runnerToExpire == nil {
  249. // Shouildn't happen
  250. slog.Error("runner to expire was nil!")
  251. continue
  252. }
  253. // Trigger an expiration to unload once it's done
  254. runnerToExpire.refMu.Lock()
  255. slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
  256. if runnerToExpire.expireTimer != nil {
  257. runnerToExpire.expireTimer.Stop()
  258. runnerToExpire.expireTimer = nil
  259. }
  260. runnerToExpire.sessionDuration = 0
  261. if runnerToExpire.refCount <= 0 {
  262. s.expiredCh <- runnerToExpire
  263. }
  264. runnerToExpire.refMu.Unlock()
  265. // Wait for the unload to happen
  266. // Note: at this point we're queueing up all incoming requests, even if they were for
  267. // a different model that's loaded and not scheduled to be removed.
  268. slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
  269. select {
  270. case <-ctx.Done():
  271. slog.Debug("shutting down scheduler pending loop")
  272. return
  273. case <-s.unloadedCh:
  274. slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
  275. continue
  276. }
  277. }
  278. case <-s.unloadedCh:
  279. // An unload request when there are no pending request can be ignored
  280. slog.Debug("ignoring unload event with no pending requests")
  281. }
  282. }
  283. }
  284. func (s *Scheduler) processCompleted(ctx context.Context) {
  285. // Process completed requests, expired timers, and unloading models
  286. for {
  287. select {
  288. case <-ctx.Done():
  289. slog.Debug("shutting down scheduler completed loop")
  290. return
  291. case finished := <-s.finishedReqCh:
  292. s.loadedMu.Lock()
  293. runner := s.loaded[finished.model.ModelPath]
  294. s.loadedMu.Unlock()
  295. if runner == nil {
  296. slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
  297. continue
  298. }
  299. runner.refMu.Lock()
  300. runner.refCount--
  301. if runner.refCount <= 0 {
  302. if runner.sessionDuration <= 0 {
  303. slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
  304. if runner.expireTimer != nil {
  305. runner.expireTimer.Stop()
  306. runner.expireTimer = nil
  307. }
  308. s.expiredCh <- runner
  309. } else if runner.expireTimer == nil {
  310. slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  311. runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
  312. slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
  313. runner.refMu.Lock()
  314. defer runner.refMu.Unlock()
  315. if runner.expireTimer != nil {
  316. runner.expireTimer.Stop()
  317. runner.expireTimer = nil
  318. }
  319. s.expiredCh <- runner
  320. })
  321. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  322. } else {
  323. slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  324. runner.expireTimer.Reset(runner.sessionDuration)
  325. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  326. }
  327. }
  328. slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
  329. runner.refMu.Unlock()
  330. case runner := <-s.expiredCh:
  331. slog.Debug("runner expired event received", "modelPath", runner.modelPath)
  332. runner.refMu.Lock()
  333. if runner.refCount > 0 {
  334. slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
  335. go func(runner *runnerRef) {
  336. // We can't unload yet, but want to as soon as the current request completes
  337. // So queue up another expired event
  338. time.Sleep(10 * time.Millisecond)
  339. s.expiredCh <- runner
  340. }(runner)
  341. runner.refMu.Unlock()
  342. continue
  343. }
  344. s.loadedMu.Lock()
  345. slog.Debug("got lock to unload", "modelPath", runner.modelPath)
  346. finished := runner.waitForVRAMRecovery()
  347. runner.unload()
  348. delete(s.loaded, runner.modelPath)
  349. s.loadedMu.Unlock()
  350. slog.Debug("runner released", "modelPath", runner.modelPath)
  351. runner.refMu.Unlock()
  352. <-finished
  353. slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
  354. s.unloadedCh <- struct{}{}
  355. }
  356. }
  357. }
  358. // Complete the pending request and send the runner back to the requester
  359. // Wires up a finished event after the request context is completed
  360. // Updates session duration, and resets expiration timer
  361. func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
  362. runner.refMu.Lock()
  363. defer runner.refMu.Unlock()
  364. runner.refCount++
  365. if runner.expireTimer != nil {
  366. runner.expireTimer.Stop()
  367. runner.expireTimer = nil
  368. }
  369. if pending.sessionDuration != nil {
  370. runner.sessionDuration = pending.sessionDuration.Duration
  371. }
  372. pending.successCh <- runner
  373. go func() {
  374. <-pending.ctx.Done()
  375. slog.Debug("context for request finished")
  376. finished <- pending
  377. }()
  378. }
  379. func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
  380. if numParallel < 1 {
  381. numParallel = 1
  382. }
  383. sessionDuration := envconfig.KeepAlive()
  384. if req.sessionDuration != nil {
  385. sessionDuration = req.sessionDuration.Duration
  386. }
  387. llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
  388. if err != nil {
  389. // some older models are not compatible with newer versions of llama.cpp
  390. // show a generalized compatibility error until there is a better way to
  391. // check for model compatibility
  392. if errors.Is(err, llm.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
  393. err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
  394. }
  395. slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
  396. req.errCh <- err
  397. return
  398. }
  399. runner := &runnerRef{
  400. model: req.model,
  401. modelPath: req.model.ModelPath,
  402. llama: llama,
  403. Options: &req.opts,
  404. sessionDuration: sessionDuration,
  405. gpus: gpus,
  406. estimatedVRAM: llama.EstimatedVRAM(),
  407. estimatedTotal: llama.EstimatedTotal(),
  408. loading: true,
  409. refCount: 1,
  410. }
  411. runner.numParallel = numParallel
  412. runner.refMu.Lock()
  413. s.loadedMu.Lock()
  414. s.loaded[req.model.ModelPath] = runner
  415. slog.Info("loaded runners", "count", len(s.loaded))
  416. s.loadedMu.Unlock()
  417. go func() {
  418. defer runner.refMu.Unlock()
  419. if err = llama.WaitUntilRunning(req.ctx); err != nil {
  420. slog.Error("error loading llama server", "error", err)
  421. runner.refCount--
  422. req.errCh <- err
  423. slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
  424. s.expiredCh <- runner
  425. return
  426. }
  427. slog.Debug("finished setting up runner", "model", req.model.ModelPath)
  428. runner.loading = false
  429. go func() {
  430. <-req.ctx.Done()
  431. slog.Debug("context for request finished")
  432. s.finishedReqCh <- req
  433. }()
  434. req.successCh <- runner
  435. }()
  436. }
  437. func (s *Scheduler) updateFreeSpace(allGpus discover.GpuInfoList) {
  438. type predKey struct {
  439. Library string
  440. ID string
  441. }
  442. predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
  443. s.loadedMu.Lock()
  444. for _, r := range s.loaded {
  445. r.refMu.Lock()
  446. if r.llama != nil {
  447. for _, gpu := range allGpus {
  448. predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
  449. }
  450. } else {
  451. slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
  452. }
  453. r.refMu.Unlock()
  454. }
  455. s.loadedMu.Unlock()
  456. // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
  457. for i := range allGpus {
  458. if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
  459. slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
  460. if p > allGpus[i].TotalMemory {
  461. // Shouldn't happen
  462. slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
  463. allGpus[i].FreeMemory = 0
  464. } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
  465. // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
  466. // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
  467. // after we start our first runner, then we'll never account for that, so picking the smallest free value seems prudent.
  468. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
  469. }
  470. slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
  471. }
  472. }
  473. }
  474. // While models are loading the VRAM consumption numbers will be indeterminate, so we have
  475. // to avoid scheduling another model on the same GPU(s) that haven't stabilized.
  476. // This routine returns the set of GPUs that do not have an active loading model.
  477. // If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
  478. func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus discover.GpuInfoList) discover.GpuInfoList {
  479. ret := append(discover.GpuInfoList{}, allGpus...)
  480. s.loadedMu.Lock()
  481. defer s.loadedMu.Unlock()
  482. for _, runner := range s.loaded {
  483. if runner.loading {
  484. slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
  485. for _, busyGPU := range runner.gpus {
  486. for i := range ret {
  487. if ret[i].ID == busyGPU.ID {
  488. ret = append(ret[:i], ret[i+1:]...)
  489. break
  490. }
  491. }
  492. }
  493. }
  494. }
  495. return ret
  496. }
  497. // TODO consolidate sched_types.go
  498. type runnerRef struct {
  499. refMu sync.Mutex
  500. // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
  501. refCount uint // prevent unloading if > 0
  502. // unloading bool // set to true when we are trying to unload the runner
  503. llama llm.LlamaServer
  504. loading bool // True only during initial load, then false forever
  505. gpus discover.GpuInfoList // Recorded at time of provisioning
  506. estimatedVRAM uint64
  507. estimatedTotal uint64
  508. sessionDuration time.Duration
  509. expireTimer *time.Timer
  510. expiresAt time.Time
  511. model *Model
  512. modelPath string
  513. numParallel int
  514. *api.Options
  515. }
  516. // The refMu must already be held when calling unload
  517. func (runner *runnerRef) unload() {
  518. if runner.expireTimer != nil {
  519. runner.expireTimer.Stop()
  520. runner.expireTimer = nil
  521. }
  522. if runner.llama != nil {
  523. runner.llama.Close()
  524. }
  525. runner.model = nil
  526. runner.llama = nil
  527. runner.Options = nil
  528. runner.gpus = nil
  529. }
  530. func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
  531. slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
  532. runner.refMu.Lock()
  533. defer runner.refMu.Unlock()
  534. timeout := 10 * time.Second
  535. if runner.loading {
  536. timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
  537. }
  538. if runner.Options == nil {
  539. return true
  540. }
  541. // Don't reload runner if num_gpu=-1 was provided
  542. optsExisting := runner.Options.Runner
  543. optsNew := req.opts.Runner
  544. if optsNew.NumGPU < 0 {
  545. optsExisting.NumGPU = -1
  546. optsNew.NumGPU = -1
  547. }
  548. // Normalize the NumCtx for parallelism
  549. optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
  550. ctx, cancel := context.WithTimeout(ctx, timeout)
  551. defer cancel()
  552. if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
  553. !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
  554. !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
  555. runner.llama.Ping(ctx) != nil {
  556. return true
  557. }
  558. return false
  559. }
  560. // Free memory reporting on GPUs can lag for a while even after the runner
  561. // exits, so we have to keep checking until we see the available memory recover,
  562. // otherwise subsequent model loads will get far less layers loaded or worse
  563. // case, may completely fall back to CPU mode.
  564. // This routine must be called before the runner unloads so it can establish
  565. // a before and after GPU memory allocation. The returned channel
  566. // will be notified when we're done waiting, or have timed out and should
  567. // proceed anyway
  568. func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
  569. finished := make(chan interface{}, 1)
  570. // CPU or Metal don't need checking, so no waiting required
  571. // windows can page VRAM, only cuda currently can report accurate used vram usage
  572. if len(runner.gpus) == 0 ||
  573. (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
  574. (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
  575. finished <- struct{}{}
  576. return finished
  577. }
  578. start := time.Now()
  579. // Establish a baseline before we unload
  580. gpusBefore := discover.GetGPUInfo()
  581. var totalMemoryBefore, freeMemoryBefore uint64
  582. for _, gpu := range gpusBefore {
  583. totalMemoryBefore += gpu.TotalMemory
  584. freeMemoryBefore += gpu.FreeMemory
  585. }
  586. go func() {
  587. expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
  588. ticker := time.NewTicker(250 * time.Millisecond)
  589. defer ticker.Stop()
  590. for {
  591. <-ticker.C
  592. if time.Now().After(expiresAt) {
  593. slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
  594. finished <- struct{}{}
  595. }
  596. // Query GPUs, look for free to go back up
  597. gpusNow := discover.GetGPUInfo()
  598. var totalMemoryNow, freeMemoryNow uint64
  599. for _, gpu := range gpusNow {
  600. totalMemoryNow += gpu.TotalMemory
  601. freeMemoryNow += gpu.FreeMemory
  602. }
  603. // If we're within ~80% of the estimated memory usage recovered, bail out
  604. if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
  605. slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
  606. finished <- struct{}{}
  607. return
  608. }
  609. }
  610. }()
  611. return finished
  612. }
  613. type ByDuration []*runnerRef
  614. func (a ByDuration) Len() int { return len(a) }
  615. func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  616. func (a ByDuration) Less(i, j int) bool {
  617. // uint64 to turn negative time (never unload) to largest
  618. return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
  619. }
  620. // TODO - future consideration to pick runners based on size
  621. // type BySize []*runnerRef
  622. // func (a BySize) Len() int { return len(a) }
  623. // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  624. // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
  625. // pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
  626. // The list of GPUs returned will always be the same brand (library)
  627. // If the model can not be fit fully within the available GPU(s) nil is returned
  628. // If numParallel is <= 0, this will attempt try to optimize parallelism based on available VRAM, and adjust
  629. // opts.NumCtx accordingly
  630. func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
  631. var estimatedVRAM uint64
  632. var numParallelToTry []int
  633. if *numParallel <= 0 {
  634. // If no specific parallel setting was provided, try larger then smaller, always end with 1
  635. numParallelToTry = append(numParallelToTry, defaultParallel, 1)
  636. } else {
  637. numParallelToTry = []int{*numParallel}
  638. }
  639. for _, gl := range gpus.ByLibrary() {
  640. var ok bool
  641. sgl := append(make(discover.GpuInfoList, 0, len(gl)), gl...)
  642. // TODO - potentially sort by performance capability, existing models loaded, etc.
  643. // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
  644. // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
  645. sort.Sort(sort.Reverse(discover.ByFreeMemory(sgl)))
  646. // First attempt to fit the model into a single GPU
  647. for _, p := range numParallelToTry {
  648. req.opts.NumCtx = req.origNumCtx * p
  649. if !envconfig.SchedSpread() {
  650. for _, g := range sgl {
  651. if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  652. slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
  653. *numParallel = p
  654. return []discover.GpuInfo{g}
  655. }
  656. }
  657. }
  658. }
  659. // TODO future refinements
  660. // - if multiple Libraries, see if any single GPU in any Library will fit
  661. // - try subsets of GPUs instead of just falling back to 1 or all in a family
  662. // Now try all the GPUs
  663. for _, p := range numParallelToTry {
  664. req.opts.NumCtx = req.origNumCtx * p
  665. if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  666. slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
  667. *numParallel = p
  668. return sgl
  669. }
  670. }
  671. }
  672. return nil
  673. }
  674. // If multiple Libraries are detected, pick the Library which loads the most layers for the model
  675. func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
  676. if *numParallel <= 0 {
  677. *numParallel = 1
  678. req.opts.NumCtx = req.origNumCtx
  679. }
  680. byLibrary := gpus.ByLibrary()
  681. if len(byLibrary) <= 1 {
  682. return gpus
  683. }
  684. var bestEstimate uint64
  685. var bestFit int
  686. for i, gl := range byLibrary {
  687. _, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
  688. if estimatedVRAM > bestEstimate {
  689. bestEstimate = estimatedVRAM
  690. bestFit = i
  691. }
  692. }
  693. return byLibrary[bestFit]
  694. }
  695. // findRunnerToUnload finds a runner to unload to make room for a new model
  696. func (s *Scheduler) findRunnerToUnload() *runnerRef {
  697. s.loadedMu.Lock()
  698. runnerList := make([]*runnerRef, 0, len(s.loaded))
  699. for _, r := range s.loaded {
  700. runnerList = append(runnerList, r)
  701. }
  702. s.loadedMu.Unlock()
  703. if len(runnerList) == 0 {
  704. slog.Debug("no loaded runner to unload")
  705. return nil
  706. }
  707. // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
  708. // e.g., if we have multiple options, will one make room for the request?
  709. sort.Sort(ByDuration(runnerList))
  710. // First try to find a runner that's already idle
  711. for _, runner := range runnerList {
  712. runner.refMu.Lock()
  713. rc := runner.refCount
  714. runner.refMu.Unlock()
  715. if rc == 0 {
  716. slog.Debug("found an idle runner to unload")
  717. return runner
  718. }
  719. }
  720. // None appear idle, just wait for the one with the shortest duration
  721. slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
  722. return runnerList[0]
  723. }
  724. func (s *Scheduler) unloadAllRunners() {
  725. s.loadedMu.Lock()
  726. defer s.loadedMu.Unlock()
  727. for model, runner := range s.loaded {
  728. if runner.llama != nil {
  729. slog.Debug("shutting down runner", "model", model)
  730. runner.llama.Close()
  731. }
  732. }
  733. }
  734. func (s *Scheduler) expireRunner(model *Model) {
  735. s.loadedMu.Lock()
  736. defer s.loadedMu.Unlock()
  737. runner, ok := s.loaded[model.ModelPath]
  738. if ok {
  739. runner.refMu.Lock()
  740. runner.expiresAt = time.Now()
  741. if runner.expireTimer != nil {
  742. runner.expireTimer.Stop()
  743. runner.expireTimer = nil
  744. }
  745. runner.sessionDuration = 0
  746. if runner.refCount <= 0 {
  747. s.expiredCh <- runner
  748. }
  749. runner.refMu.Unlock()
  750. }
  751. }
  752. // If other runners are loaded, make sure the pending request will fit in system memory
  753. // If not, pick a runner to unload, else return nil and the request can be loaded
  754. func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList) *runnerRef {
  755. slog.Debug("evaluating if CPU model load will fit in available system memory")
  756. estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
  757. if estimate.TotalSize <= gpus[0].FreeMemory {
  758. slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
  759. return nil
  760. }
  761. // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
  762. return s.findRunnerToUnload()
  763. }