ggml.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. package ggml
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "log/slog"
  8. "slices"
  9. "strings"
  10. "github.com/ollama/ollama/fs/util/bufioutil"
  11. )
  12. type GGML struct {
  13. container
  14. model
  15. }
  16. type model interface {
  17. KV() KV
  18. Tensors() Tensors
  19. }
  20. type KV map[string]any
  21. func (kv KV) Architecture() string {
  22. return kv.String("general.architecture", "unknown")
  23. }
  24. func (kv KV) Kind() string {
  25. return kv.String("general.type", "unknown")
  26. }
  27. func (kv KV) ParameterCount() uint64 {
  28. return keyValue[uint64](kv, "general.parameter_count")
  29. }
  30. func (kv KV) FileType() fileType {
  31. if t := kv.Uint("general.file_type"); t > 0 {
  32. return fileType(t)
  33. }
  34. return fileTypeUnknown
  35. }
  36. func (kv KV) BlockCount() uint64 {
  37. return uint64(kv.Uint("block_count"))
  38. }
  39. func (kv KV) EmbeddingLength() uint64 {
  40. return uint64(kv.Uint("embedding_length"))
  41. }
  42. func (kv KV) HeadCount() uint64 {
  43. return uint64(kv.Uint("attention.head_count"))
  44. }
  45. func (kv KV) HeadCountKV() uint64 {
  46. return uint64(kv.Uint("attention.head_count_kv", 1))
  47. }
  48. func (kv KV) EmbeddingHeadCount() uint64 {
  49. if heads := kv.HeadCount(); heads > 0 {
  50. return kv.EmbeddingLength() / heads
  51. }
  52. return 0
  53. }
  54. func (kv KV) EmbeddingHeadCountK() uint64 {
  55. return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
  56. }
  57. func (kv KV) EmbeddingHeadCountV() uint64 {
  58. return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
  59. }
  60. func (kv KV) GQA() uint64 {
  61. return kv.HeadCount() / kv.HeadCountKV()
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return uint64(kv.Uint("context_length"))
  65. }
  66. func (kv KV) ChatTemplate() string {
  67. return kv.String("tokenizer.chat_template")
  68. }
  69. func (kv KV) String(key string, defaultValue ...string) string {
  70. return keyValue(kv, key, append(defaultValue, "")...)
  71. }
  72. func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
  73. return keyValue(kv, key, append(defaultValue, 0)...)
  74. }
  75. func (kv KV) Float(key string, defaultValue ...float32) float32 {
  76. return keyValue(kv, key, append(defaultValue, 0)...)
  77. }
  78. func (kv KV) Strings(key string, defaultValue ...[]string) []string {
  79. r := keyValue(kv, key, &array{})
  80. s := make([]string, r.size)
  81. for i := range r.size {
  82. s[i] = r.values[i].(string)
  83. }
  84. return s
  85. }
  86. func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
  87. r := keyValue(kv, key, &array{})
  88. s := make([]uint32, r.size)
  89. for i := range r.size {
  90. s[i] = uint32(r.values[i].(int32))
  91. }
  92. return s
  93. }
  94. func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
  95. if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
  96. key = kv.Architecture() + "." + key
  97. }
  98. if val, ok := kv[key]; ok {
  99. return val.(T)
  100. }
  101. slog.Warn("key not found", "key", key, "default", defaultValue[0])
  102. return defaultValue[0]
  103. }
  104. type Tensors struct {
  105. items []*Tensor
  106. Offset uint64
  107. }
  108. func (s Tensors) Items(prefix ...string) []*Tensor {
  109. if len(prefix) == 0 {
  110. return s.items
  111. }
  112. var items []*Tensor
  113. for _, t := range s.items {
  114. if strings.HasPrefix(t.Name, prefix[0]) {
  115. items = append(items, t)
  116. }
  117. }
  118. return items
  119. }
  120. func (ts Tensors) GroupLayers() map[string]Layer {
  121. layers := make(map[string]Layer)
  122. for _, t := range ts.items {
  123. parts := strings.Split(t.Name, ".")
  124. if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
  125. if len(parts) > index+2 {
  126. // blk and mm should have a number after them, join it
  127. parts = append(
  128. []string{strings.Join(parts[:index+2], ".")},
  129. parts[index+2:]...)
  130. }
  131. }
  132. if _, ok := layers[parts[0]]; !ok {
  133. layers[parts[0]] = make(Layer)
  134. }
  135. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  136. }
  137. return layers
  138. }
  139. type Layer map[string]*Tensor
  140. func (l Layer) Size() (size uint64) {
  141. for _, t := range l {
  142. size += t.Size()
  143. }
  144. return size
  145. }
  146. type Tensor struct {
  147. Name string `json:"name"`
  148. Kind uint32 `json:"kind"`
  149. Offset uint64 `json:"-"`
  150. // Shape is the number of elements in each dimension
  151. Shape []uint64 `json:"shape"`
  152. io.WriterTo `json:"-"`
  153. }
  154. func (t Tensor) block() (n int) {
  155. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  156. return -1
  157. }
  158. return
  159. }
  160. func (t Tensor) blockSize() uint64 {
  161. switch t.Kind {
  162. case
  163. 0, // F32
  164. 1, // F16
  165. 24, // I8
  166. 25, // I16
  167. 26, // I32
  168. 27, // I64
  169. 28, // F64
  170. 30: // BF16
  171. return 1
  172. case
  173. 2, // Q4_0
  174. 3, // Q4_1
  175. 6, // Q5_0
  176. 7, // Q5_1
  177. 8, // Q8_0
  178. 9, // Q8_1
  179. 20: // IQ4_NL
  180. return 32
  181. default:
  182. return 256
  183. }
  184. }
  185. func (t Tensor) typeSize() uint64 {
  186. blockSize := t.blockSize()
  187. switch t.Kind {
  188. case 0: // FP32
  189. return 4
  190. case 1: // FP16
  191. return 2
  192. case 2: // Q4_0
  193. return 2 + blockSize/2
  194. case 3: // Q4_1
  195. return 2 + 2 + blockSize/2
  196. case 6: // Q5_0
  197. return 2 + 4 + blockSize/2
  198. case 7: // Q5_1
  199. return 2 + 2 + 4 + blockSize/2
  200. case 8: // Q8_0
  201. return 2 + blockSize
  202. case 9: // Q8_1
  203. return 2 + 2 + blockSize
  204. case 10: // Q2_K
  205. return blockSize/16 + blockSize/4 + 2 + 2
  206. case 11: // Q3_K
  207. return blockSize/8 + blockSize/4 + 12 + 2
  208. case 12: // Q4_K
  209. return 2 + 2 + 12 + blockSize/2
  210. case 13: // Q5_K
  211. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  212. case 14: // Q6_K
  213. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  214. case 15: // Q8_K
  215. return 4 + blockSize + 2*blockSize/16
  216. case 16: // IQ2_XXS
  217. return 2 + 2*blockSize/8
  218. case 17: // IQ2_XS
  219. return 2 + 2*blockSize/8 + blockSize/32
  220. case 18: // IQ3_XXS
  221. return 2 + blockSize/4 + blockSize/8
  222. case 19: // IQ1_S
  223. return 2 + blockSize/8 + blockSize/16
  224. case 20: // IQ4_NL
  225. return 2 + blockSize/2
  226. case 21: // IQ3_S
  227. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  228. case 22: // IQ2_S
  229. return 2 + blockSize/4 + blockSize/16
  230. case 23: // IQ4_XS
  231. return 2 + 2 + blockSize/2 + blockSize/64
  232. case 24: // I8
  233. return 1
  234. case 25: // I16
  235. return 2
  236. case 26: // I32
  237. return 4
  238. case 27: // I64
  239. return 8
  240. case 28: // F64
  241. return 8
  242. case 29: // IQ1_M
  243. return blockSize/8 + blockSize/16 + blockSize/32
  244. case 30: // BF16
  245. return 2
  246. default:
  247. return 0
  248. }
  249. }
  250. func (t Tensor) parameters() uint64 {
  251. var count uint64 = 1
  252. for _, n := range t.Shape {
  253. count *= n
  254. }
  255. return count
  256. }
  257. func (t Tensor) Size() uint64 {
  258. return t.parameters() * t.typeSize() / t.blockSize()
  259. }
  260. type container interface {
  261. Name() string
  262. Decode(io.ReadSeeker) (model, error)
  263. }
  264. const (
  265. // Magic constant for `ggml` files (unversioned).
  266. FILE_MAGIC_GGML = 0x67676d6c
  267. // Magic constant for `ggml` files (versioned, ggmf).
  268. FILE_MAGIC_GGMF = 0x67676d66
  269. // Magic constant for `ggml` files (versioned, ggjt).
  270. FILE_MAGIC_GGJT = 0x67676a74
  271. // Magic constant for `ggla` files (LoRA adapter).
  272. FILE_MAGIC_GGLA = 0x67676C61
  273. // Magic constant for `gguf` files (versioned, gguf)
  274. FILE_MAGIC_GGUF_LE = 0x46554747
  275. FILE_MAGIC_GGUF_BE = 0x47475546
  276. )
  277. var ErrUnsupportedFormat = errors.New("unsupported model format")
  278. func DetectContentType(b []byte) string {
  279. switch binary.LittleEndian.Uint32(b[:4]) {
  280. case FILE_MAGIC_GGML:
  281. return "ggml"
  282. case FILE_MAGIC_GGMF:
  283. return "ggmf"
  284. case FILE_MAGIC_GGJT:
  285. return "ggjt"
  286. case FILE_MAGIC_GGLA:
  287. return "ggla"
  288. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  289. return "gguf"
  290. default:
  291. return ""
  292. }
  293. }
  294. // Decode decodes a GGML model from the given reader.
  295. //
  296. // It collects array values for arrays with a size less than or equal to
  297. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  298. // the maxArraySize is negative, all arrays are collected.
  299. func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  300. if maxArraySize == 0 {
  301. maxArraySize = 1024
  302. }
  303. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  304. var magic uint32
  305. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  306. return nil, 0, err
  307. }
  308. var c container
  309. switch magic {
  310. case FILE_MAGIC_GGUF_LE:
  311. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  312. case FILE_MAGIC_GGUF_BE:
  313. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  314. default:
  315. return nil, 0, errors.New("invalid file magic")
  316. }
  317. model, err := c.Decode(rs)
  318. if err != nil {
  319. return nil, 0, err
  320. }
  321. offset, err := rs.Seek(0, io.SeekCurrent)
  322. if err != nil {
  323. return nil, 0, err
  324. }
  325. // final model type
  326. return &GGML{
  327. container: c,
  328. model: model,
  329. }, offset, nil
  330. }
  331. func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
  332. embedding := f.KV().EmbeddingLength()
  333. heads := f.KV().HeadCount()
  334. headsKV := f.KV().HeadCountKV()
  335. vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
  336. embeddingHeads := f.KV().EmbeddingHeadCount()
  337. embeddingHeadsK := f.KV().EmbeddingHeadCountK()
  338. embeddingHeadsV := f.KV().EmbeddingHeadCountV()
  339. layers := f.Tensors().GroupLayers()
  340. bytesPerElement := kvCacheBytesPerElement(kvCacheType)
  341. kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
  342. switch f.KV().Architecture() {
  343. case "llama":
  344. fullOffload = max(
  345. 4*batch*(1+4*embedding+context*(1+heads)),
  346. 4*batch*(embedding+vocab),
  347. )
  348. partialOffload = 4 * batch * embedding
  349. partialOffload += max(
  350. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  351. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  352. )
  353. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  354. // mixtral 8x22b
  355. ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
  356. partialOffload = max(
  357. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  358. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  359. )
  360. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  361. // mixtral 8x7b
  362. ffnGateWeight1 := ffnGateWeight.Shape[1]
  363. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  364. partialOffload = max(
  365. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  366. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  367. )
  368. }
  369. case "mllama":
  370. var visionTokens, tiles uint64 = 1601, 4
  371. if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
  372. kv = headsKV *
  373. (embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
  374. (2* // sizeof(float16)
  375. (f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
  376. context +
  377. 4* // sizeof(float32)
  378. uint64(crossAttentionLayers.size)* // num cross attention layers
  379. visionTokens*
  380. tiles)
  381. }
  382. fullOffload = max(
  383. 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
  384. // vocab graph
  385. 4*batch*(embedding+vocab),
  386. )
  387. var ropeFreqsCount uint64
  388. if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
  389. if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
  390. ropeFreqsCount = ropeFreqsWeights.parameters()
  391. }
  392. }
  393. partialOffload = max(
  394. 4*(batch*
  395. (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
  396. ropeFreqsCount+
  397. embeddingHeadsK*context*headsKV),
  398. // vocab graph
  399. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  400. )
  401. case "gemma", "gemma2":
  402. fullOffload = max(
  403. 4*batch*(embedding+vocab),
  404. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  405. )
  406. partialOffload = max(
  407. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  408. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  409. 4*embeddingHeadsK*context*8+
  410. embedding*embeddingHeadsK*heads*9/16,
  411. )
  412. case "command-r":
  413. fullOffload = max(
  414. 4*batch*(embedding+vocab),
  415. 4*batch*(2+4*embedding+context*(1+heads)),
  416. )
  417. partialOffload = max(
  418. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  419. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  420. )
  421. case "qwen2":
  422. fullOffload = max(
  423. 4*batch*(embedding+vocab),
  424. 4*batch*(1+2*embedding+context+context*heads),
  425. )
  426. partialOffload = max(
  427. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  428. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  429. )
  430. case "phi2":
  431. fullOffload = max(
  432. 4*batch*(embedding+vocab),
  433. 4*batch*(1+4*embedding+context+context*heads),
  434. )
  435. partialOffload = max(
  436. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  437. 4*batch*(2+3*embedding+context+context*heads),
  438. )
  439. case "stablelm":
  440. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  441. partialOffload = max(
  442. 4*batch*(vocab+2*embedding),
  443. fullOffload,
  444. )
  445. case "deepseek2":
  446. fullOffload = max(
  447. 4*batch*(3*embedding+vocab),
  448. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  449. )
  450. partialOffload = max(
  451. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  452. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  453. )
  454. case "chatglm":
  455. fullOffload = 4 * batch * (embedding + vocab)
  456. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  457. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  458. fullOffload = max(
  459. fullOffload,
  460. 4*batch*(2+
  461. 2*embedding+
  462. context+
  463. context*heads+
  464. embeddingHeadsK*heads+
  465. qkvBias.Shape[0]),
  466. )
  467. partialOffload = max(
  468. partialOffload,
  469. 4*batch*(1+
  470. 2*embedding+
  471. embeddingHeadsK*heads+
  472. context+
  473. context*heads)+
  474. 4*embeddingHeadsK*context+
  475. 4*context*embeddingHeadsK+
  476. 4*qkvBias.Shape[0],
  477. )
  478. }
  479. }
  480. return
  481. }
  482. // SupportsKVCacheType checks if the requested cache type is supported
  483. func (f GGML) SupportsKVCacheType(cacheType string) bool {
  484. return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
  485. }
  486. // SupportsFlashAttention checks if the model supports flash attention
  487. func (f GGML) SupportsFlashAttention() bool {
  488. _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
  489. if isEmbedding {
  490. return false
  491. }
  492. // Check head counts match and are non-zero
  493. headCountK := f.KV().EmbeddingHeadCountK()
  494. headCountV := f.KV().EmbeddingHeadCountV()
  495. return headCountK != 0 && headCountV != 0 && headCountK == headCountV
  496. }
  497. // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
  498. func kvCacheBytesPerElement(cacheType string) float64 {
  499. switch cacheType {
  500. case "q8_0":
  501. return 1 // 1/2 of fp16
  502. case "q4_0":
  503. return 0.5 // 1/4 of fp16
  504. default:
  505. return 2 // f16 (default)
  506. }
  507. }