privateGPT.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. #!/usr/bin/env python3
  2. from dotenv import load_dotenv
  3. from langchain.chains import RetrievalQA
  4. from langchain.embeddings import HuggingFaceEmbeddings
  5. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  6. from langchain.vectorstores import Chroma
  7. from langchain.llms import GPT4All, Ollama
  8. import os
  9. import argparse
  10. import time
  11. load_dotenv()
  12. model = os.environ.get("MODEL", "llama2-uncensored")
  13. embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
  14. persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
  15. target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
  16. from constants import CHROMA_SETTINGS
  17. def main():
  18. # Parse the command line arguments
  19. args = parse_arguments()
  20. embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
  21. db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
  22. retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
  23. # activate/deactivate the streaming StdOut callback for LLMs
  24. callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
  25. llm = Ollama(model=model, callbacks=callbacks)
  26. qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
  27. # Interactive questions and answers
  28. while True:
  29. query = input("\nEnter a query: ")
  30. if query == "exit":
  31. break
  32. if query.strip() == "":
  33. continue
  34. # Get the answer from the chain
  35. start = time.time()
  36. res = qa(query)
  37. answer, docs = res['result'], [] if args.hide_source else res['source_documents']
  38. end = time.time()
  39. # Print the result
  40. print("\n\n> Question:")
  41. print(query)
  42. print(f"\n> Answer (took {round(end - start, 2)} s.):")
  43. print(answer)
  44. # Print the relevant sources used for the answer
  45. for document in docs:
  46. print("\n> " + document.metadata["source"] + ":")
  47. print(document.page_content)
  48. def parse_arguments():
  49. parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
  50. 'using the power of LLMs.')
  51. parser.add_argument("--hide-source", "-S", action='store_true',
  52. help='Use this flag to disable printing of source documents used for answers.')
  53. parser.add_argument("--mute-stream", "-M",
  54. action='store_true',
  55. help='Use this flag to disable the streaming StdOut callback for LLMs.')
  56. return parser.parse_args()
  57. if __name__ == "__main__":
  58. main()