sched.go 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. package server
  2. import (
  3. "context"
  4. "errors"
  5. "fmt"
  6. "log/slog"
  7. "os"
  8. "reflect"
  9. "runtime"
  10. "sort"
  11. "strconv"
  12. "strings"
  13. "sync"
  14. "time"
  15. "github.com/ollama/ollama/api"
  16. "github.com/ollama/ollama/envconfig"
  17. "github.com/ollama/ollama/format"
  18. "github.com/ollama/ollama/gpu"
  19. "github.com/ollama/ollama/llm"
  20. )
  21. type LlmRequest struct {
  22. ctx context.Context //nolint:containedctx
  23. model *Model
  24. opts api.Options
  25. origNumCtx int // Track the initial ctx request
  26. sessionDuration *api.Duration
  27. successCh chan *runnerRef
  28. errCh chan error
  29. schedAttempts uint
  30. }
  31. type Scheduler struct {
  32. pendingReqCh chan *LlmRequest
  33. finishedReqCh chan *LlmRequest
  34. expiredCh chan *runnerRef
  35. unloadedCh chan interface{}
  36. loaded map[string]*runnerRef
  37. loadedMu sync.Mutex
  38. loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int)
  39. newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
  40. getGpuFn func() gpu.GpuInfoList
  41. getCpuFn func() gpu.GpuInfoList
  42. reschedDelay time.Duration
  43. }
  44. // Default automatic value for number of models we allow per GPU
  45. // Model will still need to fit in VRAM, but loading many small models
  46. // on a large GPU can cause stalling
  47. var defaultModelsPerGPU = 3
  48. // Default automatic value for parallel setting
  49. // Model will still need to fit in VRAM. If this setting wont fit
  50. // we'll back off down to 1 to try to get it to fit
  51. var defaultParallel = 4
  52. var ErrMaxQueue = errors.New("server busy, please try again. maximum pending requests exceeded")
  53. func InitScheduler(ctx context.Context) *Scheduler {
  54. maxQueue := envconfig.MaxQueue()
  55. sched := &Scheduler{
  56. pendingReqCh: make(chan *LlmRequest, maxQueue),
  57. finishedReqCh: make(chan *LlmRequest, maxQueue),
  58. expiredCh: make(chan *runnerRef, maxQueue),
  59. unloadedCh: make(chan interface{}, maxQueue),
  60. loaded: make(map[string]*runnerRef),
  61. newServerFn: llm.NewLlamaServer,
  62. getGpuFn: gpu.GetGPUInfo,
  63. getCpuFn: gpu.GetCPUInfo,
  64. reschedDelay: 250 * time.Millisecond,
  65. }
  66. sched.loadFn = sched.load
  67. return sched
  68. }
  69. // context must be canceled to decrement ref count and release the runner
  70. func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) {
  71. if opts.NumCtx < 4 {
  72. opts.NumCtx = 4
  73. }
  74. req := &LlmRequest{
  75. ctx: c,
  76. model: model,
  77. opts: opts,
  78. sessionDuration: sessionDuration,
  79. successCh: make(chan *runnerRef),
  80. errCh: make(chan error, 1),
  81. }
  82. select {
  83. case s.pendingReqCh <- req:
  84. default:
  85. req.errCh <- ErrMaxQueue
  86. }
  87. return req.successCh, req.errCh
  88. }
  89. // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done
  90. func (s *Scheduler) Run(ctx context.Context) {
  91. slog.Debug("starting llm scheduler")
  92. go func() {
  93. s.processPending(ctx)
  94. }()
  95. go func() {
  96. s.processCompleted(ctx)
  97. }()
  98. }
  99. func (s *Scheduler) processPending(ctx context.Context) {
  100. for {
  101. select {
  102. case <-ctx.Done():
  103. slog.Debug("shutting down scheduler pending loop")
  104. return
  105. case pending := <-s.pendingReqCh:
  106. // Block other requests until we get this pending request running
  107. pending.schedAttempts++
  108. if pending.origNumCtx == 0 {
  109. pending.origNumCtx = pending.opts.NumCtx
  110. }
  111. if pending.ctx.Err() != nil {
  112. slog.Debug("pending request cancelled or timed out, skipping scheduling")
  113. continue
  114. }
  115. numParallel := int(envconfig.NumParallel())
  116. // TODO (jmorganca): multimodal models don't support parallel yet
  117. // see https://github.com/ollama/ollama/issues/4165
  118. if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
  119. numParallel = 1
  120. slog.Warn("multimodal models don't support parallel requests yet")
  121. }
  122. for {
  123. var runnerToExpire *runnerRef
  124. s.loadedMu.Lock()
  125. runner := s.loaded[pending.model.ModelPath]
  126. loadedCount := len(s.loaded)
  127. s.loadedMu.Unlock()
  128. if runner != nil {
  129. if runner.needsReload(ctx, pending) {
  130. runnerToExpire = runner
  131. } else {
  132. // Runner is usable, return it
  133. pending.useLoadedRunner(runner, s.finishedReqCh)
  134. break
  135. }
  136. } else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
  137. slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
  138. runnerToExpire = s.findRunnerToUnload()
  139. } else {
  140. // Either no models are loaded or below envconfig.MaxRunners
  141. // Get a refreshed GPU list
  142. var gpus gpu.GpuInfoList
  143. if pending.opts.NumGPU == 0 {
  144. gpus = s.getCpuFn()
  145. } else {
  146. gpus = s.getGpuFn()
  147. }
  148. if envconfig.MaxRunners() <= 0 {
  149. // No user specified MaxRunners, so figure out what automatic setting to use
  150. // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
  151. // if any GPU has unreliable free memory reporting, 1x the number of GPUs
  152. allReliable := true
  153. for _, gpu := range gpus {
  154. if gpu.UnreliableFreeMemory {
  155. allReliable = false
  156. break
  157. }
  158. }
  159. if allReliable {
  160. // HACK
  161. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
  162. slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
  163. } else {
  164. // HACK
  165. os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
  166. slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
  167. }
  168. }
  169. // Load model for fitting
  170. ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
  171. if err != nil {
  172. pending.errCh <- err
  173. break
  174. }
  175. // Evaluate if the model will fit in the available system memory, or if we should unload a model first
  176. if len(gpus) == 1 && gpus[0].Library == "cpu" {
  177. // simplifying assumption of defaultParallel when in CPU mode
  178. if numParallel <= 0 {
  179. numParallel = defaultParallel
  180. }
  181. pending.opts.NumCtx = pending.origNumCtx * numParallel
  182. if loadedCount == 0 {
  183. slog.Debug("cpu mode with first model, loading")
  184. s.loadFn(pending, ggml, gpus, numParallel)
  185. break
  186. }
  187. runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus)
  188. if runnerToExpire == nil {
  189. slog.Debug("cpu mode with available system memory or first model, loading")
  190. s.loadFn(pending, ggml, gpus, numParallel)
  191. break
  192. }
  193. // else we need to expire a runner
  194. } else if loadedCount == 0 {
  195. // No models loaded. Load the model but prefer the best fit.
  196. slog.Debug("loading first model", "model", pending.model.ModelPath)
  197. g := pickBestFullFitByLibrary(pending, ggml, gpus, &numParallel)
  198. if g != nil {
  199. gpus = g
  200. } else {
  201. // Only allow partial loads when this is the first model
  202. gpus = pickBestPartialFitByLibrary(pending, ggml, gpus, &numParallel)
  203. }
  204. s.loadFn(pending, ggml, gpus, numParallel)
  205. break
  206. }
  207. if runnerToExpire == nil {
  208. // More than one loaded model, so we have to see if the
  209. // new one fits
  210. //
  211. // We want to avoid loading on any GPUs that have other
  212. // models still loading on them to avoid potential races
  213. // with VRAM consumption ramping up during load
  214. availGpus := s.filterGPUsWithoutLoadingModels(gpus)
  215. // Update free memory from currently loaded models
  216. s.updateFreeSpace(availGpus)
  217. fitGpus := pickBestFullFitByLibrary(pending, ggml, availGpus, &numParallel)
  218. if fitGpus != nil {
  219. slog.Debug("new model fits with existing models, loading")
  220. s.loadFn(pending, ggml, fitGpus, numParallel)
  221. break
  222. }
  223. // We couldn't find a set of GPUs to fully load the new
  224. // model. If no other models are loading (both GPU lists
  225. // are the same) then we need to unload another model to
  226. // make room
  227. if len(availGpus) < len(gpus) {
  228. // There are other requests pending, and this one
  229. // needs more time, so put it on the back of the
  230. // queue so that we might satisfy other pending
  231. // requests that aren't blocked
  232. go func() {
  233. // Process in a go routine to avoid deadlocking
  234. // the scheduler if our queue is full
  235. slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath)
  236. time.Sleep(s.reschedDelay)
  237. s.pendingReqCh <- pending
  238. }()
  239. break
  240. }
  241. runnerToExpire = s.findRunnerToUnload()
  242. }
  243. }
  244. if runnerToExpire == nil {
  245. // Shouildn't happen
  246. slog.Error("runner to expire was nil!")
  247. continue
  248. }
  249. // Trigger an expiration to unload once it's done
  250. runnerToExpire.refMu.Lock()
  251. slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount)
  252. if runnerToExpire.expireTimer != nil {
  253. runnerToExpire.expireTimer.Stop()
  254. runnerToExpire.expireTimer = nil
  255. }
  256. runnerToExpire.sessionDuration = 0
  257. if runnerToExpire.refCount <= 0 {
  258. s.expiredCh <- runnerToExpire
  259. }
  260. runnerToExpire.refMu.Unlock()
  261. // Wait for the unload to happen
  262. // Note: at this point we're queueing up all incoming requests, even if they were for
  263. // a different model that's loaded and not scheduled to be removed.
  264. slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath)
  265. select {
  266. case <-ctx.Done():
  267. slog.Debug("shutting down scheduler pending loop")
  268. return
  269. case <-s.unloadedCh:
  270. slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath)
  271. continue
  272. }
  273. }
  274. case <-s.unloadedCh:
  275. // An unload request when there are no pending request can be ignored
  276. slog.Debug("ignoring unload event with no pending requests")
  277. }
  278. }
  279. }
  280. func (s *Scheduler) processCompleted(ctx context.Context) {
  281. // Process completed requests, expired timers, and unloading models
  282. for {
  283. select {
  284. case <-ctx.Done():
  285. slog.Debug("shutting down scheduler completed loop")
  286. return
  287. case finished := <-s.finishedReqCh:
  288. s.loadedMu.Lock()
  289. runner := s.loaded[finished.model.ModelPath]
  290. s.loadedMu.Unlock()
  291. if runner == nil {
  292. slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath)
  293. continue
  294. }
  295. runner.refMu.Lock()
  296. runner.refCount--
  297. if runner.refCount <= 0 {
  298. if runner.sessionDuration <= 0 {
  299. slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath)
  300. if runner.expireTimer != nil {
  301. runner.expireTimer.Stop()
  302. runner.expireTimer = nil
  303. }
  304. s.expiredCh <- runner
  305. } else if runner.expireTimer == nil {
  306. slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  307. runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() {
  308. slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath)
  309. runner.refMu.Lock()
  310. defer runner.refMu.Unlock()
  311. if runner.expireTimer != nil {
  312. runner.expireTimer.Stop()
  313. runner.expireTimer = nil
  314. }
  315. s.expiredCh <- runner
  316. })
  317. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  318. } else {
  319. slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration)
  320. runner.expireTimer.Reset(runner.sessionDuration)
  321. runner.expiresAt = time.Now().Add(runner.sessionDuration)
  322. }
  323. }
  324. slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount)
  325. runner.refMu.Unlock()
  326. case runner := <-s.expiredCh:
  327. slog.Debug("runner expired event received", "modelPath", runner.modelPath)
  328. runner.refMu.Lock()
  329. if runner.refCount > 0 {
  330. // Shouldn't happen, but safeguard to ensure no leaked runners
  331. slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount)
  332. go func(runner *runnerRef) {
  333. // We can't unload yet, but want to as soon as the current request completes
  334. // So queue up another expired event
  335. time.Sleep(10 * time.Millisecond)
  336. s.expiredCh <- runner
  337. }(runner)
  338. runner.refMu.Unlock()
  339. continue
  340. }
  341. s.loadedMu.Lock()
  342. slog.Debug("got lock to unload", "modelPath", runner.modelPath)
  343. finished := runner.waitForVRAMRecovery()
  344. runner.unload()
  345. delete(s.loaded, runner.modelPath)
  346. s.loadedMu.Unlock()
  347. slog.Debug("runner released", "modelPath", runner.modelPath)
  348. runner.refMu.Unlock()
  349. <-finished
  350. slog.Debug("sending an unloaded event", "modelPath", runner.modelPath)
  351. s.unloadedCh <- struct{}{}
  352. }
  353. }
  354. }
  355. // Complete the pending request and send the runner back to the requester
  356. // Wires up a finished event after the request context is completed
  357. // Updates session duration, and resets expiration timer
  358. func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) {
  359. runner.refMu.Lock()
  360. defer runner.refMu.Unlock()
  361. runner.refCount++
  362. if runner.expireTimer != nil {
  363. runner.expireTimer.Stop()
  364. runner.expireTimer = nil
  365. }
  366. if pending.sessionDuration != nil {
  367. runner.sessionDuration = pending.sessionDuration.Duration
  368. }
  369. pending.successCh <- runner
  370. go func() {
  371. <-pending.ctx.Done()
  372. slog.Debug("context for request finished")
  373. finished <- pending
  374. }()
  375. }
  376. func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) {
  377. if numParallel < 1 {
  378. numParallel = 1
  379. }
  380. sessionDuration := envconfig.KeepAlive()
  381. if req.sessionDuration != nil {
  382. sessionDuration = req.sessionDuration.Duration
  383. }
  384. llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
  385. if err != nil {
  386. // some older models are not compatible with newer versions of llama.cpp
  387. // show a generalized compatibility error until there is a better way to
  388. // check for model compatibility
  389. if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") {
  390. err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
  391. }
  392. slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
  393. req.errCh <- err
  394. return
  395. }
  396. runner := &runnerRef{
  397. model: req.model,
  398. modelPath: req.model.ModelPath,
  399. llama: llama,
  400. Options: &req.opts,
  401. sessionDuration: sessionDuration,
  402. gpus: gpus,
  403. estimatedVRAM: llama.EstimatedVRAM(),
  404. estimatedTotal: llama.EstimatedTotal(),
  405. loading: true,
  406. refCount: 1,
  407. }
  408. runner.numParallel = numParallel
  409. runner.refMu.Lock()
  410. s.loadedMu.Lock()
  411. s.loaded[req.model.ModelPath] = runner
  412. slog.Info("loaded runners", "count", len(s.loaded))
  413. s.loadedMu.Unlock()
  414. go func() {
  415. defer runner.refMu.Unlock()
  416. if err = llama.WaitUntilRunning(req.ctx); err != nil {
  417. slog.Error("error loading llama server", "error", err)
  418. runner.refCount--
  419. req.errCh <- err
  420. slog.Debug("triggering expiration for failed load", "model", runner.modelPath)
  421. s.expiredCh <- runner
  422. return
  423. }
  424. slog.Debug("finished setting up runner", "model", req.model.ModelPath)
  425. runner.loading = false
  426. go func() {
  427. <-req.ctx.Done()
  428. slog.Debug("context for request finished")
  429. s.finishedReqCh <- req
  430. }()
  431. req.successCh <- runner
  432. }()
  433. }
  434. func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) {
  435. type predKey struct {
  436. Library string
  437. ID string
  438. }
  439. predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners
  440. s.loadedMu.Lock()
  441. for _, r := range s.loaded {
  442. r.refMu.Lock()
  443. if r.llama != nil {
  444. for _, gpu := range allGpus {
  445. predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID)
  446. }
  447. } else {
  448. slog.Warn("unexpected nil runner reference, memory prediction may be incorrect")
  449. }
  450. r.refMu.Unlock()
  451. }
  452. s.loadedMu.Unlock()
  453. // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list
  454. for i := range allGpus {
  455. if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok {
  456. slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory))
  457. if p > allGpus[i].TotalMemory {
  458. // Shouldn't happen
  459. slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p)
  460. allGpus[i].FreeMemory = 0
  461. } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it
  462. // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy
  463. // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded
  464. // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent.
  465. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p
  466. }
  467. slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory))
  468. }
  469. }
  470. }
  471. // While models are loading the VRAM consumption numbers will be indeterminate, so we have
  472. // to avoid scheduling another model on the same GPU(s) that haven't stabilized.
  473. // This routine returns the set of GPUs that do not have an active loading model.
  474. // If all GPUs have loading models, an empty list will be returned (not a single CPU entry)
  475. func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList {
  476. ret := append(gpu.GpuInfoList{}, allGpus...)
  477. s.loadedMu.Lock()
  478. defer s.loadedMu.Unlock()
  479. for _, runner := range s.loaded {
  480. if runner.loading {
  481. slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath)
  482. for _, busyGPU := range runner.gpus {
  483. for i := range ret {
  484. if ret[i].ID == busyGPU.ID {
  485. ret = append(ret[:i], ret[i+1:]...)
  486. break
  487. }
  488. }
  489. }
  490. }
  491. }
  492. return ret
  493. }
  494. // TODO consolidate sched_types.go
  495. type runnerRef struct {
  496. refMu sync.Mutex
  497. // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount
  498. refCount uint // prevent unloading if > 0
  499. // unloading bool // set to true when we are trying to unload the runner
  500. llama llm.LlamaServer
  501. loading bool // True only during initial load, then false forever
  502. gpus gpu.GpuInfoList // Recorded at time of provisioning
  503. estimatedVRAM uint64
  504. estimatedTotal uint64
  505. sessionDuration time.Duration
  506. expireTimer *time.Timer
  507. expiresAt time.Time
  508. model *Model
  509. modelPath string
  510. numParallel int
  511. *api.Options
  512. }
  513. // The refMu must already be held when calling unload
  514. func (runner *runnerRef) unload() {
  515. if runner.expireTimer != nil {
  516. runner.expireTimer.Stop()
  517. runner.expireTimer = nil
  518. }
  519. if runner.llama != nil {
  520. runner.llama.Close()
  521. }
  522. runner.model = nil
  523. runner.llama = nil
  524. runner.Options = nil
  525. runner.gpus = nil
  526. }
  527. func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool {
  528. slog.Debug("evaluating already loaded", "model", req.model.ModelPath)
  529. runner.refMu.Lock()
  530. defer runner.refMu.Unlock()
  531. timeout := 10 * time.Second
  532. if runner.loading {
  533. timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems...
  534. }
  535. if runner.Options == nil {
  536. return true
  537. }
  538. // Don't reload runner if num_gpu=-1 was provided
  539. optsExisting := runner.Options.Runner
  540. optsNew := req.opts.Runner
  541. if optsNew.NumGPU < 0 {
  542. optsExisting.NumGPU = -1
  543. optsNew.NumGPU = -1
  544. }
  545. // Normalize the NumCtx for parallelism
  546. optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel
  547. ctx, cancel := context.WithTimeout(ctx, timeout)
  548. defer cancel()
  549. if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed?
  550. !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed?
  551. !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed?
  552. runner.llama.Ping(ctx) != nil {
  553. return true
  554. }
  555. return false
  556. }
  557. // Free memory reporting on GPUs can lag for a while even after the runner
  558. // exits, so we have to keep checking until we see the available memory recover,
  559. // otherwise subsequent model loads will get far less layers loaded or worse
  560. // case, may completely fall back to CPU mode.
  561. // This routine must be called before the runner unloads so it can establish
  562. // a before and after GPU memory allocation. The returned channel
  563. // will be notified when we're done waiting, or have timed out and should
  564. // proceed anyway
  565. func (runner *runnerRef) waitForVRAMRecovery() chan interface{} {
  566. finished := make(chan interface{}, 1)
  567. // CPU or Metal don't need checking, so no waiting required
  568. // windows can page VRAM, only cuda currently can report accurate used vram usage
  569. if len(runner.gpus) == 0 ||
  570. (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) ||
  571. (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") {
  572. finished <- struct{}{}
  573. return finished
  574. }
  575. start := time.Now()
  576. // Establish a baseline before we unload
  577. gpusBefore := gpu.GetGPUInfo()
  578. var totalMemoryBefore, freeMemoryBefore uint64
  579. for _, gpu := range gpusBefore {
  580. totalMemoryBefore += gpu.TotalMemory
  581. freeMemoryBefore += gpu.FreeMemory
  582. }
  583. go func() {
  584. expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s
  585. ticker := time.NewTicker(250 * time.Millisecond)
  586. defer ticker.Stop()
  587. for {
  588. <-ticker.C
  589. if time.Now().After(expiresAt) {
  590. slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath)
  591. finished <- struct{}{}
  592. }
  593. // Query GPUs, look for free to go back up
  594. gpusNow := gpu.GetGPUInfo()
  595. var totalMemoryNow, freeMemoryNow uint64
  596. for _, gpu := range gpusNow {
  597. totalMemoryNow += gpu.TotalMemory
  598. freeMemoryNow += gpu.FreeMemory
  599. }
  600. // If we're within ~80% of the estimated memory usage recovered, bail out
  601. if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 {
  602. slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath)
  603. finished <- struct{}{}
  604. return
  605. }
  606. }
  607. }()
  608. return finished
  609. }
  610. type ByDuration []*runnerRef
  611. func (a ByDuration) Len() int { return len(a) }
  612. func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  613. func (a ByDuration) Less(i, j int) bool {
  614. // uint64 to turn negative time (never unload) to largest
  615. return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration)
  616. }
  617. // TODO - future consideration to pick runners based on size
  618. // type BySize []*runnerRef
  619. // func (a BySize) Len() int { return len(a) }
  620. // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  621. // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM }
  622. // pickBestFullFitByLibrary will try to find the optimal placement of the model in the available GPUs where the model fully fits
  623. // The list of GPUs returned will always be the same brand (library)
  624. // If the model can not be fit fully within the available GPU(s) nil is returned
  625. // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust
  626. // opts.NumCtx accordingly
  627. func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  628. var estimatedVRAM uint64
  629. var numParallelToTry []int
  630. if *numParallel <= 0 {
  631. // If no specific parallel setting was provided, try larger then smaller, always end with 1
  632. numParallelToTry = append(numParallelToTry, defaultParallel, 1)
  633. } else {
  634. numParallelToTry = []int{*numParallel}
  635. }
  636. for _, gl := range gpus.ByLibrary() {
  637. var ok bool
  638. sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...)
  639. // TODO - potentially sort by performance capability, existing models loaded, etc.
  640. // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
  641. // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
  642. sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl)))
  643. // First attempt to fit the model into a single GPU
  644. for _, p := range numParallelToTry {
  645. req.opts.NumCtx = req.origNumCtx * p
  646. if !envconfig.SchedSpread() {
  647. for _, g := range sgl {
  648. if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  649. slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
  650. *numParallel = p
  651. return []gpu.GpuInfo{g}
  652. }
  653. }
  654. }
  655. }
  656. // TODO future refinements
  657. // - if multiple Libraries, see if any single GPU in any Library will fit
  658. // - try subsets of GPUs instead of just falling back to 1 or all in a family
  659. // Now try all the GPUs
  660. for _, p := range numParallelToTry {
  661. req.opts.NumCtx = req.origNumCtx * p
  662. if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
  663. slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
  664. *numParallel = p
  665. return sgl
  666. }
  667. }
  668. }
  669. return nil
  670. }
  671. // If multiple Libraries are detected, pick the Library which loads the most layers for the model
  672. func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
  673. *numParallel = 1
  674. byLibrary := gpus.ByLibrary()
  675. if len(byLibrary) <= 1 {
  676. return gpus
  677. }
  678. var bestEstimate uint64
  679. var bestFit int
  680. for i, gl := range byLibrary {
  681. _, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
  682. if estimatedVRAM > bestEstimate {
  683. bestEstimate = estimatedVRAM
  684. bestFit = i
  685. }
  686. }
  687. return byLibrary[bestFit]
  688. }
  689. // findRunnerToUnload finds a runner to unload to make room for a new model
  690. func (s *Scheduler) findRunnerToUnload() *runnerRef {
  691. s.loadedMu.Lock()
  692. runnerList := make([]*runnerRef, 0, len(s.loaded))
  693. for _, r := range s.loaded {
  694. runnerList = append(runnerList, r)
  695. }
  696. s.loadedMu.Unlock()
  697. if len(runnerList) == 0 {
  698. slog.Debug("no loaded runner to unload")
  699. return nil
  700. }
  701. // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload
  702. // e.g., if we have multiple options, will one make room for the request?
  703. sort.Sort(ByDuration(runnerList))
  704. // First try to find a runner that's already idle
  705. for _, runner := range runnerList {
  706. runner.refMu.Lock()
  707. rc := runner.refCount
  708. runner.refMu.Unlock()
  709. if rc == 0 {
  710. slog.Debug("found an idle runner to unload")
  711. return runner
  712. }
  713. }
  714. // None appear idle, just wait for the one with the shortest duration
  715. slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList))
  716. return runnerList[0]
  717. }
  718. func (s *Scheduler) unloadAllRunners() {
  719. s.loadedMu.Lock()
  720. defer s.loadedMu.Unlock()
  721. for model, runner := range s.loaded {
  722. if runner.llama != nil {
  723. slog.Debug("shutting down runner", "model", model)
  724. runner.llama.Close()
  725. }
  726. }
  727. }
  728. // If other runners are loaded, make sure the pending request will fit in system memory
  729. // If not, pick a runner to unload, else return nil and the request can be loaded
  730. func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef {
  731. slog.Debug("evaluating if CPU model load will fit in available system memory")
  732. estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
  733. if estimate.TotalSize <= gpus[0].FreeMemory {
  734. slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
  735. return nil
  736. }
  737. // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room
  738. return s.findRunnerToUnload()
  739. }