server.cpp 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273
  1. // MIT License
  2. // Copyright (c) 2023 Georgi Gerganov
  3. // Permission is hereby granted, free of charge, to any person obtaining a copy
  4. // of this software and associated documentation files (the "Software"), to deal
  5. // in the Software without restriction, including without limitation the rights
  6. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  7. // copies of the Software, and to permit persons to whom the Software is
  8. // furnished to do so, subject to the following conditions:
  9. // The above copyright notice and this permission notice shall be included in all
  10. // copies or substantial portions of the Software.
  11. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  12. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  13. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  14. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  15. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  16. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  17. // SOFTWARE.
  18. #include "common.h"
  19. #include "llama.h"
  20. #include "grammar-parser.h"
  21. #include "utils.hpp"
  22. #include "../llava/clip.h"
  23. #include "../llava/llava.h"
  24. #include "stb_image.h"
  25. #ifndef NDEBUG
  26. // crash the server in debug mode, otherwise send an http 500 error
  27. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  28. #endif
  29. // increase max payload length to allow use of larger context size
  30. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  31. #include "httplib.h"
  32. #include "json.hpp"
  33. #if defined(_WIN32)
  34. #include <windows.h>
  35. #endif
  36. #include <cstddef>
  37. #include <thread>
  38. #include <chrono>
  39. #include <condition_variable>
  40. #include <atomic>
  41. #include <signal.h>
  42. using json = nlohmann::json;
  43. struct server_params {
  44. std::string hostname = "127.0.0.1";
  45. std::vector<std::string> api_keys;
  46. std::string public_path = "examples/server/public";
  47. int32_t port = 8080;
  48. int32_t read_timeout = 600;
  49. int32_t write_timeout = 600;
  50. bool slots_endpoint = true;
  51. bool metrics_endpoint = false;
  52. int n_threads_http = -1;
  53. };
  54. bool server_verbose = false;
  55. bool server_log_json = false;
  56. enum stop_type {
  57. STOP_FULL,
  58. STOP_PARTIAL,
  59. };
  60. // TODO: can become bool if we can't find use of more states
  61. enum slot_state {
  62. IDLE,
  63. PROCESSING,
  64. };
  65. enum slot_command {
  66. NONE,
  67. LOAD_PROMPT,
  68. RELEASE,
  69. };
  70. struct slot_params {
  71. bool stream = true;
  72. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  73. uint32_t seed = -1; // RNG seed
  74. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  75. int32_t n_predict = -1; // new tokens to predict
  76. std::vector<std::string> antiprompt;
  77. json input_prefix;
  78. json input_suffix;
  79. };
  80. struct slot_image {
  81. int32_t id;
  82. bool request_encode_image = false;
  83. float * image_embedding = nullptr;
  84. int32_t image_tokens = 0;
  85. clip_image_u8 * img_data;
  86. std::string prefix_prompt; // before of this image
  87. };
  88. struct server_slot {
  89. int id;
  90. int task_id = -1;
  91. struct slot_params params;
  92. slot_state state = IDLE;
  93. slot_command command = NONE;
  94. // used to determine the slot that has been used the longest
  95. int64_t t_last_used = -1;
  96. // generation props
  97. int32_t n_ctx = 0; // context size per slot
  98. int32_t n_past = 0;
  99. int32_t n_decoded = 0;
  100. int32_t n_remaining = -1;
  101. int32_t i_batch = -1;
  102. int32_t n_predict = -1;
  103. int32_t n_prompt_tokens = 0;
  104. int32_t n_prompt_tokens_processed = 0;
  105. json prompt;
  106. std::string generated_text;
  107. llama_token sampled;
  108. std::vector<llama_token> cache_tokens;
  109. std::vector<completion_token_output> generated_token_probs;
  110. bool embedding = false;
  111. bool has_next_token = true;
  112. bool truncated = false;
  113. bool stopped_eos = false;
  114. bool stopped_word = false;
  115. bool stopped_limit = false;
  116. std::string stopping_word;
  117. // sampling
  118. struct llama_sampling_params sparams;
  119. llama_sampling_context *ctx_sampling = nullptr;
  120. int32_t ga_i = 0; // group-attention state
  121. int32_t ga_n = 1; // group-attention factor
  122. int32_t ga_w = 512; // group-attention width
  123. int32_t n_past_se = 0; // self-extend
  124. // multimodal
  125. std::vector<slot_image> images;
  126. // stats
  127. size_t n_sent_text = 0; // number of sent text character
  128. size_t n_sent_token_probs = 0;
  129. int64_t t_start_process_prompt;
  130. int64_t t_start_genereration;
  131. double t_prompt_processing; // ms
  132. double t_token_generation; // ms
  133. // multitasks
  134. int multitask_id = -1;
  135. void reset() {
  136. n_prompt_tokens = 0;
  137. generated_text = "";
  138. truncated = false;
  139. stopped_eos = false;
  140. stopped_word = false;
  141. stopped_limit = false;
  142. stopping_word = "";
  143. n_past = 0;
  144. n_sent_text = 0;
  145. n_sent_token_probs = 0;
  146. ga_i = 0;
  147. n_past_se = 0;
  148. generated_token_probs.clear();
  149. for (slot_image & img : images) {
  150. free(img.image_embedding);
  151. if (img.img_data) {
  152. clip_image_u8_free(img.img_data);
  153. }
  154. img.prefix_prompt = "";
  155. }
  156. images.clear();
  157. }
  158. bool has_budget(gpt_params &global_params) {
  159. if (params.n_predict == -1 && global_params.n_predict == -1) {
  160. return true; // limitless
  161. }
  162. n_remaining = -1;
  163. if (params.n_predict != -1) {
  164. n_remaining = params.n_predict - n_decoded;
  165. } else if (global_params.n_predict != -1) {
  166. n_remaining = global_params.n_predict - n_decoded;
  167. }
  168. return n_remaining > 0; // no budget
  169. }
  170. bool available() const {
  171. return state == IDLE && command == NONE;
  172. }
  173. bool is_processing() const {
  174. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  175. }
  176. void add_token_string(const completion_token_output &token) {
  177. if (command == RELEASE) {
  178. return;
  179. }
  180. cache_tokens.push_back(token.tok);
  181. generated_token_probs.push_back(token);
  182. }
  183. void release() {
  184. if (state == PROCESSING)
  185. {
  186. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  187. command = RELEASE;
  188. }
  189. }
  190. json get_formated_timings() {
  191. return json
  192. {
  193. {"prompt_n", n_prompt_tokens_processed},
  194. {"prompt_ms", t_prompt_processing},
  195. {"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
  196. {"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
  197. {"predicted_n", n_decoded},
  198. {"predicted_ms", t_token_generation},
  199. {"predicted_per_token_ms", t_token_generation / n_decoded},
  200. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  201. };
  202. }
  203. void print_timings() const {
  204. char buffer[512];
  205. double t_token = t_prompt_processing / n_prompt_tokens_processed;
  206. double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  207. sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
  208. t_prompt_processing, n_prompt_tokens_processed,
  209. t_token, n_tokens_second);
  210. LOG_DEBUG(buffer, {
  211. {"slot_id", id},
  212. {"task_id", task_id},
  213. {"t_prompt_processing", t_prompt_processing},
  214. {"n_prompt_tokens_processed", n_prompt_tokens_processed},
  215. {"t_token", t_token},
  216. {"n_tokens_second", n_tokens_second},
  217. });
  218. t_token = t_token_generation / n_decoded;
  219. n_tokens_second = 1e3 / t_token_generation * n_decoded;
  220. sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
  221. t_token_generation, n_decoded,
  222. t_token, n_tokens_second);
  223. LOG_DEBUG(buffer, {
  224. {"slot_id", id},
  225. {"task_id", task_id},
  226. {"t_token_generation", t_token_generation},
  227. {"n_decoded", n_decoded},
  228. {"t_token", t_token},
  229. {"n_tokens_second", n_tokens_second},
  230. });
  231. sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
  232. LOG_DEBUG(buffer, {
  233. {"slot_id", id},
  234. {"task_id", task_id},
  235. {"t_prompt_processing", t_prompt_processing},
  236. {"t_token_generation", t_token_generation},
  237. {"t_total", t_prompt_processing + t_token_generation},
  238. });
  239. }
  240. };
  241. struct server_metrics {
  242. uint64_t n_prompt_tokens_processed_total = 0;
  243. uint64_t n_tokens_predicted_total = 0;
  244. uint64_t n_prompt_tokens_processed = 0;
  245. uint64_t t_prompt_processing = 0;
  246. uint64_t n_tokens_predicted = 0;
  247. uint64_t t_tokens_generation = 0;
  248. void on_prompt_eval(const server_slot &slot) {
  249. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  250. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  251. t_prompt_processing += slot.t_prompt_processing;
  252. }
  253. void on_prediction(const server_slot &slot) {
  254. n_tokens_predicted_total += slot.n_decoded;
  255. n_tokens_predicted += slot.n_decoded;
  256. t_tokens_generation += slot.t_token_generation;
  257. }
  258. void reset_bucket() {
  259. n_prompt_tokens_processed = 0;
  260. t_prompt_processing = 0;
  261. n_tokens_predicted = 0;
  262. t_tokens_generation = 0;
  263. }
  264. };
  265. struct llama_server_context
  266. {
  267. llama_model *model = nullptr;
  268. float modelProgress = 0.0;
  269. llama_context *ctx = nullptr;
  270. clip_ctx *clp_ctx = nullptr;
  271. gpt_params params;
  272. llama_batch batch;
  273. bool multimodal = false;
  274. bool clean_kv_cache = true;
  275. bool all_slots_are_idle = false;
  276. bool add_bos_token = true;
  277. int32_t n_ctx; // total context for all clients / slots
  278. // system prompt
  279. bool system_need_update = false;
  280. std::string system_prompt;
  281. std::vector<llama_token> system_tokens;
  282. std::string name_user; // this should be the antiprompt
  283. std::string name_assistant;
  284. // slots / clients
  285. std::vector<server_slot> slots;
  286. llama_server_queue queue_tasks;
  287. llama_server_response queue_results;
  288. server_metrics metrics;
  289. ~llama_server_context()
  290. {
  291. if (clp_ctx)
  292. {
  293. LOG_DEBUG("freeing clip model", {});
  294. clip_free(clp_ctx);
  295. clp_ctx = nullptr;
  296. }
  297. if (ctx)
  298. {
  299. llama_free(ctx);
  300. ctx = nullptr;
  301. }
  302. if (model)
  303. {
  304. llama_free_model(model);
  305. model = nullptr;
  306. }
  307. }
  308. bool load_model(const gpt_params &params_)
  309. {
  310. params = params_;
  311. if (!params.mmproj.empty()) {
  312. multimodal = true;
  313. LOG_DEBUG("Multi Modal Mode Enabled", {});
  314. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  315. if(clp_ctx == nullptr) {
  316. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  317. return false;
  318. }
  319. if (params.n_ctx < 2048) { // request larger context for the image embedding
  320. params.n_ctx = 2048;
  321. }
  322. }
  323. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  324. if (model == nullptr)
  325. {
  326. LOG_ERROR("unable to load model", {{"model", params.model}});
  327. return false;
  328. }
  329. if (multimodal) {
  330. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  331. const int n_embd_llm = llama_n_embd(model);
  332. if (n_embd_clip != n_embd_llm) {
  333. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  334. llama_free(ctx);
  335. llama_free_model(model);
  336. return false;
  337. }
  338. }
  339. n_ctx = llama_n_ctx(ctx);
  340. add_bos_token = llama_should_add_bos_token(model);
  341. return true;
  342. }
  343. void initialize() {
  344. // create slots
  345. all_slots_are_idle = true;
  346. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  347. LOG_DEBUG("initializing slots", {{"n_slots", params.n_parallel}});
  348. for (int i = 0; i < params.n_parallel; i++)
  349. {
  350. server_slot slot;
  351. slot.id = i;
  352. slot.n_ctx = n_ctx_slot;
  353. slot.n_predict = params.n_predict;
  354. LOG_DEBUG("new slot", {
  355. {"slot_id", slot.id},
  356. {"n_ctx_slot", slot.n_ctx}
  357. });
  358. const int ga_n = params.grp_attn_n;
  359. const int ga_w = params.grp_attn_w;
  360. if (ga_n != 1) {
  361. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  362. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  363. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  364. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  365. LOG_DEBUG("slot self-extend", {
  366. {"slot_id", slot.id},
  367. {"ga_n", ga_n},
  368. {"ga_w", ga_w}
  369. });
  370. }
  371. slot.ga_i = 0;
  372. slot.ga_n = ga_n;
  373. slot.ga_w = ga_w;
  374. slot.reset();
  375. slots.push_back(slot);
  376. }
  377. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  378. }
  379. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  380. {
  381. // TODO: currently, we tokenize using special tokens by default
  382. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  383. // but it's better compared to completely ignoring ChatML and other chat templates
  384. const bool TMP_FORCE_SPECIAL = true;
  385. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  386. // or the first element of the json_prompt array is a string.
  387. std::vector<llama_token> prompt_tokens;
  388. if (json_prompt.is_array())
  389. {
  390. bool first = true;
  391. for (const auto& p : json_prompt)
  392. {
  393. if (p.is_string())
  394. {
  395. auto s = p.template get<std::string>();
  396. std::vector<llama_token> p;
  397. if (first)
  398. {
  399. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  400. first = false;
  401. }
  402. else
  403. {
  404. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  405. }
  406. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  407. }
  408. else
  409. {
  410. if (first)
  411. {
  412. first = false;
  413. }
  414. prompt_tokens.push_back(p.template get<llama_token>());
  415. }
  416. }
  417. }
  418. else
  419. {
  420. auto s = json_prompt.template get<std::string>();
  421. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  422. }
  423. return prompt_tokens;
  424. }
  425. server_slot* get_slot(int id) {
  426. int64_t t_last = ggml_time_us();
  427. server_slot *last_used = nullptr;
  428. for (server_slot & slot : slots)
  429. {
  430. if (slot.id == id && slot.available())
  431. {
  432. return &slot;
  433. }
  434. if (slot.available() && slot.t_last_used < t_last)
  435. {
  436. last_used = &slot;
  437. t_last = slot.t_last_used;
  438. }
  439. }
  440. return last_used;
  441. }
  442. bool launch_slot_with_data(server_slot* &slot, json data) {
  443. slot_params default_params;
  444. llama_sampling_params default_sparams;
  445. slot->params.stream = json_value(data, "stream", false);
  446. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  447. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  448. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  449. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  450. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  451. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  452. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  453. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  454. slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  455. slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  456. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  457. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  458. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  459. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  460. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  461. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  462. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  463. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  464. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  465. slot->sparams.seed = json_value(data, "seed", default_params.seed);
  466. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  467. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  468. slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
  469. if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
  470. // Might be better to reject the request with a 400 ?
  471. LOG_WARNING("Max tokens to predict exceeds server configuration", {
  472. {"params.n_predict", slot->params.n_predict},
  473. {"slot.n_predict", slot->n_predict},
  474. });
  475. slot->params.n_predict = slot->n_predict;
  476. }
  477. if (data.count("input_suffix") != 0)
  478. {
  479. slot->params.input_suffix = data["input_suffix"];
  480. }
  481. else
  482. {
  483. slot->params.input_suffix = "";
  484. }
  485. if (data.count("prompt") != 0)
  486. {
  487. slot->prompt = data["prompt"];
  488. }
  489. else
  490. {
  491. slot->prompt = "";
  492. }
  493. slot->sparams.penalty_prompt_tokens.clear();
  494. slot->sparams.use_penalty_prompt_tokens = false;
  495. const auto &penalty_prompt = data.find("penalty_prompt");
  496. if (penalty_prompt != data.end())
  497. {
  498. if (penalty_prompt->is_string())
  499. {
  500. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  501. auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
  502. slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
  503. if (slot->params.n_predict > 0)
  504. {
  505. slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
  506. }
  507. slot->sparams.use_penalty_prompt_tokens = true;
  508. }
  509. else if (penalty_prompt->is_array())
  510. {
  511. const auto n_tokens = penalty_prompt->size();
  512. slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
  513. const int n_vocab = llama_n_vocab(model);
  514. for (const auto &penalty_token : *penalty_prompt)
  515. {
  516. if (penalty_token.is_number_integer())
  517. {
  518. const auto tok = penalty_token.get<llama_token>();
  519. if (tok >= 0 && tok < n_vocab)
  520. {
  521. slot->sparams.penalty_prompt_tokens.push_back(tok);
  522. }
  523. }
  524. }
  525. slot->sparams.use_penalty_prompt_tokens = true;
  526. }
  527. }
  528. slot->sparams.logit_bias.clear();
  529. if (json_value(data, "ignore_eos", false))
  530. {
  531. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  532. }
  533. const auto &logit_bias = data.find("logit_bias");
  534. if (logit_bias != data.end() && logit_bias->is_array())
  535. {
  536. const int n_vocab = llama_n_vocab(model);
  537. for (const auto &el : *logit_bias)
  538. {
  539. if (el.is_array() && el.size() == 2)
  540. {
  541. float bias;
  542. if (el[1].is_number())
  543. {
  544. bias = el[1].get<float>();
  545. }
  546. else if (el[1].is_boolean() && !el[1].get<bool>())
  547. {
  548. bias = -INFINITY;
  549. }
  550. else
  551. {
  552. continue;
  553. }
  554. if (el[0].is_number_integer())
  555. {
  556. llama_token tok = el[0].get<llama_token>();
  557. if (tok >= 0 && tok < n_vocab)
  558. {
  559. slot->sparams.logit_bias[tok] = bias;
  560. }
  561. }
  562. else if (el[0].is_string())
  563. {
  564. auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
  565. for (auto tok : toks)
  566. {
  567. slot->sparams.logit_bias[tok] = bias;
  568. }
  569. }
  570. }
  571. }
  572. }
  573. slot->params.antiprompt.clear();
  574. const auto &stop = data.find("stop");
  575. if (stop != data.end() && stop->is_array())
  576. {
  577. for (const auto &word : *stop)
  578. {
  579. if (!word.empty())
  580. {
  581. slot->params.antiprompt.push_back(word);
  582. }
  583. }
  584. }
  585. const auto &samplers_sequence = data.find("samplers");
  586. if (samplers_sequence != data.end() && samplers_sequence->is_array())
  587. {
  588. std::vector<std::string> sampler_names;
  589. for (const auto &sampler_name : *samplers_sequence)
  590. {
  591. if (sampler_name.is_string())
  592. {
  593. sampler_names.emplace_back(sampler_name);
  594. }
  595. }
  596. slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
  597. }
  598. else
  599. {
  600. slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
  601. }
  602. if (multimodal)
  603. {
  604. const auto &images_data = data.find("image_data");
  605. if (images_data != data.end() && images_data->is_array())
  606. {
  607. for (const auto &img : *images_data)
  608. {
  609. const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
  610. slot_image img_sl;
  611. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  612. img_sl.img_data = clip_image_u8_init();
  613. if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
  614. {
  615. LOG_ERROR("failed to load image", {
  616. {"slot_id", slot->id},
  617. {"img_sl_id", img_sl.id}
  618. });
  619. return false;
  620. }
  621. LOG_VERBOSE("image loaded", {
  622. {"slot_id", slot->id},
  623. {"img_sl_id", img_sl.id}
  624. });
  625. img_sl.request_encode_image = true;
  626. slot->images.push_back(img_sl);
  627. }
  628. // process prompt
  629. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  630. if (slot->images.size() > 0 && !slot->prompt.is_array())
  631. {
  632. std::string prompt = slot->prompt.get<std::string>();
  633. size_t pos = 0, begin_prefix = 0;
  634. std::string pattern = "[img-";
  635. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  636. size_t end_prefix = pos;
  637. pos += pattern.length();
  638. size_t end_pos = prompt.find(']', pos);
  639. if (end_pos != std::string::npos)
  640. {
  641. std::string image_id = prompt.substr(pos, end_pos - pos);
  642. try
  643. {
  644. int img_id = std::stoi(image_id);
  645. bool found = false;
  646. for (slot_image &img : slot->images)
  647. {
  648. if (img.id == img_id) {
  649. found = true;
  650. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  651. begin_prefix = end_pos + 1;
  652. break;
  653. }
  654. }
  655. if (!found) {
  656. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  657. slot->images.clear();
  658. return false;
  659. }
  660. } catch (const std::invalid_argument& e) {
  661. LOG_TEE("Invalid image number id in prompt\n");
  662. slot->images.clear();
  663. return false;
  664. }
  665. }
  666. }
  667. slot->prompt = "";
  668. slot->params.input_suffix = prompt.substr(begin_prefix);
  669. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  670. }
  671. }
  672. }
  673. if (slot->ctx_sampling != nullptr)
  674. {
  675. llama_sampling_free(slot->ctx_sampling);
  676. }
  677. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  678. slot->command = LOAD_PROMPT;
  679. all_slots_are_idle = false;
  680. LOG_DEBUG("slot is processing task", {
  681. {"slot_id", slot->id},
  682. {"task_id", slot->task_id},
  683. });
  684. return true;
  685. }
  686. void kv_cache_clear() {
  687. // clear the entire KV cache
  688. llama_kv_cache_clear(ctx);
  689. clean_kv_cache = false;
  690. }
  691. void system_prompt_update() {
  692. kv_cache_clear();
  693. system_tokens.clear();
  694. if (!system_prompt.empty()) {
  695. system_tokens = ::llama_tokenize(ctx, system_prompt, true);
  696. llama_batch_clear(batch);
  697. for (int i = 0; i < (int)system_tokens.size(); ++i)
  698. {
  699. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  700. }
  701. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
  702. {
  703. const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
  704. llama_batch batch_view = {
  705. n_tokens,
  706. batch.token + i,
  707. nullptr,
  708. batch.pos + i,
  709. batch.n_seq_id + i,
  710. batch.seq_id + i,
  711. batch.logits + i,
  712. 0, 0, 0, // unused
  713. };
  714. if (llama_decode(ctx, batch_view) != 0)
  715. {
  716. LOG_TEE("%s: llama_decode() failed\n", __func__);
  717. return;
  718. }
  719. }
  720. // assign the system KV cache to all parallel sequences
  721. for (int32_t i = 1; i < params.n_parallel; ++i)
  722. {
  723. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  724. }
  725. }
  726. LOG_TEE("system prompt updated\n");
  727. system_need_update = false;
  728. }
  729. void system_prompt_notify() {
  730. // release all slots
  731. for (server_slot &slot : slots)
  732. {
  733. slot.release();
  734. }
  735. system_need_update = true;
  736. }
  737. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  738. const stop_type type, server_slot &slot)
  739. {
  740. size_t stop_pos = std::string::npos;
  741. for (const std::string &word : slot.params.antiprompt)
  742. {
  743. size_t pos;
  744. if (type == STOP_FULL)
  745. {
  746. const size_t tmp = word.size() + last_token_size;
  747. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  748. pos = text.find(word, from_pos);
  749. }
  750. else
  751. {
  752. pos = find_partial_stop_string(word, text);
  753. }
  754. if (pos != std::string::npos &&
  755. (stop_pos == std::string::npos || pos < stop_pos))
  756. {
  757. if (type == STOP_FULL)
  758. {
  759. slot.stopped_word = true;
  760. slot.stopping_word = word;
  761. slot.has_next_token = false;
  762. }
  763. stop_pos = pos;
  764. }
  765. }
  766. return stop_pos;
  767. }
  768. bool process_token(completion_token_output &result, server_slot &slot) {
  769. // remember which tokens were sampled - used for repetition penalties during sampling
  770. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  771. slot.sampled = result.tok;
  772. // search stop word and delete it
  773. slot.generated_text += token_str;
  774. slot.has_next_token = true;
  775. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
  776. {
  777. // we can change penalty_prompt_tokens because it is always created from scratch each request
  778. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  779. }
  780. // check if there is incomplete UTF-8 character at the end
  781. bool incomplete = false;
  782. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  783. {
  784. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  785. if ((c & 0xC0) == 0x80)
  786. {
  787. // continuation byte: 10xxxxxx
  788. continue;
  789. }
  790. if ((c & 0xE0) == 0xC0)
  791. {
  792. // 2-byte character: 110xxxxx ...
  793. incomplete = i < 2;
  794. }
  795. else if ((c & 0xF0) == 0xE0)
  796. {
  797. // 3-byte character: 1110xxxx ...
  798. incomplete = i < 3;
  799. }
  800. else if ((c & 0xF8) == 0xF0)
  801. {
  802. // 4-byte character: 11110xxx ...
  803. incomplete = i < 4;
  804. }
  805. // else 1-byte character or invalid byte
  806. break;
  807. }
  808. if (!incomplete)
  809. {
  810. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  811. const std::string str_test = slot.generated_text.substr(pos);
  812. bool is_stop_full = false;
  813. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  814. if (stop_pos != std::string::npos)
  815. {
  816. is_stop_full = true;
  817. slot.generated_text.erase(
  818. slot.generated_text.begin() + pos + stop_pos,
  819. slot.generated_text.end());
  820. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  821. }
  822. else
  823. {
  824. is_stop_full = false;
  825. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  826. }
  827. // check if there is any token to predict
  828. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  829. {
  830. // no send the stop word in the response
  831. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  832. slot.n_sent_text += result.text_to_send.size();
  833. // add the token to slot queue and cache
  834. }
  835. if (slot.params.stream)
  836. {
  837. send_partial_response(slot, result);
  838. }
  839. }
  840. slot.add_token_string(result);
  841. if (incomplete)
  842. {
  843. slot.has_next_token = true;
  844. }
  845. // check the limits
  846. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
  847. {
  848. slot.stopped_limit = true;
  849. slot.has_next_token = false;
  850. }
  851. if (!slot.cache_tokens.empty() && llama_token_is_eog(model, result.tok))
  852. {
  853. slot.stopped_eos = true;
  854. slot.has_next_token = false;
  855. LOG_VERBOSE("eos token found", {});
  856. }
  857. LOG_VERBOSE("next token", {
  858. {"token", result.tok},
  859. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  860. {"has_next_token", slot.has_next_token},
  861. {"n_remain", slot.n_remaining},
  862. {"num_tokens_predicted", slot.n_decoded},
  863. {"stopped_eos", slot.stopped_eos},
  864. {"stopped_word", slot.stopped_word},
  865. {"stopped_limit", slot.stopped_limit},
  866. {"stopping_word", slot.stopping_word},
  867. });
  868. return slot.has_next_token; // continue
  869. }
  870. bool process_images(server_slot &slot) const
  871. {
  872. for (slot_image &img : slot.images)
  873. {
  874. if (!img.request_encode_image)
  875. {
  876. continue;
  877. }
  878. if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
  879. LOG_TEE("Error processing the given image");
  880. return false;
  881. }
  882. img.request_encode_image = false;
  883. }
  884. return slot.images.size() > 0;
  885. }
  886. void send_error(task_server& task, const std::string &error)
  887. {
  888. LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
  889. task_result res;
  890. res.id = task.id;
  891. res.multitask_id = task.multitask_id;
  892. res.stop = false;
  893. res.error = true;
  894. res.result_json = { { "content", error } };
  895. queue_results.send(res);
  896. }
  897. json get_formated_generation(server_slot &slot)
  898. {
  899. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  900. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  901. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  902. std::vector<std::string> samplers_sequence;
  903. for (const auto &sampler_type : slot.sparams.samplers_sequence)
  904. {
  905. samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
  906. }
  907. return json {
  908. {"n_ctx", slot.n_ctx},
  909. {"n_predict", slot.n_predict},
  910. {"model", params.model_alias},
  911. {"seed", slot.params.seed},
  912. {"temperature", slot.sparams.temp},
  913. {"dynatemp_range", slot.sparams.dynatemp_range},
  914. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  915. {"top_k", slot.sparams.top_k},
  916. {"top_p", slot.sparams.top_p},
  917. {"min_p", slot.sparams.min_p},
  918. {"tfs_z", slot.sparams.tfs_z},
  919. {"typical_p", slot.sparams.typical_p},
  920. {"repeat_last_n", slot.sparams.penalty_last_n},
  921. {"repeat_penalty", slot.sparams.penalty_repeat},
  922. {"presence_penalty", slot.sparams.penalty_present},
  923. {"frequency_penalty", slot.sparams.penalty_freq},
  924. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  925. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  926. {"mirostat", slot.sparams.mirostat},
  927. {"mirostat_tau", slot.sparams.mirostat_tau},
  928. {"mirostat_eta", slot.sparams.mirostat_eta},
  929. {"penalize_nl", slot.sparams.penalize_nl},
  930. {"stop", slot.params.antiprompt},
  931. {"n_predict", slot.params.n_predict},
  932. {"n_keep", params.n_keep},
  933. {"ignore_eos", ignore_eos},
  934. {"stream", slot.params.stream},
  935. {"logit_bias", slot.sparams.logit_bias},
  936. {"n_probs", slot.sparams.n_probs},
  937. {"min_keep", slot.sparams.min_keep},
  938. {"grammar", slot.sparams.grammar},
  939. {"samplers", samplers_sequence}
  940. };
  941. }
  942. void send_partial_response(server_slot &slot, completion_token_output tkn)
  943. {
  944. task_result res;
  945. res.id = slot.task_id;
  946. res.multitask_id = slot.multitask_id;
  947. res.error = false;
  948. res.stop = false;
  949. res.result_json = json
  950. {
  951. {"stop", false},
  952. {"slot_id", slot.id},
  953. {"multimodal", multimodal}
  954. };
  955. if (!llama_token_is_eog(model, tkn.tok)) {
  956. res.result_json["content"] = tkn.text_to_send;
  957. }
  958. if (slot.sparams.n_probs > 0)
  959. {
  960. std::vector<completion_token_output> probs_output = {};
  961. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  962. size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
  963. size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
  964. if (probs_pos < probs_stop_pos)
  965. {
  966. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  967. }
  968. slot.n_sent_token_probs = probs_stop_pos;
  969. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  970. }
  971. queue_results.send(res);
  972. }
  973. void send_final_response(server_slot &slot)
  974. {
  975. task_result res;
  976. res.id = slot.task_id;
  977. res.multitask_id = slot.multitask_id;
  978. res.error = false;
  979. res.stop = true;
  980. res.result_json = json
  981. {
  982. {"content", !slot.params.stream ? slot.generated_text : ""},
  983. {"slot_id", slot.id},
  984. {"stop", true},
  985. {"model", params.model_alias},
  986. {"tokens_predicted", slot.n_decoded},
  987. {"tokens_evaluated", slot.n_prompt_tokens},
  988. {"truncated", slot.truncated},
  989. {"stopped_eos", slot.stopped_eos},
  990. {"stopped_word", slot.stopped_word},
  991. {"stopped_limit", slot.stopped_limit},
  992. {"stopping_word", slot.stopping_word},
  993. {"tokens_cached", slot.n_past},
  994. {"timings", slot.get_formated_timings()}
  995. };
  996. if (slot.sparams.n_probs > 0)
  997. {
  998. std::vector<completion_token_output> probs = {};
  999. if (!slot.params.stream && slot.stopped_word)
  1000. {
  1001. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1002. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  1003. }
  1004. else
  1005. {
  1006. probs = std::vector<completion_token_output>(
  1007. slot.generated_token_probs.begin(),
  1008. slot.generated_token_probs.end());
  1009. }
  1010. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1011. }
  1012. queue_results.send(res);
  1013. }
  1014. void send_embedding(server_slot & slot, const llama_batch & batch)
  1015. {
  1016. task_result res;
  1017. res.id = slot.task_id;
  1018. res.multitask_id = slot.multitask_id;
  1019. res.error = false;
  1020. res.stop = true;
  1021. const int n_embd = llama_n_embd(model);
  1022. if (!params.embedding)
  1023. {
  1024. LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
  1025. res.result_json = json
  1026. {
  1027. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1028. };
  1029. }
  1030. else
  1031. {
  1032. for (int i = 0; i < batch.n_tokens; ++i) {
  1033. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  1034. continue;
  1035. }
  1036. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  1037. if (embd == NULL) {
  1038. embd = llama_get_embeddings_ith(ctx, i);
  1039. if (embd == NULL) {
  1040. LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
  1041. res.result_json = json
  1042. {
  1043. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1044. };
  1045. continue;
  1046. }
  1047. }
  1048. res.result_json = json
  1049. {
  1050. {"embedding", std::vector<float>(embd, embd + n_embd)},
  1051. };
  1052. }
  1053. }
  1054. queue_results.send(res);
  1055. }
  1056. void request_completion(int task_id, json data, bool embedding, int multitask_id)
  1057. {
  1058. task_server task;
  1059. task.id = task_id;
  1060. task.target_id = 0;
  1061. task.data = std::move(data);
  1062. task.embedding_mode = embedding;
  1063. task.type = TASK_TYPE_COMPLETION;
  1064. task.multitask_id = multitask_id;
  1065. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1066. // otherwise, it's a single-prompt task, we actually queue it
  1067. // if there's numbers in the prompt array it will be treated as an array of tokens
  1068. if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
  1069. bool numbers = false;
  1070. for (const auto& e : task.data.at("prompt")) {
  1071. if (e.is_number()) {
  1072. numbers = true;
  1073. break;
  1074. }
  1075. }
  1076. // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
  1077. // it will completely stall the server. I don't know where the bug for this is.
  1078. //
  1079. // if there are numbers, it needs to be treated like a single prompt,
  1080. // queue_tasks handles a mix of strings and numbers just fine.
  1081. if (numbers) {
  1082. queue_tasks.post(task);
  1083. } else {
  1084. split_multiprompt_task(task_id, task);
  1085. }
  1086. } else {
  1087. // an empty prompt can make slot become buggy
  1088. if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
  1089. task.data["prompt"] = " "; // add a space so that we have one token
  1090. }
  1091. queue_tasks.post(task);
  1092. }
  1093. }
  1094. // for multiple images processing
  1095. bool ingest_images(server_slot &slot, int n_batch)
  1096. {
  1097. int image_idx = 0;
  1098. while (image_idx < (int) slot.images.size())
  1099. {
  1100. slot_image &img = slot.images[image_idx];
  1101. // process prefix prompt
  1102. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1103. {
  1104. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1105. llama_batch batch_view = {
  1106. n_tokens,
  1107. batch.token + i,
  1108. nullptr,
  1109. batch.pos + i,
  1110. batch.n_seq_id + i,
  1111. batch.seq_id + i,
  1112. batch.logits + i,
  1113. 0, 0, 0, // unused
  1114. };
  1115. if (llama_decode(ctx, batch_view))
  1116. {
  1117. LOG_TEE("%s : failed to eval\n", __func__);
  1118. return false;
  1119. }
  1120. }
  1121. // process image with llm
  1122. for (int i = 0; i < img.image_tokens; i += n_batch)
  1123. {
  1124. int n_eval = img.image_tokens - i;
  1125. if (n_eval > n_batch)
  1126. {
  1127. n_eval = n_batch;
  1128. }
  1129. const int n_embd = llama_n_embd(model);
  1130. llama_batch batch_img = {
  1131. n_eval,
  1132. nullptr,
  1133. (img.image_embedding + i * n_embd),
  1134. nullptr,
  1135. nullptr,
  1136. nullptr,
  1137. nullptr,
  1138. slot.n_past,
  1139. 1, 0
  1140. };
  1141. if (llama_decode(ctx, batch_img))
  1142. {
  1143. LOG_TEE("%s : failed to eval image\n", __func__);
  1144. return false;
  1145. }
  1146. slot.n_past += n_eval;
  1147. }
  1148. image_idx++;
  1149. llama_batch_clear(batch);
  1150. // append prefix of next image
  1151. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1152. slot.params.input_suffix : // no more images, then process suffix prompt
  1153. (json)(slot.images[image_idx].prefix_prompt);
  1154. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1155. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1156. {
  1157. llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
  1158. slot.n_past += 1;
  1159. }
  1160. }
  1161. return true;
  1162. }
  1163. void request_cancel(int task_id)
  1164. {
  1165. task_server task;
  1166. task.type = TASK_TYPE_CANCEL;
  1167. task.target_id = task_id;
  1168. queue_tasks.post(task);
  1169. }
  1170. void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
  1171. {
  1172. int prompt_count = multiprompt_task.data.at("prompt").size();
  1173. if (prompt_count <= 1) {
  1174. send_error(multiprompt_task, "error while handling multiple prompts");
  1175. return;
  1176. }
  1177. // generate all the ID for subtask
  1178. std::vector<int> subtask_ids(prompt_count);
  1179. for (int i = 0; i < prompt_count; i++)
  1180. {
  1181. subtask_ids[i] = queue_tasks.get_new_id();
  1182. }
  1183. // queue up the multitask so we can track its subtask progression
  1184. queue_tasks.add_multitask(multitask_id, subtask_ids);
  1185. // add subtasks
  1186. for (int i = 0; i < prompt_count; i++)
  1187. {
  1188. json subtask_data = multiprompt_task.data;
  1189. subtask_data["prompt"] = subtask_data["prompt"][i];
  1190. // subtasks inherit everything else (embedding mode, etc.)
  1191. request_completion(subtask_ids[i], subtask_data, multiprompt_task.embedding_mode, multitask_id);
  1192. }
  1193. }
  1194. std::string common_prefix(const std::string& str1, const std::string& str2) {
  1195. auto mismatch_pair = std::mismatch(str1.begin(), str1.end(), str2.begin());
  1196. return std::string(str1.begin(), mismatch_pair.first);
  1197. }
  1198. // Find the slot that has the greatest common prefix
  1199. server_slot *prefix_slot(const json &prompt) {
  1200. if (!prompt.is_string()) {
  1201. return nullptr;
  1202. }
  1203. std::string prompt_str = prompt.get<std::string>();
  1204. server_slot *slot = nullptr;
  1205. size_t longest = 0;
  1206. for (server_slot &s : slots) {
  1207. if (s.available() && s.prompt.is_string()) {
  1208. std::string s_prompt = s.prompt.get<std::string>();
  1209. std::string prefix = common_prefix(s_prompt, prompt_str);
  1210. if (prefix.size() > longest) {
  1211. slot = &s;
  1212. longest = prefix.size();
  1213. }
  1214. }
  1215. }
  1216. if (!slot) {
  1217. return get_slot(-1);
  1218. }
  1219. LOG_DEBUG("slot with common prefix found", {{
  1220. "slot_id", slot->id,
  1221. "characters", longest
  1222. }});
  1223. return slot;
  1224. }
  1225. void process_single_task(task_server& task)
  1226. {
  1227. switch (task.type)
  1228. {
  1229. case TASK_TYPE_COMPLETION: {
  1230. server_slot *slot = prefix_slot(task.data["prompt"]);
  1231. if (slot == nullptr)
  1232. {
  1233. // if no slot is available, we defer this task for processing later
  1234. LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
  1235. queue_tasks.defer(task);
  1236. break;
  1237. }
  1238. slot->reset();
  1239. slot->embedding = task.embedding_mode;
  1240. slot->task_id = task.id;
  1241. slot->multitask_id = task.multitask_id;
  1242. if (!launch_slot_with_data(slot, task.data))
  1243. {
  1244. // send error result
  1245. send_error(task, "internal_error");
  1246. break;
  1247. }
  1248. } break;
  1249. case TASK_TYPE_CANCEL: { // release slot linked with the task id
  1250. for (auto & slot : slots)
  1251. {
  1252. if (slot.task_id == task.target_id)
  1253. {
  1254. slot.release();
  1255. break;
  1256. }
  1257. }
  1258. } break;
  1259. case TASK_TYPE_NEXT_RESPONSE: {
  1260. // do nothing
  1261. } break;
  1262. case TASK_TYPE_METRICS: {
  1263. json slots_data = json::array();
  1264. int n_idle_slots = 0;
  1265. int n_processing_slots = 0;
  1266. for (server_slot &slot: slots) {
  1267. json slot_data = get_formated_generation(slot);
  1268. slot_data["id"] = slot.id;
  1269. slot_data["task_id"] = slot.task_id;
  1270. slot_data["state"] = slot.state;
  1271. slot_data["prompt"] = slot.prompt;
  1272. slot_data["next_token"] = {
  1273. {"has_next_token", slot.has_next_token},
  1274. {"n_remain", slot.n_remaining},
  1275. {"num_tokens_predicted", slot.n_decoded},
  1276. {"stopped_eos", slot.stopped_eos},
  1277. {"stopped_word", slot.stopped_word},
  1278. {"stopped_limit", slot.stopped_limit},
  1279. {"stopping_word", slot.stopping_word},
  1280. };
  1281. if (slot_data["state"] == IDLE) {
  1282. n_idle_slots++;
  1283. } else {
  1284. n_processing_slots++;
  1285. }
  1286. slots_data.push_back(slot_data);
  1287. }
  1288. LOG_DEBUG("slot data", {
  1289. {"task_id", task.id},
  1290. {"n_idle_slots", n_idle_slots},
  1291. {"n_processing_slots", n_processing_slots}
  1292. });
  1293. LOG_VERBOSE("slot data", {
  1294. {"task_id", task.id},
  1295. {"n_idle_slots", n_idle_slots},
  1296. {"n_processing_slots", n_processing_slots},
  1297. {"slots", slots_data}
  1298. });
  1299. task_result res;
  1300. res.id = task.id;
  1301. res.multitask_id = task.multitask_id;
  1302. res.stop = true;
  1303. res.error = false;
  1304. res.result_json = {
  1305. { "idle", n_idle_slots },
  1306. { "processing", n_processing_slots },
  1307. { "deferred", queue_tasks.queue_tasks_deferred.size() },
  1308. { "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
  1309. { "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
  1310. { "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
  1311. { "t_prompt_processing", metrics.t_prompt_processing},
  1312. { "n_tokens_predicted", metrics.n_tokens_predicted},
  1313. { "t_tokens_generation", metrics.t_tokens_generation},
  1314. { "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
  1315. { "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
  1316. { "slots", slots_data },
  1317. };
  1318. metrics.reset_bucket();
  1319. queue_results.send(res);
  1320. } break;
  1321. }
  1322. }
  1323. void on_finish_multitask(task_multi& multitask)
  1324. {
  1325. // all subtasks done == multitask is done
  1326. task_result result;
  1327. result.id = multitask.id;
  1328. result.stop = true;
  1329. result.error = false;
  1330. // collect json results into one json result
  1331. std::vector<json> result_jsons;
  1332. for (auto& subres : multitask.results)
  1333. {
  1334. result_jsons.push_back(subres.result_json);
  1335. result.error = result.error && subres.error;
  1336. }
  1337. result.result_json = json{ { "results", result_jsons } };
  1338. queue_results.send(result);
  1339. }
  1340. bool update_slots() {
  1341. if (system_need_update)
  1342. {
  1343. LOG_DEBUG("updating system prompt", {});
  1344. system_prompt_update();
  1345. }
  1346. llama_batch_clear(batch);
  1347. if (all_slots_are_idle)
  1348. {
  1349. if (system_prompt.empty() && clean_kv_cache)
  1350. {
  1351. LOG_DEBUG("all slots are idle and system prompt is empty, clear the KV cache", {});
  1352. kv_cache_clear();
  1353. }
  1354. return true;
  1355. }
  1356. LOG_VERBOSE("posting NEXT_RESPONSE", {});
  1357. task_server task;
  1358. task.type = TASK_TYPE_NEXT_RESPONSE;
  1359. task.target_id = -1;
  1360. queue_tasks.post(task);
  1361. for (server_slot &slot : slots)
  1362. {
  1363. if (slot.ga_n == 1)
  1364. {
  1365. if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1366. {
  1367. // Shift context
  1368. const int n_keep = slot.params.n_keep + add_bos_token;
  1369. const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
  1370. const int n_discard = n_left / 2;
  1371. LOG_DEBUG("slot context shift", {
  1372. {"slot_id", slot.id},
  1373. {"task_id", slot.task_id},
  1374. {"n_keep", n_keep},
  1375. {"n_left", n_left},
  1376. {"n_discard", n_discard},
  1377. {"n_ctx", n_ctx},
  1378. {"n_past", slot.n_past},
  1379. {"n_system_tokens", system_tokens.size()},
  1380. {"n_cache_tokens", slot.cache_tokens.size()}
  1381. });
  1382. llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  1383. llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1384. for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
  1385. {
  1386. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1387. }
  1388. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1389. slot.n_past -= n_discard;
  1390. slot.truncated = true;
  1391. }
  1392. }
  1393. }
  1394. // decode any currently ongoing sequences
  1395. LOG_VERBOSE("decoding ongoing sequences", {});
  1396. for (auto & slot : slots)
  1397. {
  1398. // release the slot
  1399. if (slot.command == RELEASE)
  1400. {
  1401. slot.state = IDLE;
  1402. slot.command = NONE;
  1403. slot.t_last_used = ggml_time_us();
  1404. LOG_DEBUG("slot released", {
  1405. {"slot_id", slot.id},
  1406. {"task_id", slot.task_id},
  1407. {"n_ctx", n_ctx},
  1408. {"n_past", slot.n_past},
  1409. {"n_system_tokens", system_tokens.size()},
  1410. {"n_cache_tokens", slot.cache_tokens.size()},
  1411. {"truncated", slot.truncated}
  1412. });
  1413. queue_tasks.notify_slot_changed();
  1414. continue;
  1415. }
  1416. if (slot.state == IDLE)
  1417. {
  1418. continue;
  1419. }
  1420. slot.i_batch = batch.n_tokens;
  1421. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1422. // TODO: we always have to take into account the "system_tokens"
  1423. // this is not great and needs to be improved somehow
  1424. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
  1425. slot.n_past += 1;
  1426. }
  1427. // process in chunks of params.n_batch
  1428. int32_t n_batch = params.n_batch;
  1429. // assign workload to the slots
  1430. if (params.cont_batching || batch.n_tokens == 0)
  1431. {
  1432. for (auto & slot : slots)
  1433. {
  1434. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1435. // empty prompt passed -> release the slot and send empty response
  1436. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
  1437. {
  1438. slot.release();
  1439. slot.print_timings();
  1440. send_final_response(slot);
  1441. continue;
  1442. }
  1443. // need process the prompt
  1444. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1445. {
  1446. slot.state = PROCESSING;
  1447. slot.command = NONE;
  1448. std::vector<llama_token> prompt_tokens;
  1449. slot.t_start_process_prompt = ggml_time_us();
  1450. slot.t_start_genereration = 0;
  1451. prompt_tokens = tokenize(slot.prompt, system_prompt.empty()); // add BOS if there isn't system prompt
  1452. slot.n_prompt_tokens = prompt_tokens.size();
  1453. if (slot.params.n_keep < 0)
  1454. {
  1455. slot.params.n_keep = slot.n_prompt_tokens;
  1456. }
  1457. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1458. // if input prompt is too big, truncate it, if group attention self-extend is disabled
  1459. if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
  1460. {
  1461. const int n_left = slot.n_ctx - slot.params.n_keep;
  1462. const int n_shift = n_left / 2;
  1463. const int n_erase = slot.n_prompt_tokens - slot.params.n_keep - n_shift;
  1464. std::vector<llama_token> new_tokens(
  1465. prompt_tokens.begin(),
  1466. prompt_tokens.begin() + slot.params.n_keep);
  1467. new_tokens.insert(
  1468. new_tokens.end(),
  1469. prompt_tokens.begin() + slot.params.n_keep + n_erase,
  1470. prompt_tokens.end());
  1471. LOG_INFO("input truncated", {
  1472. {"n_ctx", slot.n_ctx},
  1473. {"n_keep", slot.params.n_keep},
  1474. {"n_left", n_left},
  1475. {"n_shift", n_shift},
  1476. {"n_erase", n_erase},
  1477. });
  1478. slot.truncated = true;
  1479. prompt_tokens = new_tokens;
  1480. slot.n_prompt_tokens = prompt_tokens.size();
  1481. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  1482. }
  1483. if (!slot.params.cache_prompt)
  1484. {
  1485. llama_sampling_reset(slot.ctx_sampling);
  1486. slot.n_past = 0;
  1487. slot.n_past_se = 0;
  1488. slot.ga_i = 0;
  1489. slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
  1490. }
  1491. else
  1492. {
  1493. // push the prompt into the sampling context (do not apply grammar)
  1494. for (auto &token : prompt_tokens)
  1495. {
  1496. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1497. }
  1498. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1499. // the last token of the cache is not in the KV cache until the next call to llama_decode
  1500. // (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
  1501. if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
  1502. {
  1503. slot.n_past -= 1;
  1504. }
  1505. slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
  1506. if (slot.ga_n != 1)
  1507. {
  1508. int ga_i = 0;
  1509. int32_t ga_n = slot.ga_n;
  1510. int32_t ga_w = slot.ga_w;
  1511. int32_t slot_npast = 0;
  1512. for (int k = 0; k < slot.n_past; ++k)
  1513. {
  1514. while (slot_npast >= ga_i + ga_w) {
  1515. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1516. slot_npast -= bd;
  1517. ga_i += ga_w/ga_n;
  1518. }
  1519. slot_npast++;
  1520. }
  1521. slot.n_past_se = slot_npast;
  1522. slot.ga_i = ga_i;
  1523. }
  1524. LOG_DEBUG("slot progression", {
  1525. { "slot_id", slot.id },
  1526. { "task_id", slot.task_id },
  1527. { "n_past", slot.n_past },
  1528. { "n_past_se", slot.n_past_se },
  1529. { "ga_i", slot.ga_i },
  1530. { "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
  1531. });
  1532. }
  1533. slot.cache_tokens = prompt_tokens;
  1534. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
  1535. {
  1536. // we have to evaluate at least 1 token to generate logits.
  1537. LOG_DEBUG("we have to evaluate at least 1 token to generate logits", {
  1538. { "slot_id", slot.id },
  1539. { "task_id", slot.task_id }
  1540. });
  1541. slot.n_past--;
  1542. if (slot.ga_i > 0)
  1543. {
  1544. slot.n_past_se--;
  1545. }
  1546. }
  1547. int p0 = (int) system_tokens.size() + slot.n_past;
  1548. LOG_DEBUG("kv cache rm [p0, end)", {
  1549. { "slot_id", slot.id },
  1550. { "task_id", slot.task_id },
  1551. { "p0", p0 }
  1552. });
  1553. llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
  1554. LOG_VERBOSE("prompt ingested", {
  1555. {"n_past", slot.n_past},
  1556. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1557. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1558. });
  1559. const bool has_images = process_images(slot);
  1560. // process the prefix of first image
  1561. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1562. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1563. int32_t ga_i = slot.ga_i;
  1564. int32_t ga_n = slot.ga_n;
  1565. int32_t ga_w = slot.ga_w;
  1566. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1567. {
  1568. if (slot.ga_n != 1)
  1569. {
  1570. while (slot_npast >= ga_i + ga_w) {
  1571. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1572. slot_npast -= bd;
  1573. ga_i += ga_w/ga_n;
  1574. }
  1575. }
  1576. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
  1577. slot_npast++;
  1578. }
  1579. if (has_images && !ingest_images(slot, n_batch))
  1580. {
  1581. LOG_ERROR("failed processing images", {
  1582. {"slot_id", slot.id},
  1583. {"task_id", slot.task_id},
  1584. });
  1585. // FIXME @phymbert: to be properly tested
  1586. // early returning without changing the slot state will block the slot for ever
  1587. // no one at the moment is checking the return value
  1588. return false;
  1589. }
  1590. // extract the logits only for the last token
  1591. if (batch.n_tokens > 0)
  1592. {
  1593. batch.logits[batch.n_tokens - 1] = true;
  1594. }
  1595. slot.n_decoded = 0;
  1596. slot.i_batch = batch.n_tokens - 1;
  1597. }
  1598. }
  1599. }
  1600. if (batch.n_tokens == 0)
  1601. {
  1602. all_slots_are_idle = true;
  1603. return true;
  1604. }
  1605. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1606. {
  1607. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  1608. for (auto & slot : slots)
  1609. {
  1610. if (slot.ga_n != 1)
  1611. {
  1612. // context extension via Self-Extend
  1613. while (slot.n_past_se >= slot.ga_i + slot.ga_w)
  1614. {
  1615. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1616. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1617. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1618. LOG_TEE("\n");
  1619. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1620. LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1621. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1622. llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
  1623. llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
  1624. llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
  1625. slot.n_past_se -= bd;
  1626. slot.ga_i += slot.ga_w / slot.ga_n;
  1627. LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1628. }
  1629. slot.n_past_se += n_tokens;
  1630. }
  1631. }
  1632. llama_batch batch_view =
  1633. {
  1634. n_tokens,
  1635. batch.token + i,
  1636. nullptr,
  1637. batch.pos + i,
  1638. batch.n_seq_id + i,
  1639. batch.seq_id + i,
  1640. batch.logits + i,
  1641. 0, 0, 0, // unused
  1642. };
  1643. const int ret = llama_decode(ctx, batch_view);
  1644. if (ret != 0)
  1645. {
  1646. if (n_batch == 1 || ret < 0)
  1647. {
  1648. // if you get here, it means the KV cache is full - try increasing it via the context size
  1649. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1650. return false;
  1651. }
  1652. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1653. // retry with half the batch size to try to find a free slot in the KV cache
  1654. n_batch /= 2;
  1655. i -= n_batch;
  1656. continue;
  1657. }
  1658. for (auto & slot : slots)
  1659. {
  1660. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1661. {
  1662. continue;
  1663. }
  1664. // prompt evaluated for embedding
  1665. if (slot.embedding)
  1666. {
  1667. send_embedding(slot, batch_view);
  1668. slot.release();
  1669. slot.i_batch = -1;
  1670. continue;
  1671. }
  1672. completion_token_output result;
  1673. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1674. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1675. slot.n_decoded += 1;
  1676. if (slot.n_decoded == 1)
  1677. {
  1678. slot.t_start_genereration = ggml_time_us();
  1679. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1680. metrics.on_prompt_eval(slot);
  1681. }
  1682. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1683. result.tok = id;
  1684. const int32_t n_probs = slot.sparams.n_probs;
  1685. if (slot.sparams.temp <= 0 && n_probs > 0)
  1686. {
  1687. // for llama_sample_token_greedy we need to sort candidates
  1688. llama_sample_softmax(ctx, &cur_p);
  1689. }
  1690. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1691. {
  1692. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1693. }
  1694. if (!process_token(result, slot))
  1695. {
  1696. slot.release();
  1697. slot.print_timings();
  1698. send_final_response(slot);
  1699. metrics.on_prediction(slot);
  1700. }
  1701. slot.i_batch = -1;
  1702. }
  1703. }
  1704. LOG_VERBOSE("slots updated", {});
  1705. return true;
  1706. }
  1707. json model_meta() {
  1708. return json{
  1709. {"vocab_type", llama_vocab_type(model)},
  1710. {"n_vocab", llama_n_vocab(model)},
  1711. {"n_ctx_train", llama_n_ctx_train(model)},
  1712. {"n_embd", llama_n_embd(model)},
  1713. {"n_params", llama_model_n_params(model)},
  1714. {"size", llama_model_size(model)},
  1715. };
  1716. }
  1717. };
  1718. static void server_print_usage(const char *argv0, const gpt_params &params,
  1719. const server_params &sparams)
  1720. {
  1721. printf("usage: %s [options]\n", argv0);
  1722. printf("\n");
  1723. printf("options:\n");
  1724. printf(" -h, --help show this help message and exit\n");
  1725. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1726. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1727. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1728. printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
  1729. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1730. printf(" --rope-scaling {none,linear,yarn}\n");
  1731. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1732. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1733. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1734. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1735. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1736. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1737. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1738. printf(" --pooling {none,mean,cls}\n");
  1739. printf(" pooling type for embeddings, use model default if unspecified\n");
  1740. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1741. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1742. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1743. if (llama_supports_mlock())
  1744. {
  1745. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1746. }
  1747. if (llama_supports_mmap())
  1748. {
  1749. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1750. }
  1751. printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
  1752. printf(" - distribute: spread execution evenly over all nodes\n");
  1753. printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
  1754. printf(" - numactl: use the CPU map provided my numactl\n");
  1755. if (llama_supports_gpu_offload()) {
  1756. printf(" -ngl N, --n-gpu-layers N\n");
  1757. printf(" number of layers to store in VRAM\n");
  1758. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1759. printf(" how to split the model across multiple GPUs, one of:\n");
  1760. printf(" - none: use one GPU only\n");
  1761. printf(" - layer (default): split layers and KV across GPUs\n");
  1762. printf(" - row: split rows across GPUs\n");
  1763. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1764. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1765. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1766. printf(" or for intermediate results and KV (with split-mode = row)\n");
  1767. }
  1768. printf(" -m FNAME, --model FNAME\n");
  1769. printf(" model path (default: %s)\n", params.model.c_str());
  1770. printf(" -a ALIAS, --alias ALIAS\n");
  1771. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1772. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1773. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1774. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1775. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1776. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1777. printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
  1778. printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
  1779. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1780. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1781. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1782. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1783. printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
  1784. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1785. printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1786. printf(" -ctk TYPE, --cache-type-k TYPE\n");
  1787. printf(" KV cache data type for K (default: f16)\n");
  1788. printf(" -ctv TYPE, --cache-type-v TYPE\n");
  1789. printf(" KV cache data type for V (default: f16)\n");
  1790. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1791. printf(" --log-format log output format: json or text (default: json)\n");
  1792. printf(" --log-disable disables logging to a file.\n");
  1793. printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
  1794. printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
  1795. printf("\n");
  1796. printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
  1797. printf(" --override-kv KEY=TYPE:VALUE\n");
  1798. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1799. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1800. printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
  1801. printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
  1802. printf(" --chat-template JINJA_TEMPLATE\n");
  1803. printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
  1804. printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
  1805. printf("\n");
  1806. }
  1807. static void server_params_parse(int argc, char **argv, server_params &sparams, gpt_params &params)
  1808. {
  1809. gpt_params default_params;
  1810. server_params default_sparams;
  1811. std::string arg;
  1812. bool invalid_param = false;
  1813. for (int i = 1; i < argc; i++)
  1814. {
  1815. arg = argv[i];
  1816. if (arg == "--port")
  1817. {
  1818. if (++i >= argc)
  1819. {
  1820. invalid_param = true;
  1821. break;
  1822. }
  1823. sparams.port = std::stoi(argv[i]);
  1824. }
  1825. else if (arg == "--host")
  1826. {
  1827. if (++i >= argc)
  1828. {
  1829. invalid_param = true;
  1830. break;
  1831. }
  1832. sparams.hostname = argv[i];
  1833. }
  1834. else if (arg == "--path")
  1835. {
  1836. if (++i >= argc)
  1837. {
  1838. invalid_param = true;
  1839. break;
  1840. }
  1841. sparams.public_path = argv[i];
  1842. }
  1843. else if (arg == "--api-key")
  1844. {
  1845. if (++i >= argc)
  1846. {
  1847. invalid_param = true;
  1848. break;
  1849. }
  1850. sparams.api_keys.emplace_back(argv[i]);
  1851. }
  1852. else if (arg == "--api-key-file")
  1853. {
  1854. if (++i >= argc)
  1855. {
  1856. invalid_param = true;
  1857. break;
  1858. }
  1859. std::ifstream key_file(argv[i]);
  1860. if (!key_file) {
  1861. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1862. invalid_param = true;
  1863. break;
  1864. }
  1865. std::string key;
  1866. while (std::getline(key_file, key)) {
  1867. if (key.size() > 0) {
  1868. sparams.api_keys.push_back(key);
  1869. }
  1870. }
  1871. key_file.close();
  1872. }
  1873. else if (arg == "--timeout" || arg == "-to")
  1874. {
  1875. if (++i >= argc)
  1876. {
  1877. invalid_param = true;
  1878. break;
  1879. }
  1880. sparams.read_timeout = std::stoi(argv[i]);
  1881. sparams.write_timeout = std::stoi(argv[i]);
  1882. }
  1883. else if (arg == "-m" || arg == "--model")
  1884. {
  1885. if (++i >= argc)
  1886. {
  1887. invalid_param = true;
  1888. break;
  1889. }
  1890. params.model = argv[i];
  1891. }
  1892. else if (arg == "-a" || arg == "--alias")
  1893. {
  1894. if (++i >= argc)
  1895. {
  1896. invalid_param = true;
  1897. break;
  1898. }
  1899. params.model_alias = argv[i];
  1900. }
  1901. else if (arg == "-h" || arg == "--help")
  1902. {
  1903. server_print_usage(argv[0], default_params, default_sparams);
  1904. exit(0);
  1905. }
  1906. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1907. {
  1908. if (++i >= argc)
  1909. {
  1910. invalid_param = true;
  1911. break;
  1912. }
  1913. params.n_ctx = std::stoi(argv[i]);
  1914. }
  1915. else if (arg == "--rope-scaling")
  1916. {
  1917. if (++i >= argc)
  1918. {
  1919. invalid_param = true;
  1920. break;
  1921. }
  1922. std::string value(argv[i]);
  1923. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1924. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1925. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1926. else { invalid_param = true; break; }
  1927. }
  1928. else if (arg == "--rope-freq-base")
  1929. {
  1930. if (++i >= argc)
  1931. {
  1932. invalid_param = true;
  1933. break;
  1934. }
  1935. params.rope_freq_base = std::stof(argv[i]);
  1936. }
  1937. else if (arg == "--rope-freq-scale")
  1938. {
  1939. if (++i >= argc)
  1940. {
  1941. invalid_param = true;
  1942. break;
  1943. }
  1944. params.rope_freq_scale = std::stof(argv[i]);
  1945. }
  1946. else if (arg == "--yarn-ext-factor")
  1947. {
  1948. if (++i >= argc) {
  1949. invalid_param = true;
  1950. break;
  1951. }
  1952. params.yarn_ext_factor = std::stof(argv[i]);
  1953. }
  1954. else if (arg == "--yarn-attn-factor")
  1955. {
  1956. if (++i >= argc) {
  1957. invalid_param = true;
  1958. break;
  1959. }
  1960. params.yarn_attn_factor = std::stof(argv[i]);
  1961. }
  1962. else if (arg == "--yarn-beta-fast")
  1963. {
  1964. if (++i >= argc) {
  1965. invalid_param = true;
  1966. break;
  1967. }
  1968. params.yarn_beta_fast = std::stof(argv[i]);
  1969. }
  1970. else if (arg == "--yarn-beta-slow")
  1971. {
  1972. if (++i >= argc) {
  1973. invalid_param = true;
  1974. break;
  1975. }
  1976. params.yarn_beta_slow = std::stof(argv[i]);
  1977. }
  1978. else if (arg == "--pooling")
  1979. {
  1980. if (++i >= argc) {
  1981. invalid_param = true;
  1982. break;
  1983. }
  1984. std::string value(argv[i]);
  1985. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1986. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1987. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1988. else { invalid_param = true; break; }
  1989. }
  1990. else if (arg == "--threads" || arg == "-t")
  1991. {
  1992. if (++i >= argc)
  1993. {
  1994. invalid_param = true;
  1995. break;
  1996. }
  1997. params.n_threads = std::stoi(argv[i]);
  1998. }
  1999. else if (arg == "--grp-attn-n" || arg == "-gan")
  2000. {
  2001. if (++i >= argc) {
  2002. invalid_param = true;
  2003. break;
  2004. }
  2005. params.grp_attn_n = std::stoi(argv[i]);
  2006. }
  2007. else if (arg == "--grp-attn-w" || arg == "-gaw")
  2008. {
  2009. if (++i >= argc)
  2010. {
  2011. invalid_param = true;
  2012. break;
  2013. }
  2014. params.grp_attn_w = std::stoi(argv[i]);
  2015. }
  2016. else if (arg == "--threads-batch" || arg == "-tb")
  2017. {
  2018. if (++i >= argc)
  2019. {
  2020. invalid_param = true;
  2021. break;
  2022. }
  2023. params.n_threads_batch = std::stoi(argv[i]);
  2024. }
  2025. else if (arg == "--threads-http")
  2026. {
  2027. if (++i >= argc)
  2028. {
  2029. invalid_param = true;
  2030. break;
  2031. }
  2032. sparams.n_threads_http = std::stoi(argv[i]);
  2033. }
  2034. else if (arg == "-b" || arg == "--batch-size")
  2035. {
  2036. if (++i >= argc)
  2037. {
  2038. invalid_param = true;
  2039. break;
  2040. }
  2041. params.n_batch = std::stoi(argv[i]);
  2042. }
  2043. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  2044. {
  2045. if (++i >= argc)
  2046. {
  2047. invalid_param = true;
  2048. break;
  2049. }
  2050. if (llama_supports_gpu_offload()) {
  2051. params.n_gpu_layers = std::stoi(argv[i]);
  2052. } else {
  2053. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  2054. "See main README.md for information on enabling GPU BLAS support",
  2055. {{"n_gpu_layers", params.n_gpu_layers}});
  2056. }
  2057. }
  2058. else if (arg == "--split-mode" || arg == "-sm")
  2059. {
  2060. if (++i >= argc) {
  2061. invalid_param = true;
  2062. break;
  2063. }
  2064. std::string arg_next = argv[i];
  2065. if (arg_next == "none")
  2066. {
  2067. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2068. }
  2069. else if (arg_next == "layer")
  2070. {
  2071. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2072. }
  2073. else if (arg_next == "row")
  2074. {
  2075. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2076. }
  2077. else {
  2078. invalid_param = true;
  2079. break;
  2080. }
  2081. #ifndef GGML_USE_CUDA
  2082. fprintf(stderr, "warning: llama.cpp was compiled without CUDA. Setting the split mode has no effect.\n");
  2083. #endif // GGML_USE_CUDA
  2084. }
  2085. else if (arg == "--tensor-split" || arg == "-ts")
  2086. {
  2087. if (++i >= argc)
  2088. {
  2089. invalid_param = true;
  2090. break;
  2091. }
  2092. #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
  2093. std::string arg_next = argv[i];
  2094. // split string by , and /
  2095. const std::regex regex{R"([,/]+)"};
  2096. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  2097. std::vector<std::string> split_arg{it, {}};
  2098. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  2099. for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
  2100. {
  2101. if (i_device < split_arg.size())
  2102. {
  2103. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  2104. }
  2105. else
  2106. {
  2107. params.tensor_split[i_device] = 0.0f;
  2108. }
  2109. }
  2110. #else
  2111. LOG_WARNING("llama.cpp was compiled without CUDA. It is not possible to set a tensor split.\n", {});
  2112. #endif // GGML_USE_CUDA
  2113. }
  2114. else if (arg == "--main-gpu" || arg == "-mg")
  2115. {
  2116. if (++i >= argc)
  2117. {
  2118. invalid_param = true;
  2119. break;
  2120. }
  2121. #if defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)
  2122. params.main_gpu = std::stoi(argv[i]);
  2123. #else
  2124. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  2125. #endif
  2126. }
  2127. else if (arg == "--lora")
  2128. {
  2129. if (++i >= argc)
  2130. {
  2131. invalid_param = true;
  2132. break;
  2133. }
  2134. params.lora_adapter.emplace_back(argv[i], 1.0f);
  2135. params.use_mmap = false;
  2136. }
  2137. else if (arg == "--lora-scaled")
  2138. {
  2139. if (++i >= argc)
  2140. {
  2141. invalid_param = true;
  2142. break;
  2143. }
  2144. const char * lora_adapter = argv[i];
  2145. if (++i >= argc)
  2146. {
  2147. invalid_param = true;
  2148. break;
  2149. }
  2150. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  2151. params.use_mmap = false;
  2152. }
  2153. else if (arg == "--lora-base")
  2154. {
  2155. if (++i >= argc)
  2156. {
  2157. invalid_param = true;
  2158. break;
  2159. }
  2160. params.lora_base = argv[i];
  2161. }
  2162. else if (arg == "-v" || arg == "--verbose")
  2163. {
  2164. server_verbose = true;
  2165. }
  2166. else if (arg == "--mlock")
  2167. {
  2168. params.use_mlock = true;
  2169. }
  2170. else if (arg == "--no-mmap")
  2171. {
  2172. params.use_mmap = false;
  2173. }
  2174. else if (arg == "--numa")
  2175. {
  2176. if (++i >= argc) {
  2177. invalid_param = true;
  2178. break;
  2179. } else {
  2180. std::string value(argv[i]);
  2181. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2182. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2183. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2184. else { invalid_param = true; break; }
  2185. }
  2186. }
  2187. else if (arg == "--embedding")
  2188. {
  2189. params.embedding = true;
  2190. }
  2191. else if (arg == "-cb" || arg == "--cont-batching")
  2192. {
  2193. params.cont_batching = true;
  2194. }
  2195. else if (arg == "-fa" || arg == "--flash-attn")
  2196. {
  2197. params.flash_attn = true;
  2198. }
  2199. else if (arg == "-np" || arg == "--parallel")
  2200. {
  2201. if (++i >= argc)
  2202. {
  2203. invalid_param = true;
  2204. break;
  2205. }
  2206. params.n_parallel = std::stoi(argv[i]);
  2207. }
  2208. else if (arg == "-n" || arg == "--n-predict")
  2209. {
  2210. if (++i >= argc)
  2211. {
  2212. invalid_param = true;
  2213. break;
  2214. }
  2215. params.n_predict = std::stoi(argv[i]);
  2216. }
  2217. else if (arg == "-ctk" || arg == "--cache-type-k") {
  2218. params.cache_type_k = argv[++i];
  2219. }
  2220. else if (arg == "-ctv" || arg == "--cache-type-v") {
  2221. params.cache_type_v = argv[++i];
  2222. }
  2223. else if(arg == "--mmproj")
  2224. {
  2225. if (++i >= argc)
  2226. {
  2227. invalid_param = true;
  2228. break;
  2229. }
  2230. params.mmproj = argv[i];
  2231. }
  2232. else if (arg == "--log-format")
  2233. {
  2234. if (++i >= argc)
  2235. {
  2236. invalid_param = true;
  2237. break;
  2238. }
  2239. if (std::strcmp(argv[i], "json") == 0)
  2240. {
  2241. server_log_json = true;
  2242. }
  2243. else if (std::strcmp(argv[i], "text") == 0)
  2244. {
  2245. server_log_json = false;
  2246. }
  2247. else
  2248. {
  2249. invalid_param = true;
  2250. break;
  2251. }
  2252. }
  2253. else if (arg == "--log-disable")
  2254. {
  2255. log_set_target(stdout);
  2256. LOG_DEBUG("logging to file is disabled.", {});
  2257. }
  2258. else if (arg == "--slots-endpoint-disable")
  2259. {
  2260. sparams.slots_endpoint = false;
  2261. }
  2262. else if (arg == "--metrics")
  2263. {
  2264. sparams.metrics_endpoint = true;
  2265. }
  2266. else if (arg == "--chat-template")
  2267. {
  2268. if (++i >= argc)
  2269. {
  2270. invalid_param = true;
  2271. break;
  2272. }
  2273. if (!verify_custom_template(argv[i])) {
  2274. fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
  2275. fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
  2276. invalid_param = true;
  2277. break;
  2278. }
  2279. }
  2280. else if (arg == "--override-kv")
  2281. {
  2282. if (++i >= argc) {
  2283. invalid_param = true;
  2284. break;
  2285. }
  2286. char * sep = strchr(argv[i], '=');
  2287. if (sep == nullptr || sep - argv[i] >= 128) {
  2288. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  2289. invalid_param = true;
  2290. break;
  2291. }
  2292. struct llama_model_kv_override kvo;
  2293. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  2294. kvo.key[sep - argv[i]] = 0;
  2295. sep++;
  2296. if (strncmp(sep, "int:", 4) == 0) {
  2297. sep += 4;
  2298. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
  2299. kvo.val_i64 = std::atol(sep);
  2300. } else if (strncmp(sep, "float:", 6) == 0) {
  2301. sep += 6;
  2302. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
  2303. kvo.val_f64 = std::atof(sep);
  2304. } else if (strncmp(sep, "bool:", 5) == 0) {
  2305. sep += 5;
  2306. kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
  2307. if (std::strcmp(sep, "true") == 0) {
  2308. kvo.val_bool = true;
  2309. } else if (std::strcmp(sep, "false") == 0) {
  2310. kvo.val_bool = false;
  2311. } else {
  2312. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  2313. invalid_param = true;
  2314. break;
  2315. }
  2316. } else {
  2317. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  2318. invalid_param = true;
  2319. break;
  2320. }
  2321. params.kv_overrides.push_back(kvo);
  2322. }
  2323. else
  2324. {
  2325. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  2326. server_print_usage(argv[0], default_params, default_sparams);
  2327. exit(1);
  2328. }
  2329. }
  2330. if (!params.kv_overrides.empty()) {
  2331. params.kv_overrides.emplace_back();
  2332. params.kv_overrides.back().key[0] = 0;
  2333. }
  2334. if (invalid_param)
  2335. {
  2336. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  2337. server_print_usage(argv[0], default_params, default_sparams);
  2338. exit(1);
  2339. }
  2340. }
  2341. /* llama.cpp completion api semantics */
  2342. static json format_partial_response(
  2343. llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  2344. ) {
  2345. json res = json
  2346. {
  2347. {"content", content },
  2348. {"stop", false},
  2349. {"slot_id", slot->id },
  2350. {"multimodal", llama.multimodal }
  2351. };
  2352. if (slot->sparams.n_probs > 0)
  2353. {
  2354. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  2355. }
  2356. return res;
  2357. }
  2358. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  2359. {
  2360. return json {
  2361. {"tokens", tokens}
  2362. };
  2363. }
  2364. static json format_detokenized_response(std::string content)
  2365. {
  2366. return json {
  2367. {"content", content}
  2368. };
  2369. }
  2370. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2371. {
  2372. // skip GH copilot requests when using default port
  2373. if (req.path == "/health" || req.path == "/v1/health" || req.path == "/v1/completions")
  2374. {
  2375. return;
  2376. }
  2377. LOG_DEBUG("request", {
  2378. {"remote_addr", req.remote_addr},
  2379. {"remote_port", req.remote_port},
  2380. {"status", res.status},
  2381. {"method", req.method},
  2382. {"path", req.path},
  2383. {"params", req.params},
  2384. });
  2385. LOG_VERBOSE("request", {
  2386. {"request", req.body},
  2387. {"response", res.body},
  2388. });
  2389. }
  2390. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
  2391. {
  2392. auto & gtps = slot->generated_token_probs;
  2393. auto translator = token_translator{llama.ctx};
  2394. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2395. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2396. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2397. {
  2398. slot->generated_text.reserve(slot->generated_text.size() + len);
  2399. }
  2400. for (const completion_token_output & cto : gtps)
  2401. {
  2402. slot->generated_text += translator(cto);
  2403. }
  2404. }
  2405. std::function<void(int)> shutdown_handler;
  2406. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  2407. inline void signal_handler(int signal) {
  2408. if (is_terminating.test_and_set()) {
  2409. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  2410. // this is for better developer experience, we can remove when the server is stable enough
  2411. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  2412. exit(1);
  2413. }
  2414. shutdown_handler(signal);
  2415. }
  2416. static bool update_load_progress(float progress, void *data)
  2417. {
  2418. ((llama_server_context*)data)->modelProgress = progress;
  2419. return true;
  2420. }
  2421. #if defined(_WIN32)
  2422. char* wchar_to_char(const wchar_t* wstr) {
  2423. if (wstr == nullptr) return nullptr;
  2424. // Determine the number of bytes needed for the UTF-8 string
  2425. int bytes = WideCharToMultiByte(CP_UTF8, 0, wstr, -1, nullptr, 0, nullptr, nullptr);
  2426. char* str = new char[bytes];
  2427. // Convert the wide-character string to a UTF-8 string
  2428. WideCharToMultiByte(CP_UTF8, 0, wstr, -1, str, bytes, nullptr, nullptr);
  2429. return str;
  2430. }
  2431. int wmain(int argc, wchar_t **wargv) {
  2432. char** argv = new char*[argc];
  2433. for (int i = 0; i < argc; ++i) {
  2434. argv[i] = wchar_to_char(wargv[i]);
  2435. }
  2436. #else
  2437. int main(int argc, char **argv) {
  2438. #endif
  2439. #if SERVER_VERBOSE != 1
  2440. log_disable();
  2441. #endif
  2442. // own arguments required by this example
  2443. gpt_params params;
  2444. server_params sparams;
  2445. // struct that contains llama context and inference
  2446. llama_server_context llama;
  2447. server_params_parse(argc, argv, sparams, params);
  2448. if (params.model_alias == "unknown")
  2449. {
  2450. params.model_alias = params.model;
  2451. }
  2452. llama_backend_init();
  2453. llama_numa_init(params.numa);
  2454. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2455. {"commit", LLAMA_COMMIT}});
  2456. LOG_INFO("system info", {
  2457. {"n_threads", params.n_threads},
  2458. {"n_threads_batch", params.n_threads_batch},
  2459. {"total_threads", std::thread::hardware_concurrency()},
  2460. {"system_info", llama_print_system_info()},
  2461. });
  2462. httplib::Server svr;
  2463. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2464. svr.set_default_headers({{"Server", "llama.cpp"}});
  2465. // CORS preflight
  2466. svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
  2467. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2468. res.set_header("Access-Control-Allow-Credentials", "true");
  2469. res.set_header("Access-Control-Allow-Methods", "POST");
  2470. res.set_header("Access-Control-Allow-Headers", "*");
  2471. });
  2472. svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
  2473. server_state current_state = state.load();
  2474. switch(current_state) {
  2475. case SERVER_STATE_READY: {
  2476. // request slots data using task queue
  2477. task_server task;
  2478. task.id = llama.queue_tasks.get_new_id();
  2479. task.type = TASK_TYPE_METRICS;
  2480. task.target_id = -1;
  2481. llama.queue_results.add_waiting_task_id(task.id);
  2482. llama.queue_tasks.post(task);
  2483. // get the result
  2484. task_result result = llama.queue_results.recv(task.id);
  2485. llama.queue_results.remove_waiting_task_id(task.id);
  2486. int n_idle_slots = result.result_json["idle"];
  2487. int n_processing_slots = result.result_json["processing"];
  2488. json health = {
  2489. {"status", "ok"},
  2490. {"slots_idle", n_idle_slots},
  2491. {"slots_processing", n_processing_slots}};
  2492. res.status = 200; // HTTP OK
  2493. if (sparams.slots_endpoint && req.has_param("include_slots")) {
  2494. health["slots"] = result.result_json["slots"];
  2495. }
  2496. if (n_idle_slots == 0) {
  2497. health["status"] = "no slot available";
  2498. if (req.has_param("fail_on_no_slot")) {
  2499. res.status = 503; // HTTP Service Unavailable
  2500. }
  2501. }
  2502. res.set_content(health.dump(), "application/json");
  2503. break;
  2504. }
  2505. case SERVER_STATE_LOADING_MODEL:
  2506. char buf[128];
  2507. snprintf(&buf[0], 128, R"({"status": "loading model", "progress": %0.2f})", llama.modelProgress);
  2508. res.set_content(buf, "application/json");
  2509. res.status = 503; // HTTP Service Unavailable
  2510. break;
  2511. case SERVER_STATE_ERROR:
  2512. res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
  2513. res.status = 500; // HTTP Internal Server Error
  2514. break;
  2515. }
  2516. });
  2517. if (sparams.slots_endpoint) {
  2518. svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
  2519. // request slots data using task queue
  2520. task_server task;
  2521. task.id = llama.queue_tasks.get_new_id();
  2522. task.type = TASK_TYPE_METRICS;
  2523. task.target_id = -1;
  2524. llama.queue_results.add_waiting_task_id(task.id);
  2525. llama.queue_tasks.post(task);
  2526. // get the result
  2527. task_result result = llama.queue_results.recv(task.id);
  2528. llama.queue_results.remove_waiting_task_id(task.id);
  2529. res.set_content(result.result_json["slots"].dump(), "application/json");
  2530. res.status = 200; // HTTP OK
  2531. });
  2532. }
  2533. if (sparams.metrics_endpoint) {
  2534. svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
  2535. // request slots data using task queue
  2536. task_server task;
  2537. task.id = llama.queue_tasks.get_new_id();
  2538. task.type = TASK_TYPE_METRICS;
  2539. task.target_id = -1;
  2540. llama.queue_results.add_waiting_task_id(task.id);
  2541. llama.queue_tasks.post(task);
  2542. // get the result
  2543. task_result result = llama.queue_results.recv(task.id);
  2544. llama.queue_results.remove_waiting_task_id(task.id);
  2545. json data = result.result_json;
  2546. uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
  2547. uint64_t t_prompt_processing = data["t_prompt_processing"];
  2548. uint64_t n_tokens_predicted = data["n_tokens_predicted"];
  2549. uint64_t t_tokens_generation = data["t_tokens_generation"];
  2550. int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
  2551. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  2552. json all_metrics_def = json {
  2553. {"counter", {{
  2554. {"name", "prompt_tokens_total"},
  2555. {"help", "Number of prompt tokens processed."},
  2556. {"value", data["n_prompt_tokens_processed_total"]}
  2557. }, {
  2558. {"name", "tokens_predicted_total"},
  2559. {"help", "Number of generation tokens processed."},
  2560. {"value", data["n_tokens_predicted_total"]}
  2561. }}},
  2562. {"gauge", {{
  2563. {"name", "prompt_tokens_seconds"},
  2564. {"help", "Average prompt throughput in tokens/s."},
  2565. {"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
  2566. },{
  2567. {"name", "predicted_tokens_seconds"},
  2568. {"help", "Average generation throughput in tokens/s."},
  2569. {"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
  2570. },{
  2571. {"name", "kv_cache_usage_ratio"},
  2572. {"help", "KV-cache usage. 1 means 100 percent usage."},
  2573. {"value", 1. * kv_cache_used_cells / params.n_ctx}
  2574. },{
  2575. {"name", "kv_cache_tokens"},
  2576. {"help", "KV-cache tokens."},
  2577. {"value", data["kv_cache_tokens_count"]}
  2578. },{
  2579. {"name", "requests_processing"},
  2580. {"help", "Number of request processing."},
  2581. {"value", data["processing"]}
  2582. },{
  2583. {"name", "requests_deferred"},
  2584. {"help", "Number of request deferred."},
  2585. {"value", data["deferred"]}
  2586. }}}
  2587. };
  2588. std::stringstream prometheus;
  2589. for (const auto& el : all_metrics_def.items()) {
  2590. const auto& type = el.key();
  2591. const auto& metrics_def = el.value();
  2592. for (const auto& metric_def : metrics_def) {
  2593. std::string name = metric_def["name"];
  2594. std::string help = metric_def["help"];
  2595. auto value = json_value(metric_def, "value", 0);
  2596. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  2597. << "# TYPE llamacpp:" << name << " " << type << "\n"
  2598. << "llamacpp:" << name << " " << value << "\n";
  2599. }
  2600. }
  2601. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  2602. res.status = 200; // HTTP OK
  2603. });
  2604. }
  2605. svr.set_logger(log_server_request);
  2606. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2607. {
  2608. const char fmt[] = "500 Internal Server Error\n%s";
  2609. char buf[BUFSIZ];
  2610. try
  2611. {
  2612. std::rethrow_exception(std::move(ep));
  2613. }
  2614. catch (std::exception &e)
  2615. {
  2616. snprintf(buf, sizeof(buf), fmt, e.what());
  2617. }
  2618. catch (...)
  2619. {
  2620. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2621. }
  2622. res.set_content(buf, "text/plain; charset=utf-8");
  2623. res.status = 500;
  2624. });
  2625. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2626. {
  2627. if (res.status == 401)
  2628. {
  2629. res.set_content("Unauthorized", "text/plain; charset=utf-8");
  2630. }
  2631. if (res.status == 400)
  2632. {
  2633. res.set_content("Invalid request", "text/plain; charset=utf-8");
  2634. }
  2635. else if (res.status == 404)
  2636. {
  2637. res.set_content("File Not Found", "text/plain; charset=utf-8");
  2638. res.status = 404;
  2639. }
  2640. });
  2641. // set timeouts and change hostname and port
  2642. svr.set_read_timeout (sparams.read_timeout);
  2643. svr.set_write_timeout(sparams.write_timeout);
  2644. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2645. {
  2646. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2647. return 1;
  2648. }
  2649. // Set the base directory for serving static files
  2650. svr.set_base_dir(sparams.public_path);
  2651. std::unordered_map<std::string, std::string> log_data;
  2652. log_data["hostname"] = sparams.hostname;
  2653. log_data["port"] = std::to_string(sparams.port);
  2654. if (sparams.api_keys.size() == 1) {
  2655. log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
  2656. } else if (sparams.api_keys.size() > 1) {
  2657. log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
  2658. }
  2659. if (sparams.n_threads_http < 1) {
  2660. // +2 threads for monitoring endpoints
  2661. sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  2662. }
  2663. log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
  2664. svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
  2665. LOG_INFO("HTTP server listening", log_data);
  2666. // run the HTTP server in a thread - see comment below
  2667. std::thread t([&]()
  2668. {
  2669. if (!svr.listen_after_bind())
  2670. {
  2671. state.store(SERVER_STATE_ERROR);
  2672. return 1;
  2673. }
  2674. return 0;
  2675. });
  2676. // load the model
  2677. params.progress_callback = update_load_progress;
  2678. params.progress_callback_user_data = (void*)&llama;
  2679. if (!llama.load_model(params))
  2680. {
  2681. state.store(SERVER_STATE_ERROR);
  2682. return 1;
  2683. } else {
  2684. llama.initialize();
  2685. state.store(SERVER_STATE_READY);
  2686. LOG_INFO("model loaded", {});
  2687. }
  2688. const auto model_meta = llama.model_meta();
  2689. // Middleware for API key validation
  2690. auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
  2691. // If API key is not set, skip validation
  2692. if (sparams.api_keys.empty()) {
  2693. return true;
  2694. }
  2695. // Check for API key in the header
  2696. auto auth_header = req.get_header_value("Authorization");
  2697. std::string prefix = "Bearer ";
  2698. if (auth_header.substr(0, prefix.size()) == prefix) {
  2699. std::string received_api_key = auth_header.substr(prefix.size());
  2700. if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
  2701. return true; // API key is valid
  2702. }
  2703. }
  2704. // API key is invalid or not provided
  2705. res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
  2706. res.status = 401; // Unauthorized
  2707. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2708. return false;
  2709. };
  2710. // this is only called if no index.html is found in the public --path
  2711. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2712. {
  2713. res.set_content("server running", "text/plain; charset=utf-8");
  2714. res.status = 200; // Unauthorized
  2715. return true;
  2716. });
  2717. svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2718. {
  2719. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2720. if (!validate_api_key(req, res)) {
  2721. return;
  2722. }
  2723. json data = json::parse(req.body);
  2724. const int task_id = llama.queue_tasks.get_new_id();
  2725. llama.queue_results.add_waiting_task_id(task_id);
  2726. llama.request_completion(task_id, data, false, -1);
  2727. if (!json_value(data, "stream", false)) {
  2728. std::string completion_text;
  2729. task_result result = llama.queue_results.recv(task_id);
  2730. if (!result.error && result.stop) {
  2731. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2732. }
  2733. else
  2734. {
  2735. res.status = 404;
  2736. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2737. }
  2738. llama.queue_results.remove_waiting_task_id(task_id);
  2739. } else {
  2740. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2741. {
  2742. while (true)
  2743. {
  2744. task_result result = llama.queue_results.recv(task_id);
  2745. if (!result.error) {
  2746. const std::string str =
  2747. "data: " +
  2748. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2749. "\n\n";
  2750. LOG_VERBOSE("data stream", {
  2751. { "to_send", str }
  2752. });
  2753. if (!sink.write(str.c_str(), str.size()))
  2754. {
  2755. llama.queue_results.remove_waiting_task_id(task_id);
  2756. return false;
  2757. }
  2758. if (result.stop) {
  2759. break;
  2760. }
  2761. } else {
  2762. const std::string str =
  2763. "error: " +
  2764. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2765. "\n\n";
  2766. LOG_VERBOSE("data stream", {
  2767. { "to_send", str }
  2768. });
  2769. if (!sink.write(str.c_str(), str.size()))
  2770. {
  2771. llama.queue_results.remove_waiting_task_id(task_id);
  2772. return false;
  2773. }
  2774. break;
  2775. }
  2776. }
  2777. llama.queue_results.remove_waiting_task_id(task_id);
  2778. sink.done();
  2779. return true;
  2780. };
  2781. auto on_complete = [task_id, &llama] (bool)
  2782. {
  2783. // cancel
  2784. llama.request_cancel(task_id);
  2785. llama.queue_results.remove_waiting_task_id(task_id);
  2786. };
  2787. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2788. }
  2789. });
  2790. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2791. {
  2792. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2793. const json body = json::parse(req.body);
  2794. std::vector<llama_token> tokens;
  2795. if (body.count("content") != 0)
  2796. {
  2797. tokens = llama.tokenize(body["content"], false);
  2798. }
  2799. const json data = format_tokenizer_response(tokens);
  2800. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2801. });
  2802. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2803. {
  2804. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2805. const json body = json::parse(req.body);
  2806. std::string content;
  2807. if (body.count("tokens") != 0)
  2808. {
  2809. const std::vector<llama_token> tokens = body["tokens"];
  2810. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2811. }
  2812. const json data = format_detokenized_response(content);
  2813. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2814. });
  2815. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2816. {
  2817. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2818. const json body = json::parse(req.body);
  2819. json prompt;
  2820. if (body.count("content") != 0)
  2821. {
  2822. prompt = body["content"];
  2823. }
  2824. else
  2825. {
  2826. prompt = "";
  2827. }
  2828. if (prompt.size() == 1) {
  2829. prompt = prompt[0];
  2830. }
  2831. // create and queue the task
  2832. json responses;
  2833. {
  2834. const int id_task = llama.queue_tasks.get_new_id();
  2835. llama.queue_results.add_waiting_task_id(id_task);
  2836. llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
  2837. // get the result
  2838. task_result result = llama.queue_results.recv(id_task);
  2839. llama.queue_results.remove_waiting_task_id(id_task);
  2840. if (result.error) {
  2841. return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
  2842. }
  2843. responses = result.result_json.value("results", std::vector<json>{result.result_json});
  2844. json embeddings = json::array();
  2845. for (auto & elem : responses) {
  2846. embeddings.push_back(elem.at("embedding"));
  2847. }
  2848. // send the result
  2849. json embedding_res = json{{"embedding", embeddings}};
  2850. return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
  2851. }
  2852. });
  2853. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2854. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2855. //std::thread t2([&]()
  2856. /*{
  2857. bool running = true;
  2858. while (running)
  2859. {
  2860. running = llama.update_slots();
  2861. }
  2862. }*/
  2863. //);
  2864. llama.queue_tasks.on_new_task(std::bind(
  2865. &llama_server_context::process_single_task, &llama, std::placeholders::_1));
  2866. llama.queue_tasks.on_finish_multitask(std::bind(
  2867. &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
  2868. llama.queue_tasks.on_run_slots(std::bind(
  2869. &llama_server_context::update_slots, &llama));
  2870. llama.queue_results.on_multitask_update(std::bind(
  2871. &llama_server_queue::update_multitask,
  2872. &llama.queue_tasks,
  2873. std::placeholders::_1,
  2874. std::placeholders::_2,
  2875. std::placeholders::_3
  2876. ));
  2877. shutdown_handler = [&](int) {
  2878. llama.queue_tasks.terminate();
  2879. };
  2880. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  2881. struct sigaction sigint_action;
  2882. sigint_action.sa_handler = signal_handler;
  2883. sigemptyset (&sigint_action.sa_mask);
  2884. sigint_action.sa_flags = 0;
  2885. sigaction(SIGINT, &sigint_action, NULL);
  2886. #elif defined (_WIN32)
  2887. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  2888. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  2889. };
  2890. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  2891. for (int i = 0; i < argc; ++i) {
  2892. delete[] argv[i];
  2893. }
  2894. delete[] argv;
  2895. #endif
  2896. llama.queue_tasks.start_loop();
  2897. svr.stop();
  2898. t.join();
  2899. llama_backend_free();
  2900. return 0;
  2901. }