ggml.go 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "errors"
  11. "fmt"
  12. "io"
  13. "iter"
  14. "log/slog"
  15. "maps"
  16. "os"
  17. "slices"
  18. "strconv"
  19. "strings"
  20. "unicode"
  21. "unsafe"
  22. "github.com/ollama/ollama/format"
  23. fs "github.com/ollama/ollama/fs/ggml"
  24. "github.com/ollama/ollama/ml"
  25. "golang.org/x/sync/errgroup"
  26. )
  27. func devices() iter.Seq[*C.struct_ggml_backend_device] {
  28. return func(yield func(*C.struct_ggml_backend_device) bool) {
  29. for i := range C.ggml_backend_dev_count() {
  30. if !yield(C.ggml_backend_dev_get(i)) {
  31. return
  32. }
  33. }
  34. }
  35. }
  36. type Backend struct {
  37. meta *fs.GGML
  38. flashAttention bool
  39. sched *C.struct_ggml_backend_sched
  40. tensors map[string]*C.struct_ggml_tensor
  41. ctxs []*C.struct_ggml_context
  42. backends []*C.struct_ggml_backend
  43. bufts []*C.struct_ggml_backend_buffer_type
  44. }
  45. func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
  46. meta, n, err := fs.Decode(r, -1)
  47. if err != nil {
  48. return nil, err
  49. }
  50. slog.Info(
  51. "",
  52. "architecture", meta.KV().Architecture(),
  53. "file_type", meta.KV().FileType(),
  54. "name", meta.KV().String("general.name"),
  55. "description", meta.KV().String("general.description"),
  56. "num_tensors", len(meta.Tensors().Items()),
  57. "num_key_values", len(meta.KV()),
  58. )
  59. type dbt struct {
  60. d *C.struct_ggml_backend_device
  61. bts []*C.struct_ggml_backend_buffer_type
  62. }
  63. var cpus, accels, gpus []*C.struct_ggml_backend_device
  64. for d := range devices() {
  65. switch C.ggml_backend_dev_type(d) {
  66. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  67. cpus = append(cpus, d)
  68. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  69. accels = append(accels, d)
  70. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  71. gpus = append(gpus, d)
  72. }
  73. }
  74. var cpuBufferTypes []*C.struct_ggml_backend_buffer_type
  75. for _, d := range append(accels, append(gpus, cpus...)...) {
  76. switch C.ggml_backend_dev_type(d) {
  77. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  78. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  79. cpuBufferTypes = append(cpuBufferTypes, C.ggml_backend_dev_buffer_type(d))
  80. }
  81. }
  82. var sum uint64
  83. var cumsum []uint64
  84. var gpuBufferTypes []dbt
  85. for _, d := range gpus {
  86. var free, total C.size_t
  87. C.ggml_backend_dev_memory(d, &free, &total)
  88. sum += uint64(free)
  89. cumsum = append(cumsum, sum)
  90. bt := C.ggml_backend_dev_buffer_type(d)
  91. gpuBufferTypes = append(gpuBufferTypes, dbt{
  92. d: d,
  93. bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuBufferTypes...),
  94. })
  95. }
  96. splits := make([]float64, len(cumsum))
  97. for i := range splits {
  98. splits[i] = float64(cumsum[i]) / float64(sum)
  99. }
  100. input := dbt{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
  101. slog.Info("input layer", "device", C.GoString(C.ggml_backend_dev_name(input.d)))
  102. var blocks int
  103. for key, value := range meta.KV() {
  104. if strings.HasSuffix(key, ".block_count") {
  105. blocks += int(value.(uint32))
  106. }
  107. }
  108. indexFunc := func(i int) func(float64) bool {
  109. return func(f float64) bool {
  110. return float64(i)/float64(blocks+1) < f
  111. }
  112. }
  113. layers := make([]dbt, blocks)
  114. for i := range layers {
  115. layers[i] = gpuBufferTypes[slices.IndexFunc(splits, indexFunc(i))]
  116. slog.Info("layer", "i", i, "device", C.GoString(C.ggml_backend_dev_name(layers[i].d)))
  117. }
  118. output := gpuBufferTypes[slices.IndexFunc(splits, indexFunc(blocks))]
  119. slog.Info("output layer", "device", C.GoString(C.ggml_backend_dev_name(output.d)))
  120. maxTensors := len(meta.Tensors().Items())
  121. maxTensors += 1
  122. maxTensors += blocks * 2
  123. slog.Info("max tensors", "max_tensors", maxTensors)
  124. ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
  125. createTensor := func(t *fs.Tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
  126. for _, bt := range bts {
  127. if _, ok := ctxs[bt]; !ok {
  128. ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
  129. mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
  130. no_alloc: true,
  131. })
  132. }
  133. cname := C.CString(t.Name)
  134. defer C.free(unsafe.Pointer(cname))
  135. if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
  136. return tt
  137. }
  138. tt := C.ggml_new_tensor(ctxs[bt], t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  139. C.ggml_set_name(tt, cname)
  140. slog.Debug("created tensor", "name", t.Name, "shape", t.Shape, "dtype", t.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
  141. //nolint:staticcheck // TODO: check if buffer type supports this tensor
  142. return tt
  143. }
  144. return nil
  145. }
  146. hasPart := func(s string, parts ...string) bool {
  147. split := strings.Split(s, ".")
  148. for _, part := range parts {
  149. if slices.Contains(split, part) {
  150. return true
  151. }
  152. }
  153. return false
  154. }
  155. for _, t := range meta.Tensors().Items() {
  156. switch {
  157. case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
  158. createTensor(t, input.bts)
  159. case hasPart(t.Name, "cls", "output", "output_norm"):
  160. createTensor(t, output.bts)
  161. default:
  162. if i := func() int {
  163. if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
  164. if i, err := strconv.Atoi(fields[0]); err == nil {
  165. return i
  166. }
  167. }
  168. return -1
  169. }(); i >= 0 {
  170. createTensor(t, layers[i].bts)
  171. } else {
  172. for _, layer := range layers {
  173. createTensor(t, layer.bts)
  174. }
  175. }
  176. }
  177. }
  178. bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
  179. for bt, c := range ctxs {
  180. if C.ggml_get_first_tensor(c) == nil {
  181. continue
  182. }
  183. b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
  184. C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
  185. bbs[c] = append(bbs[c], b)
  186. }
  187. for bs := range maps.Values(bbs) {
  188. for _, b := range bs {
  189. slog.Info("model", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
  190. }
  191. }
  192. tensors := make(map[string]*C.struct_ggml_tensor)
  193. for _, c := range ctxs {
  194. for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
  195. tensors[C.GoString(C.ggml_get_name(t))] = t
  196. }
  197. }
  198. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  199. var g errgroup.Group
  200. for _, t := range meta.Tensors().Items() {
  201. g.Go(func() error {
  202. tt, ok := tensors[t.Name]
  203. if !ok {
  204. return fmt.Errorf("unassigned tensor: %s", t.Name)
  205. }
  206. bts := make([]byte, t.Size())
  207. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  208. if err != nil {
  209. return err
  210. }
  211. if n != len(bts) {
  212. return errors.New("short read")
  213. }
  214. cname := C.CString(t.Name)
  215. C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
  216. C.free(unsafe.Pointer(cname))
  217. return nil
  218. })
  219. }
  220. if g.Wait() != nil {
  221. return nil, err
  222. }
  223. var backends []*C.struct_ggml_backend
  224. var bufts []*C.struct_ggml_backend_buffer_type
  225. for _, d := range append(gpus, append(accels, cpus...)...) {
  226. b := C.ggml_backend_dev_init(d, nil)
  227. backends = append(backends, b)
  228. bt := C.ggml_backend_get_default_buffer_type(b)
  229. if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
  230. if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
  231. bt = hbt
  232. }
  233. }
  234. bufts = append(bufts, bt)
  235. slog.Info("compute buffer", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
  236. }
  237. return &Backend{
  238. flashAttention: params.FlashAttention,
  239. meta: meta,
  240. tensors: tensors,
  241. sched: C.ggml_backend_sched_new(
  242. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  243. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  244. C.int(len(backends)),
  245. C.size_t(max(8192, len(meta.Tensors().Items())*5)),
  246. true,
  247. ),
  248. }, nil
  249. }
  250. func init() {
  251. ml.RegisterBackend("ggml", New)
  252. }
  253. func (b *Backend) Config() ml.Config {
  254. return b.meta.KV()
  255. }
  256. func (b *Backend) Get(name string) ml.Tensor {
  257. if t, ok := b.tensors[name]; ok {
  258. return &Tensor{b: b, t: t}
  259. }
  260. return nil
  261. }
  262. func (b *Backend) NewContext() ml.Context {
  263. maxTensors := max(8192, len(b.meta.Tensors().Items())*5)
  264. return &Context{
  265. b: b,
  266. maxTensors: maxTensors,
  267. ctx: C.ggml_init(C.struct_ggml_init_params{
  268. mem_size: C.size_t(maxTensors)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(maxTensors), false),
  269. no_alloc: true,
  270. }),
  271. }
  272. }
  273. func (b *Backend) CacheConfig() ml.CacheConfig {
  274. if b.flashAttention {
  275. return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
  276. } else {
  277. return ml.CacheConfig{CachePadding: 32, PermutedV: true}
  278. }
  279. }
  280. type Context struct {
  281. b *Backend
  282. ctx *C.struct_ggml_context
  283. graph *C.struct_ggml_cgraph
  284. maxTensors int
  285. }
  286. func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
  287. if c.graph == nil {
  288. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxTensors), false)
  289. }
  290. for _, tensor := range tensors {
  291. C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
  292. }
  293. return c
  294. }
  295. func (c *Context) Compute(tensors ...ml.Tensor) {
  296. C.ggml_backend_sched_reset(c.b.sched)
  297. C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
  298. C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
  299. needSync := true
  300. sync := func() {
  301. if needSync {
  302. C.ggml_backend_sched_synchronize(c.b.sched)
  303. needSync = false
  304. }
  305. }
  306. for _, t := range tensors {
  307. if C.ggml_nbytes(t.(*Tensor).t) > 0 {
  308. t.(*Tensor).sync = sync
  309. }
  310. }
  311. }
  312. func (c *Context) MaxTensors() int {
  313. return c.maxTensors
  314. }
  315. func shapeToGGML(shape []int) *C.int64_t {
  316. sh := make([]C.int64_t, len(shape))
  317. for i, s := range shape {
  318. sh[i] = C.int64_t(s)
  319. }
  320. return &sh[0]
  321. }
  322. func newTensor(ctx Context, dtype ml.DType, shape []int) ml.Tensor {
  323. if len(shape) < 1 || len(shape) > 4 {
  324. panic("unsupported number of dimensions")
  325. }
  326. for _, dim := range shape {
  327. if dim < 1 {
  328. panic("invalid shape")
  329. }
  330. }
  331. var t *C.struct_ggml_tensor
  332. switch dtype {
  333. case ml.DTypeF32:
  334. t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
  335. case ml.DTypeF16:
  336. t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
  337. case ml.DTypeI32:
  338. t = C.ggml_new_tensor(ctx.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
  339. default:
  340. panic("unsupported dtype")
  341. }
  342. b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
  343. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  344. C.ggml_set_input(t)
  345. return &Tensor{b: ctx.b, t: t}
  346. }
  347. func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
  348. return newTensor(c, dtype, shape)
  349. }
  350. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  351. t := newTensor(c, dtype, shape)
  352. C.ggml_set_zero(t.(*Tensor).t)
  353. return t
  354. }
  355. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  356. n := len(s)
  357. if n == 0 {
  358. var shape C.int64_t = 0
  359. t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
  360. return &Tensor{b: ctx.b, t: t}, nil
  361. }
  362. for _, v := range shape {
  363. n /= v
  364. }
  365. if n != 1 {
  366. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  367. }
  368. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
  369. b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
  370. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  371. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  372. C.ggml_set_input(t)
  373. return &Tensor{b: ctx.b, t: t}, nil
  374. }
  375. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  376. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  377. }
  378. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  379. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  380. }
  381. func (c *Context) Close() {
  382. if c != nil {
  383. C.ggml_free(c.ctx)
  384. }
  385. }
  386. type Tensor struct {
  387. b *Backend
  388. t *C.struct_ggml_tensor
  389. sync func()
  390. }
  391. func (t *Tensor) LogValue() slog.Value {
  392. return slog.GroupValue(
  393. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  394. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  395. slog.Any("shape", t.Shape()),
  396. )
  397. }
  398. func (t *Tensor) Dim(n int) int {
  399. return int(t.t.ne[n])
  400. }
  401. func (t *Tensor) Stride(n int) int {
  402. return int(t.t.nb[n])
  403. }
  404. func (t *Tensor) Shape() []int {
  405. shape := make([]int, C.ggml_n_dims(t.t))
  406. for i := range shape {
  407. shape[i] = t.Dim(i)
  408. }
  409. return shape
  410. }
  411. func (t *Tensor) Bytes() (data []byte) {
  412. if t.sync != nil {
  413. data = make([]byte, C.ggml_nbytes(t.t))
  414. t.sync()
  415. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  416. }
  417. return
  418. }
  419. func (t *Tensor) Floats() (data []float32) {
  420. if t.sync != nil {
  421. data = make([]float32, C.ggml_nelements(t.t))
  422. t.sync()
  423. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  424. }
  425. return
  426. }
  427. func (t *Tensor) DType() ml.DType {
  428. switch t.t._type {
  429. case C.GGML_TYPE_F32:
  430. return ml.DTypeF32
  431. case C.GGML_TYPE_F16:
  432. return ml.DTypeF16
  433. case C.GGML_TYPE_I32:
  434. return ml.DTypeI32
  435. default:
  436. return ml.DTypeOther
  437. }
  438. }
  439. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  440. return &Tensor{
  441. b: t.b,
  442. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  443. }
  444. }
  445. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  446. if len(s) > 0 {
  447. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  448. }
  449. return t
  450. }
  451. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  452. return &Tensor{
  453. b: t.b,
  454. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  455. }
  456. }
  457. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  458. return &Tensor{
  459. b: t.b,
  460. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  461. }
  462. }
  463. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  464. return &Tensor{
  465. b: t.b,
  466. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  467. }
  468. }
  469. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  470. return &Tensor{
  471. b: t.b,
  472. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  473. }
  474. }
  475. func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  476. mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
  477. C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
  478. return &Tensor{
  479. b: t.b,
  480. t: mul,
  481. }
  482. }
  483. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  484. tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  485. if b != nil {
  486. tt = tt.Add(ctx, b)
  487. }
  488. return tt
  489. }
  490. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  491. return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  492. }
  493. func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
  494. if len(shape) != 4 {
  495. panic("expected 4 dimensions")
  496. }
  497. return &Tensor{
  498. b: t.b,
  499. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  500. }
  501. }
  502. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  503. if len(shape) != 4 {
  504. panic("expected 4 dimensions")
  505. }
  506. return &Tensor{
  507. b: t.b,
  508. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  509. }
  510. }
  511. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  512. return &Tensor{
  513. b: t.b,
  514. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  515. }
  516. }
  517. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  518. return &Tensor{
  519. b: t.b,
  520. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  521. }
  522. }
  523. func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
  524. switch len(shape) {
  525. case 1:
  526. return &Tensor{
  527. b: t.b,
  528. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  529. }
  530. case 2:
  531. return &Tensor{
  532. b: t.b,
  533. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  534. }
  535. case 3:
  536. return &Tensor{
  537. b: t.b,
  538. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  539. }
  540. case 4:
  541. return &Tensor{
  542. b: t.b,
  543. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  544. }
  545. default:
  546. panic("unsupported number of dimensions")
  547. }
  548. }
  549. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  550. return &Tensor{
  551. b: t.b,
  552. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  553. }
  554. }
  555. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  556. return &Tensor{
  557. b: t.b,
  558. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  559. }
  560. }
  561. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  562. return &Tensor{
  563. b: t.b,
  564. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  565. }
  566. }
  567. func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
  568. if len(shape) != 4 {
  569. panic("expected 4 dimensions")
  570. }
  571. return &Tensor{
  572. b: t.b,
  573. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  574. }
  575. }
  576. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  577. switch len(shape) {
  578. case 1:
  579. return &Tensor{
  580. b: t.b,
  581. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  582. }
  583. case 3:
  584. return &Tensor{
  585. b: t.b,
  586. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  587. C.int64_t(shape[0]), C.int64_t(shape[2]),
  588. C.size_t(shape[1]),
  589. C.size_t(offset)),
  590. }
  591. case 5:
  592. return &Tensor{
  593. b: t.b,
  594. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  595. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  596. C.size_t(shape[1]), C.size_t(shape[3]),
  597. C.size_t(offset)),
  598. }
  599. case 7:
  600. return &Tensor{
  601. b: t.b,
  602. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  603. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  604. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  605. C.size_t(offset)),
  606. }
  607. default:
  608. panic("unsupported number of dimensions")
  609. }
  610. }
  611. const (
  612. ropeTypeNorm C.int = iota
  613. )
  614. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  615. if ropeFactors == nil {
  616. ropeFactors = &Tensor{b: t.b}
  617. }
  618. dequant := t.t
  619. if C.ggml_is_quantized(t.t._type) {
  620. dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
  621. }
  622. return &Tensor{
  623. b: t.b,
  624. t: C.ggml_rope_ext(
  625. ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  626. C.int(ropeDim),
  627. 131072, // YaRN n_ctx_train
  628. ropeTypeNorm, // ROPE_TYPE_NORM
  629. C.float(ropeBase),
  630. C.float(ropeScale),
  631. 0., // YaRN ext_factor
  632. 1., // YaRN attn_factor
  633. 32., // YaRN beta_fast
  634. 1., // YaRN beta_slow
  635. ),
  636. }
  637. }
  638. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  639. return &Tensor{
  640. b: t.b,
  641. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  642. }
  643. }
  644. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  645. return &Tensor{
  646. b: t.b,
  647. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  648. }
  649. }
  650. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  651. return &Tensor{
  652. b: t.b,
  653. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  654. }
  655. }
  656. func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
  657. var kqMask *C.struct_ggml_tensor
  658. if mask != nil {
  659. kqMask = mask.(*Tensor).t
  660. }
  661. query := t.Permute(ctx, 0, 2, 1, 3)
  662. key = key.Permute(ctx, 0, 2, 1, 3)
  663. if t.b.flashAttention {
  664. value = value.Permute(ctx, 0, 2, 1, 3)
  665. kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
  666. C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
  667. return &Tensor{b: t.b, t: kqv}
  668. } else {
  669. kq := key.MulmatFullPrec(ctx, query)
  670. kq = &Tensor{
  671. b: t.b,
  672. t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
  673. }
  674. kqv := value.Mulmat(ctx, kq)
  675. return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
  676. }
  677. }