llava.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
  1. #include "clip.h"
  2. #include "llava.h"
  3. #include "llama.h"
  4. #include <algorithm>
  5. #include <cerrno>
  6. #include <cstdio>
  7. #include <cstdlib>
  8. #include <cstring>
  9. #include <limits>
  10. #include <vector>
  11. #if defined(LLAVA_LOG_OFF)
  12. # define LOG_INF(...)
  13. # define LOG_WRN(...)
  14. # define LOG_ERR(...)
  15. # define LOG_DBG(...)
  16. #else // defined(LLAVA_LOG_OFF)
  17. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  18. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  19. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  20. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  21. #endif // defined(LLAVA_LOG_OFF)
  22. // RGB uint8 image
  23. struct clip_image_u8 {
  24. int nx;
  25. int ny;
  26. std::vector<uint8_t> buf;
  27. };
  28. // RGB float32 image (NHWC)
  29. // Memory layout: RGBRGBRGB...
  30. struct clip_image_f32 {
  31. int nx;
  32. int ny;
  33. std::vector<float> buf;
  34. };
  35. struct clip_image_grid_shape {
  36. int first;
  37. int second;
  38. };
  39. /**
  40. * Selects the best resolution from a list of possible resolutions based on the original size.
  41. *
  42. * @param original_size The original size of the image in the format (width, height).
  43. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  44. * @return The best fit resolution in the format (width, height).
  45. */
  46. static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
  47. int original_width = original_size.first;
  48. int original_height = original_size.second;
  49. std::pair<int, int> best_fit;
  50. int max_effective_resolution = 0;
  51. int min_wasted_resolution = std::numeric_limits<int>::max();
  52. for (const auto& resolution : possible_resolutions) {
  53. int width = resolution.first;
  54. int height = resolution.second;
  55. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  56. int downscaled_width = static_cast<int>(original_width * scale);
  57. int downscaled_height = static_cast<int>(original_height * scale);
  58. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  59. int wasted_resolution = (width * height) - effective_resolution;
  60. // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  61. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  62. max_effective_resolution = effective_resolution;
  63. min_wasted_resolution = wasted_resolution;
  64. best_fit = resolution;
  65. }
  66. }
  67. return best_fit;
  68. }
  69. /**
  70. * @brief Get the anyres image grid shape object
  71. *
  72. * @param image_size
  73. * @param grid_pinpoints
  74. * @param image_patch_size
  75. * @return <int, int>
  76. */
  77. static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
  78. /**
  79. Conversion from gguf flat array to vector:
  80. std::vector<std::pair<int, int>> possible_resolutions;
  81. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  82. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  83. }
  84. */
  85. auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
  86. return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
  87. }
  88. // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
  89. static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
  90. struct {
  91. struct ggml_context * ctx;
  92. } model;
  93. const int32_t image_size = clip_image_size(ctx_clip);
  94. const int32_t patch_size = clip_patch_size(ctx_clip);
  95. int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
  96. int num_patches_width = grid_shape.first; // grid 1-4
  97. int num_patches_height = grid_shape.second; // grid 1-4
  98. const size_t num_images = num_patches_width * num_patches_height + 1;
  99. // TODO: size calculation is not calculated - it's only tens of MB
  100. size_t ctx_size = 0;
  101. {
  102. ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
  103. ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
  104. }
  105. struct ggml_init_params params {
  106. /*.mem_size =*/ ctx_size,
  107. /*.mem_buffer =*/ NULL,
  108. /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
  109. };
  110. // Python reference code for full unpad:
  111. /*
  112. base_image_feature = image_feature[0]
  113. image_feature = image_feature[1:]
  114. image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
  115. image_feature = image_feature.flatten(1, 2).flatten(2, 3)
  116. image_feature = unpad_image(image_feature, image_sizes[image_idx])
  117. image_feature = torch.cat((
  118. image_feature,
  119. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
  120. ), dim=-1)
  121. image_feature = image_feature.flatten(1, 2).transpose(0, 1)
  122. image_feature = torch.cat((base_image_feature, image_feature), dim=0)
  123. */
  124. // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
  125. // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
  126. // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
  127. // Once all images are processed to prepended the base_image_features without any changes.
  128. // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
  129. /*
  130. image_feature = image_feature.view(2, 2, 24, 24, 4096)
  131. image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
  132. image_feature = image_feature.view(2, 24, 2, 24, 4096)
  133. image_feature = image_feature.flatten(0, 3)
  134. // Reshape to 4D tensor by merging the last two dimensions
  135. image_feature = image_feature.view(2, 2, 24, 24*4096)
  136. image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
  137. image_feature = image_feature.view(-1, 4096)
  138. */
  139. model.ctx = ggml_init(params);
  140. struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
  141. // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
  142. // fill it with the image embeddings, ignoring the base
  143. for (size_t i = 1; i < num_images; i++) {
  144. size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
  145. memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
  146. }
  147. struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
  148. size_t size_ele = ggml_type_size(GGML_TYPE_F32);
  149. struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
  150. num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  151. num_patches_per_side,
  152. num_patches_width,
  153. num_patches_height,
  154. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
  155. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
  156. size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
  157. // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
  158. struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
  159. /**
  160. At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
  161. image_feature = torch.cat((
  162. image_feature,
  163. self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
  164. ), dim=-1)
  165. *
  166. */
  167. // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
  168. struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
  169. // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
  170. ggml_build_forward_expand(gf, flatten);
  171. ggml_graph_compute_with_ctx(model.ctx, gf, 1);
  172. struct ggml_tensor* result = ggml_graph_node(gf, -1);
  173. memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
  174. // append without newline tokens (default behavior in llava_arch when not using unpad ):
  175. memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
  176. *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
  177. // Debug: Test single segments
  178. // Current findings: sending base image, sending a segment embedding all works similar to python
  179. // However, permuted embeddings do not work yet (stride issue?)
  180. // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
  181. // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
  182. // *n_img_pos_out=576;
  183. ggml_free(model.ctx);
  184. return true;
  185. }
  186. static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
  187. int width = image->nx;
  188. int height = image->ny;
  189. int num_patches = (height / patch_size) * (width / patch_size);
  190. clip_image_f32 * patch = clip_image_f32_init();
  191. patch->nx = patch_size * num_patches;
  192. patch->ny = patch_size;
  193. patch->buf.resize(3 * patch->nx * patch->ny);
  194. int patch_index = 0;
  195. for (int i = 0; i < height; i += patch_size) {
  196. for (int j = 0; j < width; j += patch_size) {
  197. for (int pi = 0; pi < patch_size; ++pi) {
  198. for (int pj = 0; pj < patch_size; ++pj) {
  199. int input_index = ((i + pi) * width + (j + pj)) * 3;
  200. int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
  201. patch->buf[output_index] = image->buf[input_index];
  202. patch->buf[output_index+1] = image->buf[input_index+1];
  203. patch->buf[output_index+2] = image->buf[input_index+2];
  204. }
  205. }
  206. patch_index++;
  207. }
  208. }
  209. return patch;
  210. }
  211. static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
  212. // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
  213. clip_image_f32_batch img_res_v;
  214. img_res_v.size = 0;
  215. img_res_v.data = nullptr;
  216. if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
  217. LOG_ERR("%s: unable to preprocess image\n", __func__);
  218. delete[] img_res_v.data;
  219. return false;
  220. }
  221. const int64_t t_img_enc_start_us = ggml_time_us();
  222. const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
  223. if (clip_is_minicpmv(ctx_clip)) {
  224. std::vector<float *> image_embd_v;
  225. image_embd_v.resize(img_res_v.size);
  226. struct clip_image_size * load_image_size = clip_image_size_init();
  227. for (size_t i = 0; i < img_res_v.size; i++) {
  228. const int64_t t_img_enc_step_start_us = ggml_time_us();
  229. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip));
  230. int patch_size=14;
  231. load_image_size->width = img_res_v.data[i].nx;
  232. load_image_size->height = img_res_v.data[i].ny;
  233. clip_add_load_image_size(ctx_clip, load_image_size);
  234. bool encoded = false;
  235. int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
  236. if (has_minicpmv_projector == 2) {
  237. encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
  238. }
  239. else if (has_minicpmv_projector == 3) {
  240. encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
  241. }
  242. if (!encoded) {
  243. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  244. return false;
  245. }
  246. const int64_t t_img_enc_steop_batch_us = ggml_time_us();
  247. LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
  248. }
  249. const int64_t t_img_enc_batch_us = ggml_time_us();
  250. LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  251. int n_img_pos_out = 0;
  252. for (size_t i = 0; i < image_embd_v.size(); i++) {
  253. std::memcpy(image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip), image_embd_v[i], clip_embd_nbytes(ctx_clip));
  254. n_img_pos_out += clip_n_patches(ctx_clip);
  255. }
  256. *n_img_pos = n_img_pos_out;
  257. for (size_t i = 0; i < image_embd_v.size(); i++) {
  258. free(image_embd_v[i]);
  259. }
  260. image_embd_v.clear();
  261. load_image_size->width = img->nx;
  262. load_image_size->height = img->ny;
  263. clip_add_load_image_size(ctx_clip, load_image_size);
  264. LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
  265. }
  266. else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
  267. // flat / default llava-1.5 type embedding
  268. *n_img_pos = clip_n_patches(ctx_clip);
  269. bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
  270. delete[] img_res_v.data;
  271. if (!encoded) {
  272. LOG_ERR("Unable to encode image\n");
  273. return false;
  274. }
  275. }
  276. else {
  277. // spatial_unpad llava-1.6 type embedding
  278. // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
  279. std::vector<float *> image_embd_v;
  280. image_embd_v.resize(img_res_v.size);
  281. for (size_t i = 0; i < img_res_v.size; i++) {
  282. image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
  283. const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
  284. if (!encoded) {
  285. LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
  286. return false;
  287. }
  288. }
  289. const int64_t t_img_enc_batch_us = ggml_time_us();
  290. LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
  291. const int32_t * image_grid = clip_image_grid(ctx_clip);
  292. std::vector<std::pair<int, int>> grid_pinpoints;
  293. for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
  294. grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
  295. }
  296. // free all img_res_v - not needed anymore
  297. delete[] img_res_v.data;
  298. img_res_v.size = 0;
  299. img_res_v.data = nullptr;
  300. const int32_t image_size = clip_image_size(ctx_clip);
  301. struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
  302. int n_img_pos_out;
  303. clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
  304. *n_img_pos = n_img_pos_out;
  305. for (size_t i = 0; i < image_embd_v.size(); i++) {
  306. free(image_embd_v[i]);
  307. }
  308. image_embd_v.clear();
  309. // debug image/segment/normalization content:
  310. // clip_image_u8 * tmp = clip_image_u8_init();
  311. // clip_image_convert_f32_to_u8(*image_feature, *tmp);
  312. // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
  313. }
  314. LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
  315. const int64_t t_img_enc_end_us = ggml_time_us();
  316. float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
  317. LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
  318. return true;
  319. }
  320. bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
  321. // make sure that the correct mmproj was used, i.e., compare apples to apples
  322. int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
  323. auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
  324. if (n_image_embd != n_llama_embd) {
  325. LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
  326. return false;
  327. }
  328. return true;
  329. }
  330. bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
  331. int num_max_patches = 6;
  332. if (clip_is_minicpmv(ctx_clip)) {
  333. num_max_patches = 10;
  334. }
  335. float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
  336. if (!image_embd) {
  337. LOG_ERR("Unable to allocate memory for image embeddings\n");
  338. return false;
  339. }
  340. int n_img_pos;
  341. if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
  342. LOG_ERR("%s: cannot encode image, aborting\n", __func__);
  343. free(image_embd);
  344. return false;
  345. }
  346. *image_embd_out = image_embd;
  347. *n_img_pos_out = n_img_pos;
  348. return true;
  349. }
  350. struct llava_embd_batch {
  351. std::vector<llama_pos> pos;
  352. std::vector<int32_t> n_seq_id;
  353. std::vector<llama_seq_id> seq_id_0;
  354. std::vector<llama_seq_id *> seq_ids;
  355. std::vector<int8_t> logits;
  356. llama_batch batch;
  357. llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
  358. pos .resize(n_tokens);
  359. n_seq_id.resize(n_tokens);
  360. seq_ids .resize(n_tokens + 1);
  361. logits .resize(n_tokens);
  362. seq_id_0.resize(1);
  363. seq_id_0[0] = seq_id;
  364. seq_ids [n_tokens] = nullptr;
  365. batch = {
  366. /*n_tokens =*/ n_tokens,
  367. /*tokens =*/ nullptr,
  368. /*embd =*/ embd,
  369. /*n_embd =*/ n_embd,
  370. /*pos =*/ pos.data(),
  371. /*n_seq_id =*/ n_seq_id.data(),
  372. /*seq_id =*/ seq_ids.data(),
  373. /*logits =*/ logits.data(),
  374. };
  375. for (int i = 0; i < n_tokens; i++) {
  376. batch.pos [i] = pos_0 + i;
  377. batch.n_seq_id[i] = 1;
  378. batch.seq_id [i] = seq_id_0.data();
  379. batch.logits [i] = false;
  380. }
  381. }
  382. };
  383. bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
  384. int n_embd = llama_n_embd(llama_get_model(ctx_llama));
  385. for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
  386. int n_eval = image_embed->n_image_pos - i;
  387. if (n_eval > n_batch) {
  388. n_eval = n_batch;
  389. }
  390. float * embd = image_embed->embed+i*n_embd;
  391. llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
  392. if (llama_decode(ctx_llama, llava_batch.batch)) {
  393. LOG_ERR("%s : failed to eval\n", __func__);
  394. return false;
  395. }
  396. *n_past += n_eval;
  397. }
  398. return true;
  399. }
  400. struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
  401. clip_image_u8 * img = clip_image_u8_init();
  402. if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
  403. clip_image_u8_free(img);
  404. LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
  405. return NULL;
  406. }
  407. float* image_embed = NULL;
  408. int n_image_pos = 0;
  409. bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
  410. if (!image_embed_result) {
  411. clip_image_u8_free(img);
  412. LOG_ERR("%s: couldn't embed the image\n", __func__);
  413. return NULL;
  414. }
  415. clip_image_u8_free(img);
  416. auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
  417. result->embed = image_embed;
  418. result->n_image_pos = n_image_pos;
  419. return result;
  420. }
  421. static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
  422. auto file = fopen(path, "rb");
  423. if (file == NULL) {
  424. LOG_ERR("%s: can't read file %s\n", __func__, path);
  425. return false;
  426. }
  427. fseek(file, 0, SEEK_END);
  428. auto fileSize = ftell(file);
  429. fseek(file, 0, SEEK_SET);
  430. auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
  431. if (buffer == NULL) {
  432. LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
  433. perror("Memory allocation error");
  434. fclose(file);
  435. return false;
  436. }
  437. errno = 0;
  438. size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
  439. if (ferror(file)) {
  440. LOG_ERR("read error: %s", strerror(errno));
  441. free(buffer);
  442. fclose(file);
  443. return false;
  444. }
  445. if (ret != (size_t) fileSize) {
  446. LOG_ERR("unexpectedly reached end of file");
  447. free(buffer);
  448. fclose(file);
  449. return false;
  450. }
  451. fclose(file); // Close the file
  452. *bytesOut = buffer;
  453. *sizeOut = fileSize;
  454. return true;
  455. }
  456. struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
  457. unsigned char* image_bytes;
  458. long image_bytes_length;
  459. auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
  460. if (!loaded) {
  461. LOG_ERR("%s: failed to load %s\n", __func__, image_path);
  462. return NULL;
  463. }
  464. llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
  465. free(image_bytes);
  466. return embed;
  467. }
  468. void llava_image_embed_free(struct llava_image_embed * embed) {
  469. free(embed->embed);
  470. free(embed);
  471. }