llama.h 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-cpu.h"
  5. #include "ggml-backend.h"
  6. #include <stddef.h>
  7. #include <stdint.h>
  8. #include <stdio.h>
  9. #include <stdbool.h>
  10. #ifdef LLAMA_SHARED
  11. # if defined(_WIN32) && !defined(__MINGW32__)
  12. # ifdef LLAMA_BUILD
  13. # define LLAMA_API __declspec(dllexport)
  14. # else
  15. # define LLAMA_API __declspec(dllimport)
  16. # endif
  17. # else
  18. # define LLAMA_API __attribute__ ((visibility ("default")))
  19. # endif
  20. #else
  21. # define LLAMA_API
  22. #endif
  23. #ifdef __GNUC__
  24. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  25. #elif defined(_MSC_VER)
  26. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  27. #else
  28. # define DEPRECATED(func, hint) func
  29. #endif
  30. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  31. // TODO: use everywhere in the implementation
  32. #define LLAMA_TOKEN_NULL -1
  33. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  34. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  35. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  36. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  37. #define LLAMA_SESSION_VERSION 9
  38. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  39. #define LLAMA_STATE_SEQ_VERSION 2
  40. #ifdef __cplusplus
  41. extern "C" {
  42. #endif
  43. //
  44. // C interface
  45. //
  46. // TODO: show sample usage
  47. //
  48. // struct llama_vocab; // TODO: add in the future
  49. struct llama_model;
  50. struct llama_context;
  51. struct llama_sampler;
  52. typedef int32_t llama_pos;
  53. typedef int32_t llama_token;
  54. typedef int32_t llama_seq_id;
  55. enum llama_vocab_type {
  56. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  57. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  58. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  59. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  60. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  61. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  62. };
  63. // pre-tokenization types
  64. enum llama_vocab_pre_type {
  65. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  66. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  67. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  68. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  69. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  70. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  71. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  72. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  73. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  74. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  75. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  76. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  77. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  78. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  79. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  80. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  81. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  82. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  83. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  84. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  85. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  86. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  87. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  88. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  89. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  90. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  91. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  92. };
  93. enum llama_rope_type {
  94. LLAMA_ROPE_TYPE_NONE = -1,
  95. LLAMA_ROPE_TYPE_NORM = 0,
  96. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  97. };
  98. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  99. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  100. LLAMA_TOKEN_TYPE_NORMAL = 1,
  101. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  102. LLAMA_TOKEN_TYPE_CONTROL = 3,
  103. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  104. LLAMA_TOKEN_TYPE_UNUSED = 5,
  105. LLAMA_TOKEN_TYPE_BYTE = 6,
  106. };
  107. enum llama_token_attr {
  108. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  109. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  110. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  111. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  112. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  113. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  114. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  115. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  116. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  117. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  118. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  119. };
  120. // model file types
  121. enum llama_ftype {
  122. LLAMA_FTYPE_ALL_F32 = 0,
  123. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  124. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  125. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  126. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  127. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  128. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  129. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  130. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  131. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  132. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // except 1d tensors
  158. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  160. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  161. };
  162. enum llama_rope_scaling_type {
  163. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  164. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  165. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  166. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  167. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  168. };
  169. enum llama_pooling_type {
  170. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  171. LLAMA_POOLING_TYPE_NONE = 0,
  172. LLAMA_POOLING_TYPE_MEAN = 1,
  173. LLAMA_POOLING_TYPE_CLS = 2,
  174. LLAMA_POOLING_TYPE_LAST = 3,
  175. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  176. };
  177. enum llama_attention_type {
  178. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  179. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  180. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  181. };
  182. enum llama_split_mode {
  183. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  184. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  185. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  186. };
  187. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  188. typedef struct llama_token_data {
  189. llama_token id; // token id
  190. float logit; // log-odds of the token
  191. float p; // probability of the token
  192. } llama_token_data;
  193. typedef struct llama_token_data_array {
  194. // TODO: consider SoA
  195. // NOTE: this pointer can be modified by the samplers
  196. llama_token_data * data;
  197. size_t size;
  198. int64_t selected; // this is the index in the data array (i.e. not the token id)
  199. bool sorted;
  200. } llama_token_data_array;
  201. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  202. // Input data for llama_decode
  203. // A llama_batch object can contain input about one or many sequences
  204. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  205. //
  206. // - token : the token ids of the input (used when embd is NULL)
  207. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  208. // - pos : the positions of the respective token in the sequence
  209. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  210. // - seq_id : the sequence to which the respective token belongs
  211. // (if set to NULL, the sequence ID will be assumed to be 0)
  212. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  213. // (if set to NULL, only the logits for last token will be returned)
  214. //
  215. typedef struct llama_batch {
  216. int32_t n_tokens;
  217. llama_token * token;
  218. float * embd;
  219. int32_t n_embd;
  220. llama_pos * pos;
  221. int32_t * n_seq_id;
  222. llama_seq_id ** seq_id;
  223. int8_t * logits; // TODO: rename this to "output"
  224. } llama_batch;
  225. enum llama_model_kv_override_type {
  226. LLAMA_KV_OVERRIDE_TYPE_INT,
  227. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  228. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  229. LLAMA_KV_OVERRIDE_TYPE_STR,
  230. };
  231. struct llama_model_kv_override {
  232. enum llama_model_kv_override_type tag;
  233. char key[128];
  234. union {
  235. int64_t val_i64;
  236. double val_f64;
  237. bool val_bool;
  238. char val_str[128];
  239. };
  240. };
  241. struct llama_model_params {
  242. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  243. ggml_backend_dev_t * devices;
  244. int32_t n_gpu_layers; // number of layers to store in VRAM
  245. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  246. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  247. int32_t main_gpu;
  248. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  249. const float * tensor_split;
  250. // comma separated list of RPC servers to use for offloading
  251. const char * rpc_servers;
  252. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  253. // If the provided progress_callback returns true, model loading continues.
  254. // If it returns false, model loading is immediately aborted.
  255. llama_progress_callback progress_callback;
  256. // context pointer passed to the progress callback
  257. void * progress_callback_user_data;
  258. // override key-value pairs of the model meta data
  259. const struct llama_model_kv_override * kv_overrides;
  260. // Keep the booleans together to avoid misalignment during copy-by-value.
  261. bool vocab_only; // only load the vocabulary, no weights
  262. bool use_mmap; // use mmap if possible
  263. bool use_mlock; // force system to keep model in RAM
  264. bool check_tensors; // validate model tensor data
  265. };
  266. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  267. // https://github.com/ggerganov/llama.cpp/pull/7544
  268. struct llama_context_params {
  269. uint32_t n_ctx; // text context, 0 = from model
  270. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  271. uint32_t n_ubatch; // physical maximum batch size
  272. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  273. int32_t n_threads; // number of threads to use for generation
  274. int32_t n_threads_batch; // number of threads to use for batch processing
  275. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  276. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  277. enum llama_attention_type attention_type; // attention type to use for embeddings
  278. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  279. float rope_freq_base; // RoPE base frequency, 0 = from model
  280. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  281. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  282. float yarn_attn_factor; // YaRN magnitude scaling factor
  283. float yarn_beta_fast; // YaRN low correction dim
  284. float yarn_beta_slow; // YaRN high correction dim
  285. uint32_t yarn_orig_ctx; // YaRN original context size
  286. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  287. ggml_backend_sched_eval_callback cb_eval;
  288. void * cb_eval_user_data;
  289. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  290. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  291. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  292. // TODO: move at the end of the struct
  293. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  294. bool embeddings; // if true, extract embeddings (together with logits)
  295. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  296. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  297. bool no_perf; // whether to measure performance timings
  298. // Abort callback
  299. // if it returns true, execution of llama_decode() will be aborted
  300. // currently works only with CPU execution
  301. ggml_abort_callback abort_callback;
  302. void * abort_callback_data;
  303. };
  304. // model quantization parameters
  305. typedef struct llama_model_quantize_params {
  306. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  307. enum llama_ftype ftype; // quantize to this llama_ftype
  308. enum ggml_type output_tensor_type; // output tensor type
  309. enum ggml_type token_embedding_type; // token embeddings tensor type
  310. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  311. bool quantize_output_tensor; // quantize output.weight
  312. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  313. bool pure; // quantize all tensors to the default type
  314. bool keep_split; // quantize to the same number of shards
  315. void * imatrix; // pointer to importance matrix data
  316. void * kv_overrides; // pointer to vector containing overrides
  317. } llama_model_quantize_params;
  318. typedef struct llama_logit_bias {
  319. llama_token token;
  320. float bias;
  321. } llama_logit_bias;
  322. typedef struct llama_sampler_chain_params {
  323. bool no_perf; // whether to measure performance timings
  324. } llama_sampler_chain_params;
  325. // used in chat template
  326. typedef struct llama_chat_message {
  327. const char * role;
  328. const char * content;
  329. } llama_chat_message;
  330. // lora adapter
  331. struct llama_lora_adapter;
  332. // Helpers for getting default parameters
  333. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  334. LLAMA_API struct llama_model_params llama_model_default_params(void);
  335. LLAMA_API struct llama_context_params llama_context_default_params(void);
  336. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  337. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  338. // Initialize the llama + ggml backend
  339. // If numa is true, use NUMA optimizations
  340. // Call once at the start of the program
  341. LLAMA_API void llama_backend_init(void);
  342. //optional:
  343. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  344. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  345. LLAMA_API void llama_attach_threadpool(
  346. struct llama_context * ctx,
  347. ggml_threadpool_t threadpool,
  348. ggml_threadpool_t threadpool_batch);
  349. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  350. // Call once at the end of the program - currently only used for MPI
  351. LLAMA_API void llama_backend_free(void);
  352. LLAMA_API struct llama_model * llama_load_model_from_file(
  353. const char * path_model,
  354. struct llama_model_params params);
  355. LLAMA_API void llama_free_model(struct llama_model * model);
  356. // TODO: rename to llama_init_from_model
  357. LLAMA_API struct llama_context * llama_new_context_with_model(
  358. struct llama_model * model,
  359. struct llama_context_params params);
  360. // TODO (jmorganca): this should most likely be passed in as part of a batch
  361. // and not set on the context for all batches.
  362. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  363. // Frees all allocated memory
  364. LLAMA_API void llama_free(struct llama_context * ctx);
  365. LLAMA_API int64_t llama_time_us(void);
  366. LLAMA_API size_t llama_max_devices(void);
  367. LLAMA_API bool llama_supports_mmap (void);
  368. LLAMA_API bool llama_supports_mlock (void);
  369. LLAMA_API bool llama_supports_gpu_offload(void);
  370. LLAMA_API bool llama_supports_rpc (void);
  371. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  372. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  373. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  374. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  375. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  376. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  377. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  378. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  379. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  380. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  381. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  382. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  383. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  384. // Get the model's RoPE frequency scaling factor
  385. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  386. // Functions to access the model's GGUF metadata scalar values
  387. // - The functions return the length of the string on success, or -1 on failure
  388. // - The output string is always null-terminated and cleared on failure
  389. // - GGUF array values are not supported by these functions
  390. // Get metadata value as a string by key name
  391. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  392. // Get the number of metadata key/value pairs
  393. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  394. // Get metadata key name by index
  395. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  396. // Get metadata value as a string by index
  397. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  398. // Get a string describing the model type
  399. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  400. // Returns the total size of all the tensors in the model in bytes
  401. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  402. // Returns the total number of parameters in the model
  403. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  404. // Get a llama model tensor
  405. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  406. // Returns true if the model contains an encoder that requires llama_encode() call
  407. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  408. // Returns true if the model contains a decoder that requires llama_decode() call
  409. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  410. // For encoder-decoder models, this function returns id of the token that must be provided
  411. // to the decoder to start generating output sequence. For other models, it returns -1.
  412. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  413. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  414. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  415. // Returns 0 on success
  416. LLAMA_API uint32_t llama_model_quantize(
  417. const char * fname_inp,
  418. const char * fname_out,
  419. const llama_model_quantize_params * params);
  420. // Load a LoRA adapter from file
  421. // The loaded adapter will be associated to the given model, and will be free when the model is deleted
  422. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  423. struct llama_model * model,
  424. const char * path_lora);
  425. // Add a loaded LoRA adapter to given context
  426. // This will not modify model's weight
  427. LLAMA_API int32_t llama_lora_adapter_set(
  428. struct llama_context * ctx,
  429. struct llama_lora_adapter * adapter,
  430. float scale);
  431. // Remove a specific LoRA adapter from given context
  432. // Return -1 if the adapter is not present in the context
  433. LLAMA_API int32_t llama_lora_adapter_remove(
  434. struct llama_context * ctx,
  435. struct llama_lora_adapter * adapter);
  436. // Remove all LoRA adapters from given context
  437. LLAMA_API void llama_lora_adapter_clear(
  438. struct llama_context * ctx);
  439. // Manually free a LoRA adapter
  440. // Note: loaded adapters will be free when the associated model is deleted
  441. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  442. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  443. // the currently loaded vector.
  444. // n_embd should be the size of a single layer's control, and data should point
  445. // to an n_embd x n_layers buffer starting from layer 1.
  446. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  447. // See llama_control_vector_load in common to load a control vector.
  448. LLAMA_API int32_t llama_control_vector_apply(
  449. struct llama_context * lctx,
  450. const float * data,
  451. size_t len,
  452. int32_t n_embd,
  453. int32_t il_start,
  454. int32_t il_end);
  455. //
  456. // KV cache
  457. //
  458. // Information associated with an individual cell in the KV cache view.
  459. struct llama_kv_cache_view_cell {
  460. // The position for this cell. Takes KV cache shifts into account.
  461. // May be negative if the cell is not populated.
  462. llama_pos pos;
  463. };
  464. // An updateable view of the KV cache.
  465. struct llama_kv_cache_view {
  466. // Number of KV cache cells. This will be the same as the context size.
  467. int32_t n_cells;
  468. // Maximum number of sequences that can exist in a cell. It's not an error
  469. // if there are more sequences in a cell than this value, however they will
  470. // not be visible in the view cells_sequences.
  471. int32_t n_seq_max;
  472. // Number of tokens in the cache. For example, if there are two populated
  473. // cells, the first with 1 sequence id in it and the second with 2 sequence
  474. // ids then you'll have 3 tokens.
  475. int32_t token_count;
  476. // Number of populated cache cells.
  477. int32_t used_cells;
  478. // Maximum contiguous empty slots in the cache.
  479. int32_t max_contiguous;
  480. // Index to the start of the max_contiguous slot range. Can be negative
  481. // when cache is full.
  482. int32_t max_contiguous_idx;
  483. // Information for an individual cell.
  484. struct llama_kv_cache_view_cell * cells;
  485. // The sequences for each cell. There will be n_seq_max items per cell.
  486. llama_seq_id * cells_sequences;
  487. };
  488. // Create an empty KV cache view. (use only for debugging purposes)
  489. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  490. // Free a KV cache view. (use only for debugging purposes)
  491. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  492. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  493. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  494. // Returns the number of tokens in the KV cache (slow, use only for debug)
  495. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  496. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  497. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  498. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  499. // Clear the KV cache - both cell info is erased and KV data is zeroed
  500. LLAMA_API void llama_kv_cache_clear(
  501. struct llama_context * ctx);
  502. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  503. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  504. // seq_id < 0 : match any sequence
  505. // p0 < 0 : [0, p1]
  506. // p1 < 0 : [p0, inf)
  507. LLAMA_API bool llama_kv_cache_seq_rm(
  508. struct llama_context * ctx,
  509. llama_seq_id seq_id,
  510. llama_pos p0,
  511. llama_pos p1);
  512. // Copy all tokens that belong to the specified sequence to another sequence
  513. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  514. // p0 < 0 : [0, p1]
  515. // p1 < 0 : [p0, inf)
  516. LLAMA_API void llama_kv_cache_seq_cp(
  517. struct llama_context * ctx,
  518. llama_seq_id seq_id_src,
  519. llama_seq_id seq_id_dst,
  520. llama_pos p0,
  521. llama_pos p1);
  522. // Removes all tokens that do not belong to the specified sequence
  523. LLAMA_API void llama_kv_cache_seq_keep(
  524. struct llama_context * ctx,
  525. llama_seq_id seq_id);
  526. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  527. // If the KV cache is RoPEd, the KV data is updated accordingly:
  528. // - lazily on next llama_decode()
  529. // - explicitly with llama_kv_cache_update()
  530. // p0 < 0 : [0, p1]
  531. // p1 < 0 : [p0, inf)
  532. LLAMA_API void llama_kv_cache_seq_add(
  533. struct llama_context * ctx,
  534. llama_seq_id seq_id,
  535. llama_pos p0,
  536. llama_pos p1,
  537. llama_pos delta);
  538. // Integer division of the positions by factor of `d > 1`
  539. // If the KV cache is RoPEd, the KV data is updated accordingly:
  540. // - lazily on next llama_decode()
  541. // - explicitly with llama_kv_cache_update()
  542. // p0 < 0 : [0, p1]
  543. // p1 < 0 : [p0, inf)
  544. LLAMA_API void llama_kv_cache_seq_div(
  545. struct llama_context * ctx,
  546. llama_seq_id seq_id,
  547. llama_pos p0,
  548. llama_pos p1,
  549. int d);
  550. // Returns the largest position present in the KV cache for the specified sequence
  551. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  552. struct llama_context * ctx,
  553. llama_seq_id seq_id);
  554. // Defragment the KV cache
  555. // This will be applied:
  556. // - lazily on next llama_decode()
  557. // - explicitly with llama_kv_cache_update()
  558. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  559. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  560. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  561. // Check if the context supports KV cache shifting
  562. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  563. //
  564. // State / sessions
  565. //
  566. // Returns the *actual* size in bytes of the state
  567. // (logits, embedding and kv_cache)
  568. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  569. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  570. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  571. "use llama_state_get_size instead");
  572. // Copies the state to the specified destination address.
  573. // Destination needs to have allocated enough memory.
  574. // Returns the number of bytes copied
  575. LLAMA_API size_t llama_state_get_data(
  576. struct llama_context * ctx,
  577. uint8_t * dst,
  578. size_t size);
  579. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  580. struct llama_context * ctx,
  581. uint8_t * dst),
  582. "use llama_state_get_data instead");
  583. // Set the state reading from the specified address
  584. // Returns the number of bytes read
  585. LLAMA_API size_t llama_state_set_data(
  586. struct llama_context * ctx,
  587. const uint8_t * src,
  588. size_t size);
  589. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  590. struct llama_context * ctx,
  591. const uint8_t * src),
  592. "use llama_state_set_data instead");
  593. // Save/load session file
  594. LLAMA_API bool llama_state_load_file(
  595. struct llama_context * ctx,
  596. const char * path_session,
  597. llama_token * tokens_out,
  598. size_t n_token_capacity,
  599. size_t * n_token_count_out);
  600. LLAMA_API DEPRECATED(bool llama_load_session_file(
  601. struct llama_context * ctx,
  602. const char * path_session,
  603. llama_token * tokens_out,
  604. size_t n_token_capacity,
  605. size_t * n_token_count_out),
  606. "use llama_state_load_file instead");
  607. LLAMA_API bool llama_state_save_file(
  608. struct llama_context * ctx,
  609. const char * path_session,
  610. const llama_token * tokens,
  611. size_t n_token_count);
  612. LLAMA_API DEPRECATED(bool llama_save_session_file(
  613. struct llama_context * ctx,
  614. const char * path_session,
  615. const llama_token * tokens,
  616. size_t n_token_count),
  617. "use llama_state_save_file instead");
  618. // Get the exact size needed to copy the KV cache of a single sequence
  619. LLAMA_API size_t llama_state_seq_get_size(
  620. struct llama_context * ctx,
  621. llama_seq_id seq_id);
  622. // Copy the KV cache of a single sequence into the specified buffer
  623. LLAMA_API size_t llama_state_seq_get_data(
  624. struct llama_context * ctx,
  625. uint8_t * dst,
  626. size_t size,
  627. llama_seq_id seq_id);
  628. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  629. // Returns:
  630. // - Positive: Ok
  631. // - Zero: Failed to load
  632. LLAMA_API size_t llama_state_seq_set_data(
  633. struct llama_context * ctx,
  634. const uint8_t * src,
  635. size_t size,
  636. llama_seq_id dest_seq_id);
  637. LLAMA_API size_t llama_state_seq_save_file(
  638. struct llama_context * ctx,
  639. const char * filepath,
  640. llama_seq_id seq_id,
  641. const llama_token * tokens,
  642. size_t n_token_count);
  643. LLAMA_API size_t llama_state_seq_load_file(
  644. struct llama_context * ctx,
  645. const char * filepath,
  646. llama_seq_id dest_seq_id,
  647. llama_token * tokens_out,
  648. size_t n_token_capacity,
  649. size_t * n_token_count_out);
  650. //
  651. // Decoding
  652. //
  653. // Return batch for single sequence of tokens
  654. // The sequence ID will be fixed to 0
  655. // The position of the tokens will be tracked automatically by llama_decode
  656. //
  657. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  658. //
  659. LLAMA_API struct llama_batch llama_batch_get_one(
  660. llama_token * tokens,
  661. int32_t n_tokens);
  662. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  663. // Each token can be assigned up to n_seq_max sequence ids
  664. // The batch has to be freed with llama_batch_free()
  665. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  666. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  667. // The rest of the llama_batch members are allocated with size n_tokens
  668. // All members are left uninitialized
  669. LLAMA_API struct llama_batch llama_batch_init(
  670. int32_t n_tokens,
  671. int32_t embd,
  672. int32_t n_seq_max);
  673. // Frees a batch of tokens allocated with llama_batch_init()
  674. LLAMA_API void llama_batch_free(struct llama_batch batch);
  675. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  676. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  677. // 0 - success
  678. // < 0 - error. the KV cache state is restored to the state before this call
  679. LLAMA_API int32_t llama_encode(
  680. struct llama_context * ctx,
  681. struct llama_batch batch);
  682. // Positive return values does not mean a fatal error, but rather a warning.
  683. // 0 - success
  684. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  685. // < 0 - error. the KV cache state is restored to the state before this call
  686. LLAMA_API int32_t llama_decode(
  687. struct llama_context * ctx,
  688. struct llama_batch batch);
  689. // Set the number of threads used for decoding
  690. // n_threads is the number of threads used for generation (single token)
  691. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  692. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  693. // Get the number of threads used for generation of a single token.
  694. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  695. // Get the number of threads used for prompt and batch processing (multiple token).
  696. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  697. // Set whether the model is in embeddings mode or not
  698. // If true, embeddings will be returned but logits will not
  699. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  700. // Set whether to use causal attention or not
  701. // If set to true, the model will only attend to the past tokens
  702. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  703. // Set abort callback
  704. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  705. // Wait until all computations are finished
  706. // This is automatically done when using one of the functions below to obtain the computation results
  707. // and is not necessary to call it explicitly in most cases
  708. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  709. // Token logits obtained from the last call to llama_decode()
  710. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  711. // in the order they have appeared in the batch.
  712. // Rows: number of tokens for which llama_batch.logits[i] != 0
  713. // Cols: n_vocab
  714. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  715. // Logits for the ith token. For positive indices, Equivalent to:
  716. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  717. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  718. // returns NULL for invalid ids.
  719. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  720. // Get all output token embeddings.
  721. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  722. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  723. // in the order they have appeared in the batch.
  724. // shape: [n_outputs*n_embd]
  725. // Otherwise, returns NULL.
  726. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  727. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  728. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  729. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  730. // shape: [n_embd] (1-dimensional)
  731. // returns NULL for invalid ids.
  732. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  733. // Get the embeddings for a sequence id
  734. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  735. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  736. // otherwise: float[n_embd] (1-dimensional)
  737. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  738. //
  739. // Vocab
  740. //
  741. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  742. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  743. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  744. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  745. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  746. // Identify if Token Id is a control token or a render-able token
  747. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  748. // Special tokens
  749. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  750. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  751. LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
  752. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  753. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  754. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  755. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  756. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  757. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  758. // infill tokens
  759. DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
  760. DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
  761. DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
  762. LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
  763. LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
  764. LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
  765. LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
  766. LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
  767. LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
  768. //
  769. // Tokenization
  770. //
  771. // The API is thread-safe.
  772. //
  773. /// @details Convert the provided text into tokens.
  774. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  775. /// @return Returns the number of tokens on success, no more than n_tokens_max
  776. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  777. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  778. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  779. /// as plaintext. Does not insert a leading space.
  780. LLAMA_API int32_t llama_tokenize(
  781. const struct llama_model * model,
  782. const char * text,
  783. int32_t text_len,
  784. llama_token * tokens,
  785. int32_t n_tokens_max,
  786. bool add_special,
  787. bool parse_special);
  788. // Token Id -> Piece.
  789. // Uses the vocabulary in the provided context.
  790. // Does not write null terminator to the buffer.
  791. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  792. // @param special If true, special tokens are rendered in the output.
  793. LLAMA_API int32_t llama_token_to_piece(
  794. const struct llama_model * model,
  795. llama_token token,
  796. char * buf,
  797. int32_t length,
  798. int32_t lstrip,
  799. bool special);
  800. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  801. /// @param text The char pointer must be large enough to hold the resulting text.
  802. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  803. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  804. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  805. /// @param unparse_special If true, special tokens are rendered in the output.
  806. LLAMA_API int32_t llama_detokenize(
  807. const struct llama_model * model,
  808. const llama_token * tokens,
  809. int32_t n_tokens,
  810. char * text,
  811. int32_t text_len_max,
  812. bool remove_special,
  813. bool unparse_special);
  814. //
  815. // Chat templates
  816. //
  817. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  818. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  819. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  820. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  821. /// @param chat Pointer to a list of multiple llama_chat_message
  822. /// @param n_msg Number of llama_chat_message in this chat
  823. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  824. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  825. /// @param length The size of the allocated buffer
  826. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  827. LLAMA_API int32_t llama_chat_apply_template(
  828. const struct llama_model * model,
  829. const char * tmpl,
  830. const struct llama_chat_message * chat,
  831. size_t n_msg,
  832. bool add_ass,
  833. char * buf,
  834. int32_t length);
  835. // Get list of built-in chat templates
  836. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  837. //
  838. // Sampling API
  839. //
  840. // Sample usage:
  841. //
  842. // // prepare the sampling chain at the start
  843. // auto sparams = llama_sampler_chain_default_params();
  844. //
  845. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  846. //
  847. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  848. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  849. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  850. //
  851. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  852. // // this sampler will be responsible to select the actual token
  853. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  854. //
  855. // ...
  856. //
  857. // // decoding loop:
  858. // while (...) {
  859. // ...
  860. //
  861. // llama_decode(ctx, batch);
  862. //
  863. // // sample from the logits of the last token in the batch
  864. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  865. //
  866. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  867. // llama_sampler_accept(smpl, id);
  868. // ...
  869. // }
  870. //
  871. // llama_sampler_free(smpl);
  872. //
  873. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  874. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  875. //
  876. typedef void * llama_sampler_context_t;
  877. // user code can implement the interface below in order to create custom llama_sampler
  878. struct llama_sampler_i {
  879. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  880. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  881. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  882. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  883. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  884. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  885. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  886. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  887. };
  888. struct llama_sampler {
  889. struct llama_sampler_i * iface;
  890. llama_sampler_context_t ctx;
  891. };
  892. // mirror of llama_sampler_i:
  893. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  894. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  895. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  896. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  897. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  898. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  899. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  900. // llama_sampler_chain
  901. // a type of llama_sampler that can chain multiple samplers one after another
  902. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  903. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  904. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  905. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  906. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  907. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  908. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  909. // available samplers:
  910. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  911. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  912. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  913. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  914. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  915. "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
  916. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  917. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  918. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  919. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  920. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  921. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  922. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  923. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  924. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  925. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  926. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  927. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  928. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  929. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  930. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  931. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  932. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  933. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  934. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  935. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  936. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  937. int32_t n_vocab,
  938. uint32_t seed,
  939. float tau,
  940. float eta,
  941. int32_t m);
  942. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  943. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  944. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  945. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  946. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  947. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  948. uint32_t seed,
  949. float tau,
  950. float eta);
  951. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  952. const struct llama_model * model,
  953. const char * grammar_str,
  954. const char * grammar_root);
  955. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  956. int32_t n_vocab, // llama_n_vocab()
  957. llama_token special_eos_id, // llama_token_eos()
  958. llama_token linefeed_id, // llama_token_nl()
  959. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  960. float penalty_repeat, // 1.0 = disabled
  961. float penalty_freq, // 0.0 = disabled
  962. float penalty_present, // 0.0 = disabled
  963. bool penalize_nl, // consider newlines as a repeatable token
  964. bool ignore_eos); // ignore the end-of-sequence token
  965. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  966. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  967. const struct llama_model * model,
  968. float dry_multiplier,
  969. float dry_base,
  970. int32_t dry_allowed_length,
  971. int32_t dry_penalty_last_n,
  972. const char ** seq_breakers,
  973. size_t num_breakers);
  974. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  975. int32_t n_vocab,
  976. int32_t n_logit_bias,
  977. const llama_logit_bias * logit_bias);
  978. // this sampler is meant to be used for fill-in-the-middle infilling
  979. // it's supposed to be used after top_k + top_p sampling
  980. //
  981. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  982. // 2. combine probs of tokens that have the same prefix
  983. //
  984. // example:
  985. //
  986. // - before:
  987. // "hel": 0.5
  988. // "hell": 0.2
  989. // "hello": 0.1
  990. // "dummy": 0.1
  991. //
  992. // - after:
  993. // "hel": 0.8
  994. // "dummy": 0.1
  995. //
  996. // 3. discard non-EOG tokens with low prob
  997. // 4. if no tokens are left -> pick EOT
  998. //
  999. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
  1000. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  1001. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  1002. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1003. //
  1004. // Shorthand for:
  1005. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1006. // llama_token_data_array cur_p = { ... init from logits ... };
  1007. // llama_sampler_apply(smpl, &cur_p);
  1008. // auto token = cur_p.data[cur_p.selected].id;
  1009. // llama_sampler_accept(smpl, token);
  1010. // return token;
  1011. // Returns the sampled token
  1012. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1013. // TODO: extend in the future
  1014. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1015. //
  1016. // Model split
  1017. //
  1018. /// @details Build a split GGUF final path for this chunk.
  1019. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1020. // Returns the split_path length.
  1021. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1022. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1023. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1024. // Returns the split_prefix length.
  1025. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1026. // Print system information
  1027. LLAMA_API const char * llama_print_system_info(void);
  1028. // Set callback for all future logging events.
  1029. // If this is not called, or NULL is supplied, everything is output on stderr.
  1030. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1031. //
  1032. // Performance utils
  1033. //
  1034. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1035. //
  1036. struct llama_perf_context_data {
  1037. double t_start_ms;
  1038. double t_load_ms;
  1039. double t_p_eval_ms;
  1040. double t_eval_ms;
  1041. int32_t n_p_eval;
  1042. int32_t n_eval;
  1043. };
  1044. struct llama_perf_sampler_data {
  1045. double t_sample_ms;
  1046. int32_t n_sample;
  1047. };
  1048. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1049. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1050. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1051. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1052. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1053. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1054. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1055. #ifdef __cplusplus
  1056. }
  1057. #endif
  1058. #endif // LLAMA_H