ggml.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. package ggml
  2. // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  3. // #include <stdlib.h>
  4. // #include <stdint.h>
  5. // #include "ggml.h"
  6. // #include "ggml-cpu.h"
  7. // #include "ggml-backend.h"
  8. import "C"
  9. import (
  10. "bytes"
  11. "encoding/binary"
  12. "fmt"
  13. "io"
  14. "log/slog"
  15. "os"
  16. "sync"
  17. "unsafe"
  18. "github.com/ollama/ollama/format"
  19. fs "github.com/ollama/ollama/fs/ggml"
  20. "github.com/ollama/ollama/ml"
  21. "golang.org/x/sync/errgroup"
  22. "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  23. )
  24. type device struct {
  25. d *C.struct_ggml_backend_device
  26. }
  27. func (d device) name() string {
  28. return C.GoString(C.ggml_backend_dev_name(d.d))
  29. }
  30. func (d device) kind() string {
  31. switch C.ggml_backend_dev_type(d.d) {
  32. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  33. return "cpu"
  34. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  35. return "gpu"
  36. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  37. return "accel"
  38. default:
  39. return "unknown"
  40. }
  41. }
  42. func (d device) memory() (total uint64, free uint64) {
  43. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  44. return
  45. }
  46. func (d device) LogValue() slog.Value {
  47. free, total := d.memory()
  48. return slog.GroupValue(
  49. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  50. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  51. slog.String("kind", d.kind()),
  52. slog.String("free", format.HumanBytes2(free)),
  53. slog.String("total", format.HumanBytes2(total)),
  54. )
  55. }
  56. var devices = sync.OnceValue(func() []device {
  57. ggml.OnceLoad()
  58. s := make([]device, C.ggml_backend_dev_count())
  59. for i := range s {
  60. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  61. }
  62. return s
  63. })
  64. type Backend struct {
  65. meta *fs.GGML
  66. cpus, gpus []Context
  67. tensors map[string]*Context
  68. }
  69. func New(r *os.File) (ml.Backend, error) {
  70. meta, n, err := fs.Decode(r, -1)
  71. if err != nil {
  72. return nil, err
  73. }
  74. slog.Info(
  75. "",
  76. "architecture", meta.KV().Architecture(),
  77. "file_type", meta.KV().FileType(),
  78. "name", meta.KV().String("general.name"),
  79. "description", meta.KV().String("general.description"),
  80. "num_tensors", len(meta.Tensors().Items()),
  81. "num_key_values", len(meta.KV()),
  82. )
  83. var cpus, gpus []Context
  84. for _, d := range devices() {
  85. switch C.ggml_backend_dev_type(d.d) {
  86. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  87. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  88. slog.Info("cpu", "device", d)
  89. cpus = append(cpus, Context{
  90. ctx: C.ggml_init(C.struct_ggml_init_params{
  91. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  92. no_alloc: true,
  93. }),
  94. backend: C.ggml_backend_dev_init(d.d, nil),
  95. })
  96. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  97. slog.Info("gpu", "device", d)
  98. gpus = append(gpus, Context{
  99. ctx: C.ggml_init(C.struct_ggml_init_params{
  100. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  101. no_alloc: true,
  102. }),
  103. backend: C.ggml_backend_dev_init(d.d, nil),
  104. })
  105. }
  106. }
  107. ctxFunc := func(s []Context) (*Context, error) {
  108. for _, e := range s {
  109. return &e, nil
  110. }
  111. return nil, fmt.Errorf("no devices available")
  112. }
  113. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  114. for _, t := range meta.Tensors().Items() {
  115. c, err := ctxFunc(append(gpus, cpus...))
  116. if err != nil {
  117. return nil, err
  118. }
  119. func() {
  120. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  121. cname := C.CString(t.Name)
  122. defer C.free(unsafe.Pointer(cname))
  123. C.ggml_set_name(tt, cname)
  124. tensors[t] = c
  125. }()
  126. }
  127. for _, b := range append(gpus, cpus...) {
  128. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  129. }
  130. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  131. var g errgroup.Group
  132. for t, c := range tensors {
  133. g.Go(func() error {
  134. var b bytes.Buffer
  135. n, err := io.Copy(&b, io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())))
  136. if err != nil {
  137. return err
  138. }
  139. if n != int64(t.Size()) {
  140. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  141. }
  142. cname := C.CString(t.Name)
  143. defer C.free(unsafe.Pointer(cname))
  144. tt := C.ggml_get_tensor(c.ctx, cname)
  145. cbytes := C.CBytes(b.Bytes())
  146. defer C.free(cbytes)
  147. C.ggml_backend_tensor_set(tt, cbytes, 0, C.size_t(n))
  148. return nil
  149. })
  150. }
  151. if err := g.Wait(); err != nil {
  152. return nil, err
  153. }
  154. return &Backend{
  155. meta: meta,
  156. cpus: cpus,
  157. gpus: gpus,
  158. }, nil
  159. }
  160. func init() {
  161. ml.RegisterBackend("ggml", New)
  162. }
  163. func (b *Backend) Config() ml.Config {
  164. return b.meta.KV()
  165. }
  166. func (b *Backend) Get(name string) ml.Tensor {
  167. cname := C.CString(name)
  168. defer C.free(unsafe.Pointer(cname))
  169. for _, c := range append(b.gpus, b.cpus...) {
  170. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  171. return &Tensor{t: t}
  172. }
  173. }
  174. return nil
  175. }
  176. func (b *Backend) NewContext() ml.Context {
  177. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  178. bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
  179. c := C.ggml_init(C.struct_ggml_init_params{
  180. mem_buffer: unsafe.Pointer(&bts[0]),
  181. mem_size: C.size_t(len(bts)),
  182. no_alloc: true,
  183. })
  184. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  185. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  186. for i, c := range append(b.gpus, b.cpus...) {
  187. backends[i] = c.backend
  188. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  189. }
  190. return &Context{
  191. ctx: c,
  192. backend: backends[0],
  193. nodes: nodes,
  194. sched: C.ggml_backend_sched_new(
  195. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  196. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  197. C.int(len(backends)),
  198. C.size_t(nodes),
  199. true,
  200. ),
  201. }
  202. }
  203. type Context struct {
  204. ctx *C.struct_ggml_context
  205. backend *C.struct_ggml_backend
  206. sched *C.struct_ggml_backend_sched
  207. graph *C.struct_ggml_cgraph
  208. nodes int
  209. }
  210. func (c *Context) Forward(t ml.Tensor) {
  211. if c.graph == nil {
  212. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  213. }
  214. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  215. }
  216. func (c *Context) Compute(t ml.Tensor) ml.Tensor {
  217. c.Forward(t)
  218. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  219. backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
  220. t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
  221. C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
  222. return t
  223. }
  224. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  225. if len(shape) < 1 || len(shape) > 4 {
  226. panic("unsupported number of dimensions")
  227. }
  228. for _, dim := range shape {
  229. if dim < 1 {
  230. panic("invalid shape")
  231. }
  232. }
  233. var t *C.struct_ggml_tensor
  234. switch dtype {
  235. case ml.DTypeF32:
  236. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  237. case ml.DTypeI32:
  238. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  239. default:
  240. panic("unsupported dtype")
  241. }
  242. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  243. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  244. C.ggml_set_zero(t)
  245. return &Tensor{t: t}
  246. }
  247. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  248. n := len(s)
  249. for _, v := range shape {
  250. n /= v
  251. }
  252. if n != 1 {
  253. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  254. }
  255. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
  256. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  257. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  258. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  259. return &Tensor{t: t}, nil
  260. }
  261. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  262. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  263. }
  264. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  265. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  266. }
  267. func (c *Context) Close() error {
  268. C.ggml_backend_sched_free(c.sched)
  269. C.ggml_free(c.ctx)
  270. return nil
  271. }
  272. type Tensor struct {
  273. t *C.struct_ggml_tensor
  274. data []byte
  275. }
  276. func (t *Tensor) LogValue() slog.Value {
  277. return slog.GroupValue(
  278. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  279. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  280. slog.Any("shape", t.Shape()),
  281. )
  282. }
  283. func (t *Tensor) Dim(n int) int64 {
  284. return int64(t.t.ne[n])
  285. }
  286. func (t *Tensor) Stride(n int) int64 {
  287. return int64(t.t.nb[n])
  288. }
  289. func (t *Tensor) Shape() []int64 {
  290. shape := make([]int64, C.ggml_n_dims(t.t))
  291. for i := range shape {
  292. shape[i] = t.Dim(i)
  293. }
  294. return shape
  295. }
  296. func (t *Tensor) Bytes() []byte {
  297. if bts := C.ggml_get_data(t.t); bts != nil {
  298. return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
  299. }
  300. return nil
  301. }
  302. func (t *Tensor) Floats() (f32s []float32) {
  303. if t.data != nil {
  304. f32s = make([]float32, C.ggml_nelements(t.t))
  305. _ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
  306. }
  307. return
  308. }
  309. func (t *Tensor) DType() ml.DType {
  310. switch t.t._type {
  311. case C.GGML_TYPE_F32:
  312. return ml.DTypeF32
  313. case C.GGML_TYPE_I32:
  314. return ml.DTypeI32
  315. default:
  316. return ml.DTypeOther
  317. }
  318. }
  319. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  320. return &Tensor{
  321. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  322. }
  323. }
  324. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  325. if len(s) > 0 {
  326. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  327. }
  328. return t
  329. }
  330. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  331. return &Tensor{
  332. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  333. }
  334. }
  335. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  336. return &Tensor{
  337. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  338. }
  339. }
  340. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  341. return &Tensor{
  342. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  343. }
  344. }
  345. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  346. return &Tensor{
  347. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  348. }
  349. }
  350. func (t *Tensor) Norm(ctx ml.Context, eps float32) ml.Tensor {
  351. return &Tensor{
  352. t: C.ggml_norm(ctx.(*Context).ctx, t.t, (C.float)(eps)),
  353. }
  354. }
  355. func (t *Tensor) RMSNorm(ctx ml.Context, eps float32) ml.Tensor {
  356. return &Tensor{
  357. t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps)),
  358. }
  359. }
  360. func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
  361. if len(shape) != 4 {
  362. panic("expected 4 dimensions")
  363. }
  364. return &Tensor{
  365. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  366. }
  367. }
  368. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  369. if len(shape) != 4 {
  370. panic("expected 4 dimensions")
  371. }
  372. return &Tensor{
  373. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  374. }
  375. }
  376. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  377. return &Tensor{
  378. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  379. }
  380. }
  381. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  382. return &Tensor{
  383. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  384. }
  385. }
  386. func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
  387. switch len(shape) {
  388. case 1:
  389. return &Tensor{
  390. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  391. }
  392. case 2:
  393. return &Tensor{
  394. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  395. }
  396. case 3:
  397. return &Tensor{
  398. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  399. }
  400. case 4:
  401. return &Tensor{
  402. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  403. }
  404. default:
  405. panic("unsupported number of dimensions")
  406. }
  407. }
  408. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  409. return &Tensor{
  410. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  411. }
  412. }
  413. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  414. return &Tensor{
  415. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  416. }
  417. }
  418. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  419. return &Tensor{
  420. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  421. }
  422. }
  423. func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
  424. if len(shape) != 4 {
  425. panic("expected 4 dimensions")
  426. }
  427. return &Tensor{
  428. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  429. }
  430. }
  431. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  432. switch len(shape) {
  433. case 1:
  434. return &Tensor{
  435. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  436. }
  437. case 3:
  438. return &Tensor{
  439. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  440. C.int64_t(shape[0]), C.int64_t(shape[2]),
  441. C.size_t(shape[1]),
  442. C.size_t(offset)),
  443. }
  444. case 5:
  445. return &Tensor{
  446. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  447. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  448. C.size_t(shape[1]), C.size_t(shape[3]),
  449. C.size_t(offset)),
  450. }
  451. case 7:
  452. return &Tensor{
  453. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  454. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  455. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  456. C.size_t(offset)),
  457. }
  458. default:
  459. panic("unsupported number of dimensions")
  460. }
  461. }
  462. const (
  463. ropeTypeNorm C.int = iota
  464. )
  465. func (t *Tensor) Rope(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  466. return &Tensor{
  467. t: C.ggml_rope_ext(
  468. ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  469. C.int(ropeDim),
  470. 131072, // YaRN n_ctx_train
  471. ropeTypeNorm, // ROPE_TYPE_NORM
  472. C.float(ropeBase),
  473. C.float(ropeScale),
  474. 0., // YaRN ext_factor
  475. 1., // YaRN attn_factor
  476. 32., // YaRN beta_fast
  477. 1., // YaRN beta_slow
  478. ),
  479. }
  480. }
  481. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  482. return &Tensor{
  483. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  484. }
  485. }
  486. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  487. return &Tensor{
  488. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  489. }
  490. }
  491. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  492. return &Tensor{
  493. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  494. }
  495. }