llama.h 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-cpu.h"
  5. #include "ggml-backend.h"
  6. #include <stddef.h>
  7. #include <stdint.h>
  8. #include <stdio.h>
  9. #include <stdbool.h>
  10. #ifdef LLAMA_SHARED
  11. # if defined(_WIN32) && !defined(__MINGW32__)
  12. # ifdef LLAMA_BUILD
  13. # define LLAMA_API __declspec(dllexport)
  14. # else
  15. # define LLAMA_API __declspec(dllimport)
  16. # endif
  17. # else
  18. # define LLAMA_API __attribute__ ((visibility ("default")))
  19. # endif
  20. #else
  21. # define LLAMA_API
  22. #endif
  23. #ifdef __GNUC__
  24. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  25. #elif defined(_MSC_VER)
  26. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  27. #else
  28. # define DEPRECATED(func, hint) func
  29. #endif
  30. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  31. #define LLAMA_TOKEN_NULL -1
  32. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  33. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  34. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  35. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  36. #define LLAMA_SESSION_VERSION 9
  37. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  38. #define LLAMA_STATE_SEQ_VERSION 2
  39. #ifdef __cplusplus
  40. extern "C" {
  41. #endif
  42. //
  43. // C interface
  44. //
  45. // TODO: show sample usage
  46. //
  47. struct llama_vocab;
  48. struct llama_model;
  49. struct llama_context;
  50. struct llama_sampler;
  51. typedef int32_t llama_pos;
  52. typedef int32_t llama_token;
  53. typedef int32_t llama_seq_id;
  54. enum llama_vocab_type {
  55. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  56. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  57. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  58. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  59. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  60. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  61. };
  62. // pre-tokenization types
  63. enum llama_vocab_pre_type {
  64. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  65. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  66. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  67. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  68. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  69. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  70. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  71. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  72. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  73. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  74. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  75. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  76. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  77. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  78. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  79. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  80. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  81. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  82. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  83. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  84. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  85. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  86. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  87. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  88. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  89. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  90. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  91. LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
  92. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
  93. };
  94. enum llama_rope_type {
  95. LLAMA_ROPE_TYPE_NONE = -1,
  96. LLAMA_ROPE_TYPE_NORM = 0,
  97. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  98. LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
  99. LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
  100. };
  101. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  102. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  103. LLAMA_TOKEN_TYPE_NORMAL = 1,
  104. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  105. LLAMA_TOKEN_TYPE_CONTROL = 3,
  106. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  107. LLAMA_TOKEN_TYPE_UNUSED = 5,
  108. LLAMA_TOKEN_TYPE_BYTE = 6,
  109. };
  110. enum llama_token_attr {
  111. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  112. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  113. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  114. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  115. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  116. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  117. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  118. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  119. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  120. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  121. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  122. };
  123. // model file types
  124. enum llama_ftype {
  125. LLAMA_FTYPE_ALL_F32 = 0,
  126. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  127. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  128. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  129. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  130. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  131. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  132. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  133. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  134. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  135. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  136. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  137. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  138. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  139. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  140. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  141. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  142. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  143. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  144. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  145. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  146. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  147. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  148. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  149. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  150. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  151. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  152. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  155. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  156. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  157. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  158. //LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // removed from gguf files, use Q4_0 and runtime repack
  159. //LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // removed from gguf files, use Q4_0 and runtime repack
  160. //LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // removed from gguf files, use Q4_0 and runtime repack
  161. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  163. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  164. };
  165. enum llama_rope_scaling_type {
  166. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  167. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  168. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  169. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  170. LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
  171. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
  172. };
  173. enum llama_pooling_type {
  174. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  175. LLAMA_POOLING_TYPE_NONE = 0,
  176. LLAMA_POOLING_TYPE_MEAN = 1,
  177. LLAMA_POOLING_TYPE_CLS = 2,
  178. LLAMA_POOLING_TYPE_LAST = 3,
  179. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  180. };
  181. enum llama_attention_type {
  182. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  183. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  184. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  185. };
  186. enum llama_split_mode {
  187. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  188. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  189. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  190. };
  191. // TODO: simplify (https://github.com/ggml-org/llama.cpp/pull/9294#pullrequestreview-2286561979)
  192. typedef struct llama_token_data {
  193. llama_token id; // token id
  194. float logit; // log-odds of the token
  195. float p; // probability of the token
  196. } llama_token_data;
  197. typedef struct llama_token_data_array {
  198. // TODO: consider SoA
  199. // NOTE: this pointer can be modified by the samplers
  200. llama_token_data * data;
  201. size_t size;
  202. int64_t selected; // this is the index in the data array (i.e. not the token id)
  203. bool sorted;
  204. } llama_token_data_array;
  205. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  206. // Input data for llama_decode
  207. // A llama_batch object can contain input about one or many sequences
  208. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  209. //
  210. // - token : the token ids of the input (used when embd is NULL)
  211. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  212. // - pos : the positions of the respective token in the sequence
  213. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  214. // - seq_id : the sequence to which the respective token belongs
  215. // (if set to NULL, the sequence ID will be assumed to be 0)
  216. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  217. // (if set to NULL, only the logits for last token will be returned)
  218. //
  219. typedef struct llama_batch {
  220. int32_t n_tokens;
  221. llama_token * token;
  222. float * embd;
  223. int32_t n_embd;
  224. llama_pos * pos;
  225. int32_t * n_seq_id;
  226. llama_seq_id ** seq_id;
  227. int8_t * logits; // TODO: rename this to "output"
  228. } llama_batch;
  229. enum llama_model_kv_override_type {
  230. LLAMA_KV_OVERRIDE_TYPE_INT,
  231. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  232. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  233. LLAMA_KV_OVERRIDE_TYPE_STR,
  234. };
  235. struct llama_model_kv_override {
  236. enum llama_model_kv_override_type tag;
  237. char key[128];
  238. union {
  239. int64_t val_i64;
  240. double val_f64;
  241. bool val_bool;
  242. char val_str[128];
  243. };
  244. };
  245. struct llama_model_params {
  246. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  247. ggml_backend_dev_t * devices;
  248. int32_t n_gpu_layers; // number of layers to store in VRAM
  249. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  250. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  251. int32_t main_gpu;
  252. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  253. const float * tensor_split;
  254. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  255. // If the provided progress_callback returns true, model loading continues.
  256. // If it returns false, model loading is immediately aborted.
  257. llama_progress_callback progress_callback;
  258. // context pointer passed to the progress callback
  259. void * progress_callback_user_data;
  260. // override key-value pairs of the model meta data
  261. const struct llama_model_kv_override * kv_overrides;
  262. // Keep the booleans together to avoid misalignment during copy-by-value.
  263. bool vocab_only; // only load the vocabulary, no weights
  264. bool use_mmap; // use mmap if possible
  265. bool use_mlock; // force system to keep model in RAM
  266. bool check_tensors; // validate model tensor data
  267. };
  268. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  269. // https://github.com/ggml-org/llama.cpp/pull/7544
  270. struct llama_context_params {
  271. uint32_t n_ctx; // text context, 0 = from model
  272. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  273. uint32_t n_ubatch; // physical maximum batch size
  274. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  275. int32_t n_threads; // number of threads to use for generation
  276. int32_t n_threads_batch; // number of threads to use for batch processing
  277. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  278. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  279. enum llama_attention_type attention_type; // attention type to use for embeddings
  280. // ref: https://github.com/ggml-org/llama.cpp/pull/2054
  281. float rope_freq_base; // RoPE base frequency, 0 = from model
  282. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  283. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  284. float yarn_attn_factor; // YaRN magnitude scaling factor
  285. float yarn_beta_fast; // YaRN low correction dim
  286. float yarn_beta_slow; // YaRN high correction dim
  287. uint32_t yarn_orig_ctx; // YaRN original context size
  288. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  289. ggml_backend_sched_eval_callback cb_eval;
  290. void * cb_eval_user_data;
  291. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  292. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  293. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  294. // TODO: move at the end of the struct
  295. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  296. bool embeddings; // if true, extract embeddings (together with logits)
  297. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  298. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  299. bool no_perf; // whether to measure performance timings
  300. bool cross_attn; // whether to use cross attention
  301. // Abort callback
  302. // if it returns true, execution of llama_decode() will be aborted
  303. // currently works only with CPU execution
  304. ggml_abort_callback abort_callback;
  305. void * abort_callback_data;
  306. };
  307. // model quantization parameters
  308. typedef struct llama_model_quantize_params {
  309. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  310. enum llama_ftype ftype; // quantize to this llama_ftype
  311. enum ggml_type output_tensor_type; // output tensor type
  312. enum ggml_type token_embedding_type; // token embeddings tensor type
  313. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  314. bool quantize_output_tensor; // quantize output.weight
  315. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  316. bool pure; // quantize all tensors to the default type
  317. bool keep_split; // quantize to the same number of shards
  318. void * imatrix; // pointer to importance matrix data
  319. void * kv_overrides; // pointer to vector containing overrides
  320. } llama_model_quantize_params;
  321. typedef struct llama_logit_bias {
  322. llama_token token;
  323. float bias;
  324. } llama_logit_bias;
  325. typedef struct llama_sampler_chain_params {
  326. bool no_perf; // whether to measure performance timings
  327. } llama_sampler_chain_params;
  328. // used in chat template
  329. typedef struct llama_chat_message {
  330. const char * role;
  331. const char * content;
  332. } llama_chat_message;
  333. // lora adapter
  334. struct llama_adapter_lora;
  335. // Helpers for getting default parameters
  336. // TODO: update API to start accepting pointers to params structs (https://github.com/ggml-org/llama.cpp/discussions/9172)
  337. LLAMA_API struct llama_model_params llama_model_default_params(void);
  338. LLAMA_API struct llama_context_params llama_context_default_params(void);
  339. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  340. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  341. // Initialize the llama + ggml backend
  342. // If numa is true, use NUMA optimizations
  343. // Call once at the start of the program
  344. LLAMA_API void llama_backend_init(void);
  345. // Call once at the end of the program - currently only used for MPI
  346. LLAMA_API void llama_backend_free(void);
  347. //optional:
  348. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  349. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  350. LLAMA_API void llama_attach_threadpool(
  351. struct llama_context * ctx,
  352. ggml_threadpool_t threadpool,
  353. ggml_threadpool_t threadpool_batch);
  354. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  355. DEPRECATED(LLAMA_API struct llama_model * llama_load_model_from_file(
  356. const char * path_model,
  357. struct llama_model_params params),
  358. "use llama_model_load_from_file instead");
  359. // Load the model from a file
  360. // If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
  361. // If the split file name does not follow this pattern, use llama_model_load_from_splits
  362. LLAMA_API struct llama_model * llama_model_load_from_file(
  363. const char * path_model,
  364. struct llama_model_params params);
  365. // Load the model from multiple splits (support custom naming scheme)
  366. // The paths must be in the correct order
  367. LLAMA_API struct llama_model * llama_model_load_from_splits(
  368. const char ** paths,
  369. size_t n_paths,
  370. struct llama_model_params params);
  371. DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
  372. "use llama_model_free instead");
  373. LLAMA_API void llama_model_free(struct llama_model * model);
  374. LLAMA_API struct llama_context * llama_init_from_model(
  375. struct llama_model * model,
  376. struct llama_context_params params);
  377. DEPRECATED(LLAMA_API struct llama_context * llama_new_context_with_model(
  378. struct llama_model * model,
  379. struct llama_context_params params),
  380. "use llama_init_from_model instead");
  381. // TODO (jmorganca): this should most likely be passed in as part of a batch
  382. // and not set on the context for all batches.
  383. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  384. // Frees all allocated memory
  385. LLAMA_API void llama_free(struct llama_context * ctx);
  386. LLAMA_API int64_t llama_time_us(void);
  387. LLAMA_API size_t llama_max_devices(void);
  388. LLAMA_API bool llama_supports_mmap (void);
  389. LLAMA_API bool llama_supports_mlock (void);
  390. LLAMA_API bool llama_supports_gpu_offload(void);
  391. LLAMA_API bool llama_supports_rpc (void);
  392. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  393. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  394. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  395. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  396. DEPRECATED(LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model), "use llama_model_n_ctx_train instead");
  397. DEPRECATED(LLAMA_API int32_t llama_n_embd (const struct llama_model * model), "use llama_model_n_embd instead");
  398. DEPRECATED(LLAMA_API int32_t llama_n_layer (const struct llama_model * model), "use llama_model_n_layer instead");
  399. DEPRECATED(LLAMA_API int32_t llama_n_head (const struct llama_model * model), "use llama_model_n_head instead");
  400. DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
  401. LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
  402. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  403. LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
  404. LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
  405. LLAMA_API int32_t llama_model_n_ctx_train(const struct llama_model * model);
  406. LLAMA_API int32_t llama_model_n_embd (const struct llama_model * model);
  407. LLAMA_API int32_t llama_model_n_layer (const struct llama_model * model);
  408. LLAMA_API int32_t llama_model_n_head (const struct llama_model * model);
  409. LLAMA_API int32_t llama_model_n_head_kv (const struct llama_model * model);
  410. // Get the model's RoPE frequency scaling factor
  411. LLAMA_API float llama_model_rope_freq_scale_train(const struct llama_model * model);
  412. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab);
  413. LLAMA_API int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab);
  414. // Functions to access the model's GGUF metadata scalar values
  415. // - The functions return the length of the string on success, or -1 on failure
  416. // - The output string is always null-terminated and cleared on failure
  417. // - When retrieving a string, an extra byte must be allocated to account for the null terminator
  418. // - GGUF array values are not supported by these functions
  419. // Get metadata value as a string by key name
  420. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  421. // Get the number of metadata key/value pairs
  422. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  423. // Get metadata key name by index
  424. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  425. // Get metadata value as a string by index
  426. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  427. // Get a string describing the model type
  428. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  429. // Returns the total size of all the tensors in the model in bytes
  430. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  431. // Get the default chat template. Returns nullptr if not available
  432. // If name is NULL, returns the default chat template
  433. LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
  434. // Returns the total number of parameters in the model
  435. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  436. // Returns true if the model contains an encoder that requires llama_encode() call
  437. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  438. // Returns true if the model contains a decoder that requires llama_decode() call
  439. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  440. // For encoder-decoder models, this function returns id of the token that must be provided
  441. // to the decoder to start generating output sequence. For other models, it returns -1.
  442. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  443. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  444. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  445. // Returns 0 on success
  446. LLAMA_API uint32_t llama_model_quantize(
  447. const char * fname_inp,
  448. const char * fname_out,
  449. const llama_model_quantize_params * params);
  450. //
  451. // Adapters
  452. //
  453. // Load a LoRA adapter from file
  454. LLAMA_API struct llama_adapter_lora * llama_adapter_lora_init(
  455. struct llama_model * model,
  456. const char * path_lora);
  457. // Manually free a LoRA adapter
  458. // Note: loaded adapters will be free when the associated model is deleted
  459. LLAMA_API void llama_adapter_lora_free(struct llama_adapter_lora * adapter);
  460. // The following functions operate on a llama_context, hence the naming: llama_verb_...
  461. // Add a loaded LoRA adapter to given context
  462. // This will not modify model's weight
  463. LLAMA_API int32_t llama_set_adapter_lora(
  464. struct llama_context * ctx,
  465. struct llama_adapter_lora * adapter,
  466. float scale);
  467. // Remove a specific LoRA adapter from given context
  468. // Return -1 if the adapter is not present in the context
  469. LLAMA_API int32_t llama_rm_adapter_lora(
  470. struct llama_context * ctx,
  471. struct llama_adapter_lora * adapter);
  472. // Remove all LoRA adapters from given context
  473. LLAMA_API void llama_clear_adapter_lora(struct llama_context * ctx);
  474. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  475. // the currently loaded vector.
  476. // n_embd should be the size of a single layer's control, and data should point
  477. // to an n_embd x n_layers buffer starting from layer 1.
  478. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  479. // See llama_control_vector_load in common to load a control vector.
  480. LLAMA_API int32_t llama_apply_adapter_cvec(
  481. struct llama_context * ctx,
  482. const float * data,
  483. size_t len,
  484. int32_t n_embd,
  485. int32_t il_start,
  486. int32_t il_end);
  487. //
  488. // KV cache
  489. //
  490. // TODO: remove llama_kv_cache_view_* API
  491. // Information associated with an individual cell in the KV cache view.
  492. struct llama_kv_cache_view_cell {
  493. // The position for this cell. Takes KV cache shifts into account.
  494. // May be negative if the cell is not populated.
  495. llama_pos pos;
  496. };
  497. // An updateable view of the KV cache.
  498. struct llama_kv_cache_view {
  499. // Number of KV cache cells. This will be the same as the context size.
  500. int32_t n_cells;
  501. // Maximum number of sequences that can exist in a cell. It's not an error
  502. // if there are more sequences in a cell than this value, however they will
  503. // not be visible in the view cells_sequences.
  504. int32_t n_seq_max;
  505. // Number of tokens in the cache. For example, if there are two populated
  506. // cells, the first with 1 sequence id in it and the second with 2 sequence
  507. // ids then you'll have 3 tokens.
  508. int32_t token_count;
  509. // Number of populated cache cells.
  510. int32_t used_cells;
  511. // Maximum contiguous empty slots in the cache.
  512. int32_t max_contiguous;
  513. // Index to the start of the max_contiguous slot range. Can be negative
  514. // when cache is full.
  515. int32_t max_contiguous_idx;
  516. // Information for an individual cell.
  517. struct llama_kv_cache_view_cell * cells;
  518. // The sequences for each cell. There will be n_seq_max items per cell.
  519. llama_seq_id * cells_sequences;
  520. };
  521. // Create an empty KV cache view. (use only for debugging purposes)
  522. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  523. // Free a KV cache view. (use only for debugging purposes)
  524. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  525. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  526. // TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
  527. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  528. ///
  529. // Returns the number of tokens in the KV cache (slow, use only for debug)
  530. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  531. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  532. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  533. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  534. // Clear the KV cache - both cell info is erased and KV data is zeroed
  535. LLAMA_API void llama_kv_cache_clear(
  536. struct llama_context * ctx);
  537. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  538. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  539. // seq_id < 0 : match any sequence
  540. // p0 < 0 : [0, p1]
  541. // p1 < 0 : [p0, inf)
  542. LLAMA_API bool llama_kv_cache_seq_rm(
  543. struct llama_context * ctx,
  544. llama_seq_id seq_id,
  545. llama_pos p0,
  546. llama_pos p1);
  547. // Copy all tokens that belong to the specified sequence to another sequence
  548. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  549. // p0 < 0 : [0, p1]
  550. // p1 < 0 : [p0, inf)
  551. LLAMA_API void llama_kv_cache_seq_cp(
  552. struct llama_context * ctx,
  553. llama_seq_id seq_id_src,
  554. llama_seq_id seq_id_dst,
  555. llama_pos p0,
  556. llama_pos p1);
  557. // Removes all tokens that do not belong to the specified sequence
  558. LLAMA_API void llama_kv_cache_seq_keep(
  559. struct llama_context * ctx,
  560. llama_seq_id seq_id);
  561. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  562. // If the KV cache is RoPEd, the KV data is updated accordingly:
  563. // - lazily on next llama_decode()
  564. // - explicitly with llama_kv_cache_update()
  565. // p0 < 0 : [0, p1]
  566. // p1 < 0 : [p0, inf)
  567. LLAMA_API void llama_kv_cache_seq_add(
  568. struct llama_context * ctx,
  569. llama_seq_id seq_id,
  570. llama_pos p0,
  571. llama_pos p1,
  572. llama_pos delta);
  573. // Integer division of the positions by factor of `d > 1`
  574. // If the KV cache is RoPEd, the KV data is updated accordingly:
  575. // - lazily on next llama_decode()
  576. // - explicitly with llama_kv_cache_update()
  577. // p0 < 0 : [0, p1]
  578. // p1 < 0 : [p0, inf)
  579. LLAMA_API void llama_kv_cache_seq_div(
  580. struct llama_context * ctx,
  581. llama_seq_id seq_id,
  582. llama_pos p0,
  583. llama_pos p1,
  584. int d);
  585. // Returns the largest position present in the KV cache for the specified sequence
  586. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  587. struct llama_context * ctx,
  588. llama_seq_id seq_id);
  589. // TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
  590. // how to avoid this?
  591. // Defragment the KV cache
  592. // This will be applied:
  593. // - lazily on next llama_decode()
  594. // - explicitly with llama_kv_cache_update()
  595. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  596. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  597. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  598. // Check if the context supports KV cache shifting
  599. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  600. //
  601. // State / sessions
  602. //
  603. // Returns the *actual* size in bytes of the state
  604. // (logits, embedding and kv_cache)
  605. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  606. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  607. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  608. "use llama_state_get_size instead");
  609. // Copies the state to the specified destination address.
  610. // Destination needs to have allocated enough memory.
  611. // Returns the number of bytes copied
  612. LLAMA_API size_t llama_state_get_data(
  613. struct llama_context * ctx,
  614. uint8_t * dst,
  615. size_t size);
  616. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  617. struct llama_context * ctx,
  618. uint8_t * dst),
  619. "use llama_state_get_data instead");
  620. // Set the state reading from the specified address
  621. // Returns the number of bytes read
  622. LLAMA_API size_t llama_state_set_data(
  623. struct llama_context * ctx,
  624. const uint8_t * src,
  625. size_t size);
  626. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  627. struct llama_context * ctx,
  628. const uint8_t * src),
  629. "use llama_state_set_data instead");
  630. // Save/load session file
  631. LLAMA_API bool llama_state_load_file(
  632. struct llama_context * ctx,
  633. const char * path_session,
  634. llama_token * tokens_out,
  635. size_t n_token_capacity,
  636. size_t * n_token_count_out);
  637. LLAMA_API DEPRECATED(bool llama_load_session_file(
  638. struct llama_context * ctx,
  639. const char * path_session,
  640. llama_token * tokens_out,
  641. size_t n_token_capacity,
  642. size_t * n_token_count_out),
  643. "use llama_state_load_file instead");
  644. LLAMA_API bool llama_state_save_file(
  645. struct llama_context * ctx,
  646. const char * path_session,
  647. const llama_token * tokens,
  648. size_t n_token_count);
  649. LLAMA_API DEPRECATED(bool llama_save_session_file(
  650. struct llama_context * ctx,
  651. const char * path_session,
  652. const llama_token * tokens,
  653. size_t n_token_count),
  654. "use llama_state_save_file instead");
  655. // Get the exact size needed to copy the KV cache of a single sequence
  656. LLAMA_API size_t llama_state_seq_get_size(
  657. struct llama_context * ctx,
  658. llama_seq_id seq_id);
  659. // Copy the KV cache of a single sequence into the specified buffer
  660. LLAMA_API size_t llama_state_seq_get_data(
  661. struct llama_context * ctx,
  662. uint8_t * dst,
  663. size_t size,
  664. llama_seq_id seq_id);
  665. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  666. // Returns:
  667. // - Positive: Ok
  668. // - Zero: Failed to load
  669. LLAMA_API size_t llama_state_seq_set_data(
  670. struct llama_context * ctx,
  671. const uint8_t * src,
  672. size_t size,
  673. llama_seq_id dest_seq_id);
  674. LLAMA_API size_t llama_state_seq_save_file(
  675. struct llama_context * ctx,
  676. const char * filepath,
  677. llama_seq_id seq_id,
  678. const llama_token * tokens,
  679. size_t n_token_count);
  680. LLAMA_API size_t llama_state_seq_load_file(
  681. struct llama_context * ctx,
  682. const char * filepath,
  683. llama_seq_id dest_seq_id,
  684. llama_token * tokens_out,
  685. size_t n_token_capacity,
  686. size_t * n_token_count_out);
  687. //
  688. // Decoding
  689. //
  690. // Return batch for single sequence of tokens
  691. // The sequence ID will be fixed to 0
  692. // The position of the tokens will be tracked automatically by llama_decode
  693. //
  694. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  695. //
  696. LLAMA_API struct llama_batch llama_batch_get_one(
  697. llama_token * tokens,
  698. int32_t n_tokens);
  699. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  700. // Each token can be assigned up to n_seq_max sequence ids
  701. // The batch has to be freed with llama_batch_free()
  702. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  703. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  704. // The rest of the llama_batch members are allocated with size n_tokens
  705. // All members are left uninitialized
  706. LLAMA_API struct llama_batch llama_batch_init(
  707. int32_t n_tokens,
  708. int32_t embd,
  709. int32_t n_seq_max);
  710. // Frees a batch of tokens allocated with llama_batch_init()
  711. LLAMA_API void llama_batch_free(struct llama_batch batch);
  712. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  713. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  714. // 0 - success
  715. // < 0 - error. the KV cache state is restored to the state before this call
  716. LLAMA_API int32_t llama_encode(
  717. struct llama_context * ctx,
  718. struct llama_batch batch);
  719. // Positive return values does not mean a fatal error, but rather a warning.
  720. // 0 - success
  721. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  722. // < 0 - error. the KV cache state is restored to the state before this call
  723. LLAMA_API int32_t llama_decode(
  724. struct llama_context * ctx,
  725. struct llama_batch batch);
  726. // Set the number of threads used for decoding
  727. // n_threads is the number of threads used for generation (single token)
  728. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  729. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  730. // Get the number of threads used for generation of a single token.
  731. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  732. // Get the number of threads used for prompt and batch processing (multiple token).
  733. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  734. // Set whether the model is in embeddings mode or not
  735. // If true, embeddings will be returned but logits will not
  736. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  737. // Set whether to use causal attention or not
  738. // If set to true, the model will only attend to the past tokens
  739. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  740. // Set abort callback
  741. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  742. // Wait until all computations are finished
  743. // This is automatically done when using one of the functions below to obtain the computation results
  744. // and is not necessary to call it explicitly in most cases
  745. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  746. // Token logits obtained from the last call to llama_decode()
  747. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  748. // in the order they have appeared in the batch.
  749. // Rows: number of tokens for which llama_batch.logits[i] != 0
  750. // Cols: n_vocab
  751. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  752. // Logits for the ith token. For positive indices, Equivalent to:
  753. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  754. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  755. // returns NULL for invalid ids.
  756. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  757. // Get all output token embeddings.
  758. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  759. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  760. // in the order they have appeared in the batch.
  761. // shape: [n_outputs*n_embd]
  762. // Otherwise, returns NULL.
  763. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  764. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  765. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  766. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  767. // shape: [n_embd] (1-dimensional)
  768. // returns NULL for invalid ids.
  769. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  770. // Get the embeddings for a sequence id
  771. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  772. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  773. // otherwise: float[n_embd] (1-dimensional)
  774. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  775. //
  776. // Vocab
  777. //
  778. LLAMA_API const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token);
  779. LLAMA_API float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token);
  780. LLAMA_API enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token);
  781. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  782. LLAMA_API bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token);
  783. // Identify if Token Id is a control token or a render-able token
  784. LLAMA_API bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token);
  785. // Special tokens
  786. LLAMA_API llama_token llama_vocab_bos(const struct llama_vocab * vocab); // beginning-of-sentence
  787. LLAMA_API llama_token llama_vocab_eos(const struct llama_vocab * vocab); // end-of-sentence
  788. LLAMA_API llama_token llama_vocab_eot(const struct llama_vocab * vocab); // end-of-turn
  789. LLAMA_API llama_token llama_vocab_sep(const struct llama_vocab * vocab); // sentence separator
  790. LLAMA_API llama_token llama_vocab_nl (const struct llama_vocab * vocab); // next-line
  791. LLAMA_API llama_token llama_vocab_pad(const struct llama_vocab * vocab); // padding
  792. LLAMA_API bool llama_vocab_get_add_bos(const struct llama_vocab * vocab);
  793. LLAMA_API bool llama_vocab_get_add_eos(const struct llama_vocab * vocab);
  794. LLAMA_API llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab);
  795. LLAMA_API llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab);
  796. LLAMA_API llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab);
  797. LLAMA_API llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab);
  798. LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
  799. LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
  800. DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
  801. DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
  802. DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
  803. DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");
  804. DEPRECATED(LLAMA_API bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_control instead");
  805. DEPRECATED(LLAMA_API llama_token llama_token_bos(const struct llama_vocab * vocab), "use llama_vocab_bos instead");
  806. DEPRECATED(LLAMA_API llama_token llama_token_eos(const struct llama_vocab * vocab), "use llama_vocab_eos instead");
  807. DEPRECATED(LLAMA_API llama_token llama_token_eot(const struct llama_vocab * vocab), "use llama_vocab_eot instead");
  808. DEPRECATED(LLAMA_API llama_token llama_token_cls(const struct llama_vocab * vocab), "use llama_vocab_cls instead");
  809. DEPRECATED(LLAMA_API llama_token llama_token_sep(const struct llama_vocab * vocab), "use llama_vocab_sep instead");
  810. DEPRECATED(LLAMA_API llama_token llama_token_nl (const struct llama_vocab * vocab), "use llama_vocab_nl instead");
  811. DEPRECATED(LLAMA_API llama_token llama_token_pad(const struct llama_vocab * vocab), "use llama_vocab_pad instead");
  812. DEPRECATED(LLAMA_API bool llama_add_bos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_bos instead");
  813. DEPRECATED(LLAMA_API bool llama_add_eos_token(const struct llama_vocab * vocab), "use llama_vocab_get_add_eos instead");
  814. DEPRECATED(LLAMA_API llama_token llama_token_fim_pre(const struct llama_vocab * vocab), "use llama_vocab_fim_pre instead");
  815. DEPRECATED(LLAMA_API llama_token llama_token_fim_suf(const struct llama_vocab * vocab), "use llama_vocab_fim_suf instead");
  816. DEPRECATED(LLAMA_API llama_token llama_token_fim_mid(const struct llama_vocab * vocab), "use llama_vocab_fim_mid instead");
  817. DEPRECATED(LLAMA_API llama_token llama_token_fim_pad(const struct llama_vocab * vocab), "use llama_vocab_fim_pad instead");
  818. DEPRECATED(LLAMA_API llama_token llama_token_fim_rep(const struct llama_vocab * vocab), "use llama_vocab_fim_rep instead");
  819. DEPRECATED(LLAMA_API llama_token llama_token_fim_sep(const struct llama_vocab * vocab), "use llama_vocab_fim_sep instead");
  820. // CLS is equivalent to BOS
  821. DEPRECATED(LLAMA_API llama_token llama_vocab_cls(const struct llama_vocab * vocab), // classification
  822. "use llama_vocab_bos instead");
  823. //
  824. // Tokenization
  825. //
  826. // The API is thread-safe.
  827. //
  828. /// @details Convert the provided text into tokens.
  829. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  830. /// @return Returns the number of tokens on success, no more than n_tokens_max
  831. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  832. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  833. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  834. /// as plaintext. Does not insert a leading space.
  835. LLAMA_API int32_t llama_tokenize(
  836. const struct llama_vocab * vocab,
  837. const char * text,
  838. int32_t text_len,
  839. llama_token * tokens,
  840. int32_t n_tokens_max,
  841. bool add_special,
  842. bool parse_special);
  843. // Token Id -> Piece.
  844. // Uses the vocabulary in the provided context.
  845. // Does not write null terminator to the buffer.
  846. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  847. // @param special If true, special tokens are rendered in the output.
  848. LLAMA_API int32_t llama_token_to_piece(
  849. const struct llama_vocab * vocab,
  850. llama_token token,
  851. char * buf,
  852. int32_t length,
  853. int32_t lstrip,
  854. bool special);
  855. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  856. /// @param text The char pointer must be large enough to hold the resulting text.
  857. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  858. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  859. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  860. /// @param unparse_special If true, special tokens are rendered in the output.
  861. LLAMA_API int32_t llama_detokenize(
  862. const struct llama_vocab * vocab,
  863. const llama_token * tokens,
  864. int32_t n_tokens,
  865. char * text,
  866. int32_t text_len_max,
  867. bool remove_special,
  868. bool unparse_special);
  869. //
  870. // Chat templates
  871. //
  872. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  873. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  874. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  875. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  876. /// @param chat Pointer to a list of multiple llama_chat_message
  877. /// @param n_msg Number of llama_chat_message in this chat
  878. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  879. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  880. /// @param length The size of the allocated buffer
  881. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  882. LLAMA_API int32_t llama_chat_apply_template(
  883. const char * tmpl,
  884. const struct llama_chat_message * chat,
  885. size_t n_msg,
  886. bool add_ass,
  887. char * buf,
  888. int32_t length);
  889. // Get list of built-in chat templates
  890. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  891. //
  892. // Sampling API
  893. //
  894. // Sample usage:
  895. //
  896. // // prepare the sampling chain at the start
  897. // auto sparams = llama_sampler_chain_default_params();
  898. //
  899. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  900. //
  901. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  902. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  903. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  904. //
  905. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  906. // // this sampler will be responsible to select the actual token
  907. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  908. //
  909. // ...
  910. //
  911. // // decoding loop:
  912. // while (...) {
  913. // ...
  914. //
  915. // llama_decode(ctx, batch);
  916. //
  917. // // sample from the logits of the last token in the batch
  918. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  919. //
  920. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  921. // llama_sampler_accept(smpl, id);
  922. // ...
  923. // }
  924. //
  925. // llama_sampler_free(smpl);
  926. //
  927. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  928. //
  929. typedef void * llama_sampler_context_t;
  930. // user code can implement the interface below in order to create custom llama_sampler
  931. struct llama_sampler_i {
  932. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  933. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  934. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  935. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  936. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  937. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  938. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  939. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  940. };
  941. struct llama_sampler {
  942. const struct llama_sampler_i * iface;
  943. llama_sampler_context_t ctx;
  944. };
  945. // mirror of llama_sampler_i:
  946. LLAMA_API struct llama_sampler * llama_sampler_init (const struct llama_sampler_i * iface, llama_sampler_context_t ctx);
  947. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  948. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  949. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  950. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  951. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  952. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  953. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  954. // llama_sampler_chain
  955. // a type of llama_sampler that can chain multiple samplers one after another
  956. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  957. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  958. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  959. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  960. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  961. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  962. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  963. // available samplers:
  964. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  965. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  966. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  967. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  968. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  969. "will be removed in the future (see https://github.com/ggml-org/llama.cpp/pull/9896#discussion_r1800920915)");
  970. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  971. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  972. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  973. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  974. /// @details Minimum P sampling as described in https://github.com/ggml-org/llama.cpp/pull/3841
  975. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  976. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  977. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  978. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  979. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  980. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  981. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  982. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  983. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  984. /// @details Top n sigma sampling as described in academic paper "Top-nσ: Not All Logits Are You Need" https://arxiv.org/pdf/2411.07641
  985. LLAMA_API struct llama_sampler * llama_sampler_init_top_n_sigma(float n);
  986. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  987. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  988. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  989. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  990. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  991. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  992. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  993. int32_t n_vocab,
  994. uint32_t seed,
  995. float tau,
  996. float eta,
  997. int32_t m);
  998. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  999. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  1000. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  1001. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  1002. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  1003. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  1004. uint32_t seed,
  1005. float tau,
  1006. float eta);
  1007. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  1008. const struct llama_vocab * vocab,
  1009. const char * grammar_str,
  1010. const char * grammar_root);
  1011. /// @details Lazy grammar sampler, introduced in https://github.com/ggml-org/llama.cpp/pull/9639
  1012. /// @param trigger_words A list of words that will trigger the grammar sampler. This may be updated to a loose regex syntax (w/ ^) in a near future.
  1013. /// @param trigger_tokens A list of tokens that will trigger the grammar sampler.
  1014. LLAMA_API struct llama_sampler * llama_sampler_init_grammar_lazy(
  1015. const struct llama_vocab * vocab,
  1016. const char * grammar_str,
  1017. const char * grammar_root,
  1018. const char ** trigger_words,
  1019. size_t num_trigger_words,
  1020. const llama_token * trigger_tokens,
  1021. size_t num_trigger_tokens);
  1022. /// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
  1023. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  1024. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  1025. float penalty_repeat, // 1.0 = disabled
  1026. float penalty_freq, // 0.0 = disabled
  1027. float penalty_present); // 0.0 = disabled
  1028. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  1029. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  1030. const struct llama_vocab * vocab,
  1031. int32_t n_ctx_train,
  1032. float dry_multiplier,
  1033. float dry_base,
  1034. int32_t dry_allowed_length,
  1035. int32_t dry_penalty_last_n,
  1036. const char ** seq_breakers,
  1037. size_t num_breakers);
  1038. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  1039. int32_t n_vocab,
  1040. int32_t n_logit_bias,
  1041. const llama_logit_bias * logit_bias);
  1042. // this sampler is meant to be used for fill-in-the-middle infilling
  1043. // it's supposed to be used after top_k + top_p sampling
  1044. //
  1045. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  1046. // 2. combine probs of tokens that have the same prefix
  1047. //
  1048. // example:
  1049. //
  1050. // - before:
  1051. // "hel": 0.5
  1052. // "hell": 0.2
  1053. // "hello": 0.1
  1054. // "dummy": 0.1
  1055. //
  1056. // - after:
  1057. // "hel": 0.8
  1058. // "dummy": 0.1
  1059. //
  1060. // 3. discard non-EOG tokens with low prob
  1061. // 4. if no tokens are left -> pick EOT
  1062. //
  1063. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab);
  1064. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  1065. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  1066. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1067. //
  1068. // Shorthand for:
  1069. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1070. // llama_token_data_array cur_p = { ... init from logits ... };
  1071. // llama_sampler_apply(smpl, &cur_p);
  1072. // auto token = cur_p.data[cur_p.selected].id;
  1073. // llama_sampler_accept(smpl, token);
  1074. // return token;
  1075. // Returns the sampled token
  1076. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1077. // TODO: extend in the future
  1078. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1079. //
  1080. // Model split
  1081. //
  1082. /// @details Build a split GGUF final path for this chunk.
  1083. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1084. // Returns the split_path length.
  1085. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1086. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1087. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1088. // Returns the split_prefix length.
  1089. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1090. // Print system information
  1091. LLAMA_API const char * llama_print_system_info(void);
  1092. // Set callback for all future logging events.
  1093. // If this is not called, or NULL is supplied, everything is output on stderr.
  1094. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1095. //
  1096. // Performance utils
  1097. //
  1098. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1099. //
  1100. struct llama_perf_context_data {
  1101. double t_start_ms;
  1102. double t_load_ms;
  1103. double t_p_eval_ms;
  1104. double t_eval_ms;
  1105. int32_t n_p_eval;
  1106. int32_t n_eval;
  1107. };
  1108. struct llama_perf_sampler_data {
  1109. double t_sample_ms;
  1110. int32_t n_sample;
  1111. };
  1112. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1113. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1114. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1115. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1116. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1117. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1118. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1119. #ifdef __cplusplus
  1120. }
  1121. #endif
  1122. #endif // LLAMA_H