ggml.go 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. "github.com/ollama/ollama/util/bufioutil"
  9. )
  10. type GGML struct {
  11. container
  12. model
  13. }
  14. type model interface {
  15. KV() KV
  16. Tensors() Tensors
  17. }
  18. type KV map[string]any
  19. func (kv KV) u64(key string) uint64 {
  20. switch v := kv[key].(type) {
  21. case uint64:
  22. return v
  23. case uint32:
  24. return uint64(v)
  25. case float64:
  26. return uint64(v)
  27. default:
  28. return 0
  29. }
  30. }
  31. func (kv KV) Architecture() string {
  32. if s, ok := kv["general.architecture"].(string); ok {
  33. return s
  34. }
  35. return "unknown"
  36. }
  37. func (kv KV) ParameterCount() uint64 {
  38. return kv.u64("general.parameter_count")
  39. }
  40. func (kv KV) FileType() fileType {
  41. if u64 := kv.u64("general.file_type"); u64 > 0 {
  42. return fileType(uint32(u64))
  43. }
  44. return fileTypeUnknown
  45. }
  46. func (kv KV) BlockCount() uint64 {
  47. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  48. }
  49. func (kv KV) HeadCount() uint64 {
  50. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  51. }
  52. func (kv KV) HeadCountKV() uint64 {
  53. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  54. return headCountKV
  55. }
  56. return 1
  57. }
  58. func (kv KV) EmbeddingHeadCount() uint64 {
  59. if heads := kv.HeadCount(); heads > 0 {
  60. return kv.EmbeddingLength() / kv.HeadCount()
  61. }
  62. return 0
  63. }
  64. func (kv KV) EmbeddingHeadCountK() uint64 {
  65. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  66. return k
  67. }
  68. return kv.EmbeddingHeadCount()
  69. }
  70. func (kv KV) EmbeddingHeadCountV() uint64 {
  71. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  72. return v
  73. }
  74. return kv.EmbeddingHeadCount()
  75. }
  76. func (kv KV) GQA() uint64 {
  77. return kv.HeadCount() / kv.HeadCountKV()
  78. }
  79. func (kv KV) EmbeddingLength() uint64 {
  80. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  81. }
  82. func (kv KV) ContextLength() uint64 {
  83. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  84. }
  85. func (kv KV) ChatTemplate() string {
  86. s, _ := kv["tokenizer.chat_template"].(string)
  87. return s
  88. }
  89. type Tensors struct {
  90. Items []*Tensor
  91. Offset uint64
  92. }
  93. func (ts Tensors) Layers() map[string]Layer {
  94. layers := make(map[string]Layer)
  95. for _, t := range ts.Items {
  96. parts := strings.Split(t.Name, ".")
  97. if parts[0] == "blk" {
  98. // join first and second part, e.g. blk.%d
  99. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  100. }
  101. if _, ok := layers[parts[0]]; !ok {
  102. layers[parts[0]] = make(Layer)
  103. }
  104. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  105. }
  106. return layers
  107. }
  108. type Layer map[string]*Tensor
  109. func (l Layer) size() (size uint64) {
  110. for _, t := range l {
  111. size += t.Size()
  112. }
  113. return size
  114. }
  115. type Tensor struct {
  116. Name string `json:"name"`
  117. Kind uint32 `json:"kind"`
  118. Offset uint64 `json:"-"`
  119. // Shape is the number of elements in each dimension
  120. Shape []uint64 `json:"shape"`
  121. io.WriterTo `json:"-"`
  122. }
  123. func (t Tensor) block() (n int) {
  124. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  125. return -1
  126. }
  127. return
  128. }
  129. func (t Tensor) blockSize() uint64 {
  130. switch t.Kind {
  131. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  132. return 1
  133. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  134. return 32
  135. default: // All others
  136. return 256
  137. }
  138. }
  139. func (t Tensor) typeSize() uint64 {
  140. blockSize := t.blockSize()
  141. switch t.Kind {
  142. case 0: // FP32
  143. return 4
  144. case 1: // FP16
  145. return 2
  146. case 2: // Q4_0
  147. return 2 + blockSize/2
  148. case 3: // Q4_1
  149. return 2 + 2 + blockSize/2
  150. case 6: // Q5_0
  151. return 2 + 4 + blockSize/2
  152. case 7: // Q5_1
  153. return 2 + 2 + 4 + blockSize/2
  154. case 8: // Q8_0
  155. return 2 + blockSize
  156. case 9: // Q8_1
  157. return 4 + 4 + blockSize
  158. case 10: // Q2_K
  159. return blockSize/16 + blockSize/4 + 2 + 2
  160. case 11: // Q3_K
  161. return blockSize/8 + blockSize/4 + 12 + 2
  162. case 12: // Q4_K
  163. return 2 + 2 + 12 + blockSize/2
  164. case 13: // Q5_K
  165. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  166. case 14: // Q6_K
  167. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  168. case 15: // Q8_K
  169. return 2 + blockSize + 2*blockSize/16
  170. case 16: // IQ2_XXS
  171. return 2 + 2*blockSize/8
  172. case 17: // IQ2_XS
  173. return 2 + 2*blockSize/8 + blockSize/32
  174. case 18: // IQ3_XXS
  175. return 2 + blockSize/4 + blockSize/8
  176. case 19: // IQ1_S
  177. return 2 + blockSize/8 + blockSize/16
  178. case 20: // IQ4_NL
  179. return 2 + blockSize/2
  180. case 21: // IQ3_S
  181. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  182. case 22: // IQ2_S
  183. return 2 + blockSize/4 + blockSize/16
  184. case 23: // IQ4_XS
  185. return 2 + 2 + blockSize/2 + blockSize/64
  186. case 24: // I8
  187. return 1
  188. case 25: // I16
  189. return 2
  190. case 26: // I32
  191. return 4
  192. case 27: // I64
  193. return 8
  194. case 28: // F64
  195. return 8
  196. case 29: // IQ1_M
  197. return blockSize/8 + blockSize/16 + blockSize/32
  198. default:
  199. return 0
  200. }
  201. }
  202. func (t Tensor) parameters() uint64 {
  203. var count uint64 = 1
  204. for _, n := range t.Shape {
  205. count *= n
  206. }
  207. return count
  208. }
  209. func (t Tensor) Size() uint64 {
  210. return t.parameters() * t.typeSize() / t.blockSize()
  211. }
  212. type container interface {
  213. Name() string
  214. Decode(io.ReadSeeker) (model, error)
  215. }
  216. const (
  217. // Magic constant for `ggml` files (unversioned).
  218. FILE_MAGIC_GGML = 0x67676d6c
  219. // Magic constant for `ggml` files (versioned, ggmf).
  220. FILE_MAGIC_GGMF = 0x67676d66
  221. // Magic constant for `ggml` files (versioned, ggjt).
  222. FILE_MAGIC_GGJT = 0x67676a74
  223. // Magic constant for `ggla` files (LoRA adapter).
  224. FILE_MAGIC_GGLA = 0x67676C61
  225. // Magic constant for `gguf` files (versioned, gguf)
  226. FILE_MAGIC_GGUF_LE = 0x46554747
  227. FILE_MAGIC_GGUF_BE = 0x47475546
  228. )
  229. var ErrUnsupportedFormat = errors.New("unsupported model format")
  230. func DetectGGMLType(b []byte) string {
  231. switch binary.LittleEndian.Uint32(b[:4]) {
  232. case FILE_MAGIC_GGML:
  233. return "ggml"
  234. case FILE_MAGIC_GGMF:
  235. return "ggmf"
  236. case FILE_MAGIC_GGJT:
  237. return "ggjt"
  238. case FILE_MAGIC_GGLA:
  239. return "ggla"
  240. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  241. return "gguf"
  242. default:
  243. return ""
  244. }
  245. }
  246. // DecodeGGML decodes a GGML model from the given reader.
  247. //
  248. // It collects array values for arrays with a size less than or equal to
  249. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  250. // the maxArraySize is negative, all arrays are collected.
  251. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  252. if maxArraySize == 0 {
  253. maxArraySize = 1024
  254. }
  255. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  256. var magic uint32
  257. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  258. return nil, 0, err
  259. }
  260. var c container
  261. switch magic {
  262. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  263. return nil, 0, ErrUnsupportedFormat
  264. case FILE_MAGIC_GGLA:
  265. c = &containerGGLA{}
  266. case FILE_MAGIC_GGUF_LE:
  267. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  268. case FILE_MAGIC_GGUF_BE:
  269. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  270. default:
  271. return nil, 0, errors.New("invalid file magic")
  272. }
  273. model, err := c.Decode(rs)
  274. if err != nil {
  275. return nil, 0, err
  276. }
  277. offset, err := rs.Seek(0, io.SeekCurrent)
  278. if err != nil {
  279. return nil, 0, err
  280. }
  281. // final model type
  282. return &GGML{
  283. container: c,
  284. model: model,
  285. }, offset, nil
  286. }
  287. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  288. embedding := llm.KV().EmbeddingLength()
  289. heads := llm.KV().HeadCount()
  290. headsKV := llm.KV().HeadCountKV()
  291. vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
  292. embeddingHeads := llm.KV().EmbeddingHeadCount()
  293. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  294. layers := llm.Tensors().Layers()
  295. switch llm.KV().Architecture() {
  296. case "llama":
  297. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  298. partialOffload = 4 * batch * embedding
  299. partialOffload += max(
  300. // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
  301. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  302. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  303. )
  304. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  305. // mixtral 8x22b
  306. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  307. partialOffload = max(
  308. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  309. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  310. )
  311. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  312. // mixtral 8x7b
  313. ffnGateWeight1 := ffnGateWeight.Shape[1]
  314. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  315. partialOffload = max(
  316. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  317. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  318. )
  319. }
  320. case "gemma", "gemma2":
  321. fullOffload = max(
  322. 4*batch*(embedding+vocab),
  323. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  324. )
  325. partialOffload = max(
  326. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  327. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  328. 4*embeddingHeadsK*context*8+
  329. embedding*embeddingHeadsK*heads*9/16,
  330. )
  331. case "command-r":
  332. fullOffload = max(
  333. 4*batch*(embedding+vocab),
  334. 4*batch*(2+4*embedding+context*(1+heads)),
  335. )
  336. partialOffload = max(
  337. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  338. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  339. )
  340. case "qwen2":
  341. fullOffload = max(
  342. 4*batch*(embedding+vocab),
  343. 4*batch*(1+2*embedding+context+context*heads),
  344. )
  345. partialOffload = max(
  346. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  347. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  348. )
  349. case "phi2":
  350. fullOffload = max(
  351. 4*batch*(embedding+vocab),
  352. 4*batch*(1+4*embedding+context+context*heads),
  353. )
  354. partialOffload = max(
  355. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  356. 4*batch*(2+3*embedding+context+context*heads),
  357. )
  358. case "stablelm":
  359. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  360. partialOffload = max(
  361. 4*batch*(vocab+2*embedding),
  362. fullOffload,
  363. )
  364. case "deepseek2":
  365. fullOffload = max(
  366. 4*batch*(3*embedding+vocab),
  367. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  368. )
  369. partialOffload = max(
  370. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  371. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  372. )
  373. case "chatglm":
  374. fullOffload = 4 * batch * (embedding + vocab)
  375. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  376. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  377. fullOffload = max(
  378. fullOffload,
  379. 4*batch*(2+
  380. 2*embedding+
  381. context+
  382. context*heads+
  383. embeddingHeadsK*heads+
  384. qkvBias.Shape[0]),
  385. )
  386. partialOffload = max(
  387. partialOffload,
  388. 4*batch*(1+
  389. 2*embedding+
  390. embeddingHeadsK*heads+
  391. context+
  392. context*heads)+
  393. 4*embeddingHeadsK*context+
  394. 4*context*embeddingHeadsK+
  395. 4*qkvBias.Shape[0],
  396. )
  397. }
  398. }
  399. return
  400. }