Brak opisu

Blake Mizerany cfd4152eb6 ... 1 rok temu
.github 2b4ca6cf36 fix ci 1 rok temu
api ad90b9ab3d api: start adding documentation to package api (#2878) 1 rok temu
app 7027f264fb app: gracefully shut down `ollama serve` on windows (#3641) 1 rok temu
auth e43648afe5 rerefactor 1 rok temu
cmd 949d7832cf Revert "cmd: provide feedback if OLLAMA_MODELS is set on non-serve command (#3470)" (#3662) 1 rok temu
convert 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 rok temu
docs a27e419b47 Update langchainjs.md (#2030) 1 rok temu
examples ba460802c2 examples: add more Go examples using the API (#3599) 1 rok temu
format 7e33a017c0 partial offloading 1 rok temu
gpu 41a272de9f darwin: no partial offloading if required memory greater than system 1 rok temu
integration aeb1fb5192 Add test case for context exhaustion 1 rok temu
llm 41a272de9f darwin: no partial offloading if required memory greater than system 1 rok temu
macapp fc6558f47f Correct directory reference in macapp/README (#3555) 1 rok temu
openai 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 rok temu
parser 7c40a67841 Save and load sessions (#2063) 1 rok temu
progress 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 rok temu
readline 5a5efee46b Add gemma safetensors conversion (#3250) 1 rok temu
scripts 539043f5e0 CI automation for tagging latest images 1 rok temu
server 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 rok temu
types cfd4152eb6 ... 1 rok temu
version 2c7f956b38 add version 1 rok temu
.dockerignore 5017a15bcb add `macapp` to `.dockerignore` 1 rok temu
.gitattributes 38daf0a252 rename `.gitattributes` 1 rok temu
.gitignore 58d95cc9bd Switch back to subprocessing for llama.cpp 1 rok temu
.gitmodules fac9060da5 Init submodule with new path 1 rok temu
.golangci.yaml 5a5efee46b Add gemma safetensors conversion (#3250) 1 rok temu
.prettierrc.json 8685a5ad18 move .prettierrc.json to root 1 rok temu
Dockerfile c2d813bdc3 Fix rocm deps with new subprocess paths 1 rok temu
LICENSE df5fdd6647 `proto` -> `ollama` 1 rok temu
README.md 99d227c9db Added Solar example at README.md (#3610) 1 rok temu
go.mod 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 rok temu
go.sum 9f8691c6c8 Add llama2 / torch models for `ollama create` (#3607) 1 rok temu
main.go 1b272d5bcd change `github.com/jmorganca/ollama` to `github.com/ollama/ollama` (#3347) 1 rok temu

README.md

ollama

Ollama

Discord

Get up and running with large language models locally.

macOS

Download

Windows preview

Download

Linux

curl -fsSL https://ollama.com/install.sh | sh

Manual install instructions

Docker

The official Ollama Docker image ollama/ollama is available on Docker Hub.

Libraries

Quickstart

To run and chat with Llama 2:

ollama run llama2

Model library

Ollama supports a list of models available on ollama.com/library

Here are some example models that can be downloaded:

Model Parameters Size Download
Llama 2 7B 3.8GB ollama run llama2
Mistral 7B 4.1GB ollama run mistral
Dolphin Phi 2.7B 1.6GB ollama run dolphin-phi
Phi-2 2.7B 1.7GB ollama run phi
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
Llama 2 13B 13B 7.3GB ollama run llama2:13b
Llama 2 70B 70B 39GB ollama run llama2:70b
Orca Mini 3B 1.9GB ollama run orca-mini
Vicuna 7B 3.8GB ollama run vicuna
LLaVA 7B 4.5GB ollama run llava
Gemma 2B 1.4GB ollama run gemma:2b
Gemma 7B 4.8GB ollama run gemma:7b
Solar 10.7B 6.1GB ollama run solar

Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.

Customize a model

Import from GGUF

Ollama supports importing GGUF models in the Modelfile:

  1. Create a file named Modelfile, with a FROM instruction with the local filepath to the model you want to import.

    FROM ./vicuna-33b.Q4_0.gguf
    
  2. Create the model in Ollama

    ollama create example -f Modelfile
    
  3. Run the model

    ollama run example
    

Import from PyTorch or Safetensors

See the guide on importing models for more information.

Customize a prompt

Models from the Ollama library can be customized with a prompt. For example, to customize the llama2 model:

ollama pull llama2

Create a Modelfile:

FROM llama2

# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1

# set the system message
SYSTEM """
You are Mario from Super Mario Bros. Answer as Mario, the assistant, only.
"""

Next, create and run the model:

ollama create mario -f ./Modelfile
ollama run mario
>>> hi
Hello! It's your friend Mario.

For more examples, see the examples directory. For more information on working with a Modelfile, see the Modelfile documentation.

CLI Reference

Create a model

ollama create is used to create a model from a Modelfile.

ollama create mymodel -f ./Modelfile

Pull a model

ollama pull llama2

This command can also be used to update a local model. Only the diff will be pulled.

Remove a model

ollama rm llama2

Copy a model

ollama cp llama2 my-llama2

Multiline input

For multiline input, you can wrap text with """:

>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.

Multimodal models

>>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture.

Pass in prompt as arguments

$ ollama run llama2 "Summarize this file: $(cat README.md)"
 Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.

List models on your computer

ollama list

Start Ollama

ollama serve is used when you want to start ollama without running the desktop application.

Building

Install cmake and go:

brew install cmake go

Then generate dependencies:

go generate ./...

Then build the binary:

go build .

More detailed instructions can be found in the developer guide

Running local builds

Next, start the server:

./ollama serve

Finally, in a separate shell, run a model:

./ollama run llama2

REST API

Ollama has a REST API for running and managing models.

Generate a response

curl http://localhost:11434/api/generate -d '{
  "model": "llama2",
  "prompt":"Why is the sky blue?"
}'

Chat with a model

curl http://localhost:11434/api/chat -d '{
  "model": "mistral",
  "messages": [
    { "role": "user", "content": "why is the sky blue?" }
  ]
}'

See the API documentation for all endpoints.

Community Integrations

Web & Desktop

Terminal

Database

Package managers

Libraries

Mobile

Extensions & Plugins