ggml.go 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. )
  9. type GGML struct {
  10. container
  11. model
  12. }
  13. type model interface {
  14. KV() KV
  15. Tensors() Tensors
  16. }
  17. type KV map[string]any
  18. func (kv KV) u64(key string) uint64 {
  19. switch v := kv[key].(type) {
  20. case uint64:
  21. return v
  22. case uint32:
  23. return uint64(v)
  24. case float64:
  25. return uint64(v)
  26. default:
  27. return 0
  28. }
  29. }
  30. func (kv KV) Architecture() string {
  31. if s, ok := kv["general.architecture"].(string); ok {
  32. return s
  33. }
  34. return "unknown"
  35. }
  36. func (kv KV) ParameterCount() uint64 {
  37. return kv.u64("general.parameter_count")
  38. }
  39. func (kv KV) FileType() fileType {
  40. if u64 := kv.u64("general.file_type"); u64 > 0 {
  41. return fileType(uint32(u64))
  42. }
  43. return fileTypeUnknown
  44. }
  45. func (kv KV) BlockCount() uint64 {
  46. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  47. }
  48. func (kv KV) HeadCount() uint64 {
  49. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  50. }
  51. func (kv KV) HeadCountKV() uint64 {
  52. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  53. return headCountKV
  54. }
  55. return 1
  56. }
  57. func (kv KV) EmbeddingHeadCount() uint64 {
  58. if heads := kv.HeadCount(); heads > 0 {
  59. return kv.EmbeddingLength() / kv.HeadCount()
  60. }
  61. return 0
  62. }
  63. func (kv KV) EmbeddingHeadCountK() uint64 {
  64. if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 {
  65. return k
  66. }
  67. return kv.EmbeddingHeadCount()
  68. }
  69. func (kv KV) EmbeddingHeadCountV() uint64 {
  70. if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 {
  71. return v
  72. }
  73. return kv.EmbeddingHeadCount()
  74. }
  75. func (kv KV) GQA() uint64 {
  76. return kv.HeadCount() / kv.HeadCountKV()
  77. }
  78. func (kv KV) EmbeddingLength() uint64 {
  79. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  80. }
  81. func (kv KV) ContextLength() uint64 {
  82. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  83. }
  84. func (kv KV) ChatTemplate() string {
  85. s, _ := kv["tokenizer.chat_template"].(string)
  86. return s
  87. }
  88. type Tensors []*Tensor
  89. func (ts Tensors) Layers() map[string]Layer {
  90. layers := make(map[string]Layer)
  91. for _, t := range ts {
  92. parts := strings.Split(t.Name, ".")
  93. if parts[0] == "blk" {
  94. // join first and second part, e.g. blk.%d
  95. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  96. }
  97. if _, ok := layers[parts[0]]; !ok {
  98. layers[parts[0]] = make(Layer)
  99. }
  100. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  101. }
  102. return layers
  103. }
  104. type Layer map[string]*Tensor
  105. func (l Layer) size() (size uint64) {
  106. for _, t := range l {
  107. size += t.Size()
  108. }
  109. return size
  110. }
  111. type Tensor struct {
  112. Name string `json:"name"`
  113. Kind uint32 `json:"kind"`
  114. Offset uint64 `json:"-"`
  115. // Shape is the number of elements in each dimension
  116. Shape []uint64 `json:"shape"`
  117. io.WriterTo `json:"-"`
  118. }
  119. func (t Tensor) blockSize() uint64 {
  120. switch t.Kind {
  121. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  122. return 1
  123. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  124. return 32
  125. default: // All others
  126. return 256
  127. }
  128. }
  129. func (t Tensor) typeSize() uint64 {
  130. blockSize := t.blockSize()
  131. switch t.Kind {
  132. case 0: // FP32
  133. return 4
  134. case 1: // FP16
  135. return 2
  136. case 2: // Q4_0
  137. return 2 + blockSize/2
  138. case 3: // Q4_1
  139. return 2 + 2 + blockSize/2
  140. case 6: // Q5_0
  141. return 2 + 4 + blockSize/2
  142. case 7: // Q5_1
  143. return 2 + 2 + 4 + blockSize/2
  144. case 8: // Q8_0
  145. return 2 + blockSize
  146. case 9: // Q8_1
  147. return 4 + 4 + blockSize
  148. case 10: // Q2_K
  149. return blockSize/16 + blockSize/4 + 2 + 2
  150. case 11: // Q3_K
  151. return blockSize/8 + blockSize/4 + 12 + 2
  152. case 12: // Q4_K
  153. return 2 + 2 + 12 + blockSize/2
  154. case 13: // Q5_K
  155. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  156. case 14: // Q6_K
  157. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  158. case 15: // Q8_K
  159. return 2 + blockSize + 2*blockSize/16
  160. case 16: // IQ2_XXS
  161. return 2 + 2*blockSize/8
  162. case 17: // IQ2_XS
  163. return 2 + 2*blockSize/8 + blockSize/32
  164. case 18: // IQ3_XXS
  165. return 2 + blockSize/4 + blockSize/8
  166. case 19: // IQ1_S
  167. return 2 + blockSize/8 + blockSize/16
  168. case 20: // IQ4_NL
  169. return 2 + blockSize/2
  170. case 21: // IQ3_S
  171. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  172. case 22: // IQ2_S
  173. return 2 + blockSize/4 + blockSize/16
  174. case 23: // IQ4_XS
  175. return 2 + 2 + blockSize/2 + blockSize/64
  176. case 24: // I8
  177. return 1
  178. case 25: // I16
  179. return 2
  180. case 26: // I32
  181. return 4
  182. case 27: // I64
  183. return 8
  184. case 28: // F64
  185. return 8
  186. case 29: // IQ1_M
  187. return blockSize/8 + blockSize/16 + blockSize/32
  188. default:
  189. return 0
  190. }
  191. }
  192. func (t Tensor) parameters() uint64 {
  193. var count uint64 = 1
  194. for _, n := range t.Shape {
  195. count *= n
  196. }
  197. return count
  198. }
  199. func (t Tensor) Size() uint64 {
  200. return t.parameters() * t.typeSize() / t.blockSize()
  201. }
  202. type container interface {
  203. Name() string
  204. Decode(io.ReadSeeker) (model, error)
  205. }
  206. const (
  207. // Magic constant for `ggml` files (unversioned).
  208. FILE_MAGIC_GGML = 0x67676d6c
  209. // Magic constant for `ggml` files (versioned, ggmf).
  210. FILE_MAGIC_GGMF = 0x67676d66
  211. // Magic constant for `ggml` files (versioned, ggjt).
  212. FILE_MAGIC_GGJT = 0x67676a74
  213. // Magic constant for `ggla` files (LoRA adapter).
  214. FILE_MAGIC_GGLA = 0x67676C61
  215. // Magic constant for `gguf` files (versioned, gguf)
  216. FILE_MAGIC_GGUF_LE = 0x46554747
  217. FILE_MAGIC_GGUF_BE = 0x47475546
  218. )
  219. var ErrUnsupportedFormat = errors.New("unsupported model format")
  220. func DetectGGMLType(b []byte) string {
  221. switch binary.LittleEndian.Uint32(b[:4]) {
  222. case FILE_MAGIC_GGML:
  223. return "ggml"
  224. case FILE_MAGIC_GGMF:
  225. return "ggmf"
  226. case FILE_MAGIC_GGJT:
  227. return "ggjt"
  228. case FILE_MAGIC_GGLA:
  229. return "ggla"
  230. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  231. return "gguf"
  232. default:
  233. return ""
  234. }
  235. }
  236. func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
  237. var magic uint32
  238. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  239. return nil, 0, err
  240. }
  241. var c container
  242. switch magic {
  243. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  244. return nil, 0, ErrUnsupportedFormat
  245. case FILE_MAGIC_GGLA:
  246. c = &containerGGLA{}
  247. case FILE_MAGIC_GGUF_LE:
  248. c = &containerGGUF{ByteOrder: binary.LittleEndian}
  249. case FILE_MAGIC_GGUF_BE:
  250. c = &containerGGUF{ByteOrder: binary.BigEndian}
  251. default:
  252. return nil, 0, errors.New("invalid file magic")
  253. }
  254. model, err := c.Decode(rs)
  255. if errors.Is(err, io.EOF) {
  256. // noop
  257. } else if err != nil {
  258. return nil, 0, err
  259. }
  260. offset, err := rs.Seek(0, io.SeekCurrent)
  261. if err != nil {
  262. return nil, 0, err
  263. }
  264. // final model type
  265. return &GGML{
  266. container: c,
  267. model: model,
  268. }, offset, nil
  269. }
  270. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  271. embedding := llm.KV().EmbeddingLength()
  272. heads := llm.KV().HeadCount()
  273. headsKV := llm.KV().HeadCountKV()
  274. vocab := llm.KV()["tokenizer.ggml.tokens"].(*array).size
  275. embeddingHeads := llm.KV().EmbeddingHeadCount()
  276. embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
  277. layers := llm.Tensors().Layers()
  278. switch llm.KV().Architecture() {
  279. case "llama":
  280. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  281. partialOffload = 4 * batch * embedding
  282. partialOffload += max(
  283. // 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
  284. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  285. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  286. )
  287. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  288. // mixtral 8x22b
  289. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  290. partialOffload = max(
  291. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  292. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  293. )
  294. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  295. // mixtral 8x7b
  296. ffnGateWeight1 := ffnGateWeight.Shape[1]
  297. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  298. partialOffload = max(
  299. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  300. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  301. )
  302. }
  303. case "gemma":
  304. fullOffload = 4 * batch * (embedding + vocab)
  305. partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
  306. case "command-r":
  307. fullOffload = max(
  308. 4*batch*(embedding+vocab),
  309. 4*batch*(2+4*embedding+context*(1+heads)),
  310. )
  311. partialOffload = max(
  312. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  313. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  314. )
  315. case "qwen2":
  316. fullOffload = max(
  317. 4*batch*(embedding+vocab),
  318. 4*batch*(1+2*embedding+context+context*heads),
  319. )
  320. partialOffload = max(
  321. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  322. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  323. )
  324. case "phi2":
  325. fullOffload = max(
  326. 4*batch*(embedding+vocab),
  327. 4*batch*(1+4*embedding+context+context*heads),
  328. )
  329. partialOffload = max(
  330. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  331. 4*batch*(2+3*embedding+context+context*heads),
  332. )
  333. case "stablelm":
  334. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  335. partialOffload = max(
  336. 4*batch*(vocab+2*embedding),
  337. fullOffload,
  338. )
  339. case "deepseek2":
  340. fullOffload = max(
  341. 4*batch*(3*embedding+vocab),
  342. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  343. )
  344. partialOffload = max(
  345. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  346. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  347. )
  348. }
  349. return
  350. }