ggml.go 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. )
  9. type GGML struct {
  10. container
  11. model
  12. }
  13. type model interface {
  14. KV() KV
  15. Tensors() Tensors
  16. }
  17. type KV map[string]any
  18. func (kv KV) u64(key string) uint64 {
  19. switch v := kv[key].(type) {
  20. case uint64:
  21. return v
  22. case uint32:
  23. return uint64(v)
  24. case float64:
  25. return uint64(v)
  26. default:
  27. return 0
  28. }
  29. }
  30. func (kv KV) Architecture() string {
  31. if s, ok := kv["general.architecture"].(string); ok {
  32. return s
  33. }
  34. return "unknown"
  35. }
  36. func (kv KV) ParameterCount() uint64 {
  37. return kv.u64("general.parameter_count")
  38. }
  39. func (kv KV) FileType() string {
  40. if u64 := kv.u64("general.file_type"); u64 > 0 {
  41. return fileType(uint32(u64)).String()
  42. }
  43. return "unknown"
  44. }
  45. func (kv KV) BlockCount() uint64 {
  46. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  47. }
  48. func (kv KV) HeadCount() uint64 {
  49. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  50. }
  51. func (kv KV) HeadCountKV() uint64 {
  52. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  53. return headCountKV
  54. }
  55. return 1
  56. }
  57. func (kv KV) GQA() uint64 {
  58. return kv.HeadCount() / kv.HeadCountKV()
  59. }
  60. func (kv KV) EmbeddingLength() uint64 {
  61. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  65. }
  66. type Tensors []*Tensor
  67. func (ts Tensors) Layers() map[string]Layer {
  68. layers := make(map[string]Layer)
  69. for _, t := range ts {
  70. parts := strings.Split(t.Name, ".")
  71. if parts[0] == "blk" {
  72. // join first and second part, e.g. blk.%d
  73. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  74. }
  75. if _, ok := layers[parts[0]]; !ok {
  76. layers[parts[0]] = make(Layer)
  77. }
  78. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  79. }
  80. return layers
  81. }
  82. type Layer map[string]*Tensor
  83. func (l Layer) size() (size uint64) {
  84. for _, t := range l {
  85. size += t.size()
  86. }
  87. return size
  88. }
  89. type Tensor struct {
  90. Name string `json:"name"`
  91. Kind uint32 `json:"kind"`
  92. Offset uint64 `json:"-"`
  93. // Shape is the number of elements in each dimension
  94. Shape []uint64 `json:"shape"`
  95. io.WriterTo `json:"-"`
  96. }
  97. func (t Tensor) blockSize() uint64 {
  98. switch {
  99. case t.Kind < 2 || (t.Kind > 23 && t.Kind < 29):
  100. return 1
  101. case t.Kind < 10 || t.Kind == 20:
  102. return 32
  103. default:
  104. return 256
  105. }
  106. }
  107. func (t Tensor) typeSize() uint64 {
  108. blockSize := t.blockSize()
  109. switch t.Kind {
  110. case 0: // FP32
  111. return 4
  112. case 1: // FP16
  113. return 2
  114. case 2: // Q4_0
  115. return 2 + blockSize/2
  116. case 3: // Q4_1
  117. return 2 + 2 + blockSize/2
  118. case 6: // Q5_0
  119. return 2 + 4 + blockSize/2
  120. case 7: // Q5_1
  121. return 2 + 2 + 4 + blockSize/2
  122. case 8: // Q8_0
  123. return 2 + blockSize
  124. case 9: // Q8_1
  125. return 4 + 4 + blockSize
  126. case 10: // Q2_K
  127. return blockSize/16 + blockSize/4 + 2 + 2
  128. case 11: // Q3_K
  129. return blockSize/8 + blockSize/4 + 12 + 2
  130. case 12: // Q4_K
  131. return 2 + 2 + 12 + blockSize/2
  132. case 13: // Q5_K
  133. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  134. case 14: // Q6_K
  135. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  136. case 15: // Q8_K
  137. return 2 + blockSize + 2*blockSize/16
  138. case 16: // IQ2_XXS
  139. return 2 + 2*blockSize/8
  140. case 17: // IQ2_XS
  141. return 2 + 2*blockSize/8 + blockSize/32
  142. case 18: // IQ3_XXS
  143. return 2 + 3*blockSize/8
  144. case 19: // IQ1_S
  145. return 2 + blockSize/8 + blockSize/16
  146. case 20: // IQ4_NL
  147. return 2 + blockSize/2
  148. case 21: // IQ3_S
  149. return 2 + 2*blockSize/8 + blockSize/8 + blockSize/32 + 4
  150. case 22: // IQ2_S
  151. return 2 + blockSize/4 + blockSize/16
  152. case 23: // IQ4_XS
  153. return 4 + blockSize/2 + blockSize/64
  154. default:
  155. return 0
  156. }
  157. }
  158. func (t Tensor) parameters() uint64 {
  159. var count uint64 = 1
  160. for _, n := range t.Shape {
  161. count *= n
  162. }
  163. return count
  164. }
  165. func (t Tensor) size() uint64 {
  166. return t.parameters() * t.typeSize() / t.blockSize()
  167. }
  168. type container interface {
  169. Name() string
  170. Decode(io.ReadSeeker) (model, error)
  171. }
  172. const (
  173. // Magic constant for `ggml` files (unversioned).
  174. FILE_MAGIC_GGML = 0x67676d6c
  175. // Magic constant for `ggml` files (versioned, ggmf).
  176. FILE_MAGIC_GGMF = 0x67676d66
  177. // Magic constant for `ggml` files (versioned, ggjt).
  178. FILE_MAGIC_GGJT = 0x67676a74
  179. // Magic constant for `ggla` files (LoRA adapter).
  180. FILE_MAGIC_GGLA = 0x67676C61
  181. // Magic constant for `gguf` files (versioned, gguf)
  182. FILE_MAGIC_GGUF_LE = 0x46554747
  183. FILE_MAGIC_GGUF_BE = 0x47475546
  184. )
  185. var ErrUnsupportedFormat = errors.New("unsupported model format")
  186. func DetectGGMLType(b []byte) string {
  187. switch binary.LittleEndian.Uint32(b[:4]) {
  188. case FILE_MAGIC_GGML:
  189. return "ggml"
  190. case FILE_MAGIC_GGMF:
  191. return "ggmf"
  192. case FILE_MAGIC_GGJT:
  193. return "ggjt"
  194. case FILE_MAGIC_GGLA:
  195. return "ggla"
  196. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  197. return "gguf"
  198. default:
  199. return ""
  200. }
  201. }
  202. func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
  203. var magic uint32
  204. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  205. return nil, 0, err
  206. }
  207. var c container
  208. switch magic {
  209. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  210. return nil, 0, ErrUnsupportedFormat
  211. case FILE_MAGIC_GGLA:
  212. c = &containerGGLA{}
  213. case FILE_MAGIC_GGUF_LE:
  214. c = &containerGGUF{ByteOrder: binary.LittleEndian}
  215. case FILE_MAGIC_GGUF_BE:
  216. c = &containerGGUF{ByteOrder: binary.BigEndian}
  217. default:
  218. return nil, 0, errors.New("invalid file magic")
  219. }
  220. model, err := c.Decode(rs)
  221. if errors.Is(err, io.EOF) {
  222. // noop
  223. } else if err != nil {
  224. return nil, 0, err
  225. }
  226. offset, err := rs.Seek(0, io.SeekCurrent)
  227. if err != nil {
  228. return nil, 0, err
  229. }
  230. // final model type
  231. return &GGML{
  232. container: c,
  233. model: model,
  234. }, offset, nil
  235. }
  236. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  237. embedding := llm.KV().EmbeddingLength()
  238. heads := llm.KV().HeadCount()
  239. headsKV := llm.KV().HeadCountKV()
  240. vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
  241. layers := llm.Tensors().Layers()
  242. switch llm.KV().Architecture() {
  243. case "llama":
  244. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  245. partialOffload = 4 * batch * embedding
  246. partialOffload += max(
  247. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
  248. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  249. )
  250. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  251. // mixtral 8x22b
  252. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  253. partialOffload = max(
  254. 3*ffnGateExpsWeight.size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
  255. 4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
  256. )
  257. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  258. // mixtral 8x7b
  259. ffnGateWeight1 := ffnGateWeight.Shape[1]
  260. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  261. partialOffload = max(
  262. 4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  263. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  264. )
  265. }
  266. case "gemma":
  267. fullOffload = 4 * batch * (embedding + vocab)
  268. partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
  269. case "command-r":
  270. fullOffload = max(
  271. 4*batch*(embedding+vocab),
  272. 4*batch*(2+4*embedding+context*(1+heads)),
  273. )
  274. partialOffload = max(
  275. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  276. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  277. )
  278. case "qwen2":
  279. fullOffload = max(
  280. 4*batch*(embedding+vocab),
  281. 4*batch*(1+2*embedding+context+context*heads),
  282. )
  283. partialOffload = max(
  284. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  285. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  286. )
  287. case "phi2":
  288. fullOffload = max(
  289. 4*batch*(embedding+vocab),
  290. 4*batch*(1+4*embedding+context+context*heads),
  291. )
  292. partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
  293. case "stablelm":
  294. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  295. partialOffload = max(
  296. 4*batch*(vocab+2*embedding),
  297. fullOffload,
  298. )
  299. }
  300. return
  301. }