1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- //
- // GGML Tensor Library
- //
- // This documentation is still a work in progress.
- // If you wish some specific topics to be covered, feel free to drop a comment:
- //
- // https://github.com/ggerganov/whisper.cpp/issues/40
- //
- // ## Overview
- //
- // This library implements:
- //
- // - a set of tensor operations
- // - automatic differentiation
- // - basic optimization algorithms
- //
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
- // but is not limited to, the following:
- //
- // - linear regression
- // - support vector machines
- // - neural networks
- //
- // The library allows the user to define a certain function using the available tensor operations. This function
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
- // using one of the available optimization algorithms.
- //
- // For example, here we define the function: f(x) = a*x^2 + b
- //
- // {
- // struct ggml_init_params params = {
- // .mem_size = 16*1024*1024,
- // .mem_buffer = NULL,
- // };
- //
- // // memory allocation happens here
- // struct ggml_context * ctx = ggml_init(params);
- //
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- //
- // ggml_set_param(ctx, x); // x is an input variable
- //
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
- //
- // ...
- // }
- //
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
- //
- // {
- // ...
- //
- // struct ggml_cgraph * gf = ggml_new_graph(ctx);
- // ggml_build_forward_expand(gf, f);
- //
- // // set the input variable and parameter values
- // ggml_set_f32(x, 2.0f);
- // ggml_set_f32(a, 3.0f);
- // ggml_set_f32(b, 4.0f);
- //
- // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
- //
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
- //
- // ...
- // }
- //
- // The actual computation is performed in the ggml_graph_compute() function.
- //
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
- // actually needed.
- //
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
- // differentiation and optimization algorithms.
- //
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
- // the user can avoid the memory allocation overhead at runtime.
- //
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
- //
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
- // yet, but a few examples are demonstrated in the following operations:
- //
- // - ggml_permute()
- // - ggml_conv_1d_1s()
- // - ggml_conv_1d_2s()
- //
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
- // calculus class, or watch the following video:
- //
- // What is Automatic Differentiation?
- // https://www.youtube.com/watch?v=wG_nF1awSSY
- //
- //
- // ## Tensor data (struct ggml_tensor)
- //
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
- //
- // {
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
- //
- // assert(c->src[0] == a);
- // assert(c->src[1] == b);
- // }
- //
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
- // contiguous in memory.
- //
- // The data of the tensor is accessed via the "data" pointer. For example:
- //
- // {
- // const int nx = 2;
- // const int ny = 3;
- //
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
- //
- // for (int y = 0; y < ny; y++) {
- // for (int x = 0; x < nx; x++) {
- // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
- // }
- // }
- //
- // ...
- // }
- //
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
- //
- // ## The matrix multiplication operator (ggml_mul_mat)
- //
- // TODO
- //
- //
- // ## Multi-threading
- //
- // TODO
- //
- //
- // ## Overview of ggml.c
- //
- // TODO
- //
- //
- // ## SIMD optimizations
- //
- // TODO
- //
- //
- // ## Debugging ggml
- //
- // TODO
- //
- //
- #ifdef GGML_SHARED
- # if defined(_WIN32) && !defined(__MINGW32__)
- # ifdef GGML_BUILD
- # define GGML_API __declspec(dllexport) extern
- # else
- # define GGML_API __declspec(dllimport) extern
- # endif
- # else
- # define GGML_API __attribute__ ((visibility ("default"))) extern
- # endif
- #else
- # define GGML_API extern
- #endif
- // TODO: support for clang
- #ifdef __GNUC__
- # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
- #elif defined(_MSC_VER)
- # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
- #else
- # define GGML_DEPRECATED(func, hint) func
- #endif
- #ifndef __GNUC__
- # define GGML_ATTRIBUTE_FORMAT(...)
- #elif defined(__MINGW32__)
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
- #else
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
- #endif
- #include <stdbool.h>
- #include <stddef.h>
- #include <stdint.h>
- #include <stdio.h>
- #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
- #define GGML_FILE_VERSION 2
- #define GGML_QNT_VERSION 2 // bump this on quantization format changes
- #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
- #define GGML_MAX_DIMS 4
- #define GGML_MAX_PARAMS 2048
- #define GGML_MAX_SRC 10
- #define GGML_MAX_N_THREADS 512
- #define GGML_MAX_OP_PARAMS 64
- #ifndef GGML_MAX_NAME
- # define GGML_MAX_NAME 64
- #endif
- #define GGML_DEFAULT_N_THREADS 4
- #define GGML_DEFAULT_GRAPH_SIZE 2048
- #if UINTPTR_MAX == 0xFFFFFFFF
- #define GGML_MEM_ALIGN 4
- #else
- #define GGML_MEM_ALIGN 16
- #endif
- #define GGML_EXIT_SUCCESS 0
- #define GGML_EXIT_ABORTED 1
- #define GGML_ROPE_TYPE_NEOX 2
- #define GGML_ROPE_TYPE_MROPE 8
- #define GGML_ROPE_TYPE_VISION 24
- #define GGUF_MAGIC "GGUF"
- #define GGUF_VERSION 3
- #define GGUF_DEFAULT_ALIGNMENT 32
- #define GGML_UNUSED(x) (void)(x)
- #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
- #ifndef NDEBUG
- # define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
- #elif defined(__GNUC__)
- # define GGML_UNREACHABLE() __builtin_unreachable()
- #elif defined(_MSC_VER)
- # define GGML_UNREACHABLE() __assume(0)
- #else
- # define GGML_UNREACHABLE() ((void) 0)
- #endif
- #ifdef __cplusplus
- # define GGML_NORETURN [[noreturn]]
- #elif defined(_MSC_VER)
- # define GGML_NORETURN __declspec(noreturn)
- #else
- # define GGML_NORETURN _Noreturn
- #endif
- #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
- #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
- // used to copy the number of elements and stride in bytes of tensors into local variables.
- // main purpose is to reduce code duplication and improve readability.
- //
- // example:
- //
- // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
- // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
- //
- #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
- const type prefix##0 = (pointer)->array[0]; \
- GGML_UNUSED(prefix##0);
- #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
- const type prefix##1 = (pointer)->array[1]; \
- GGML_UNUSED(prefix##1);
- #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
- const type prefix##2 = (pointer)->array[2]; \
- GGML_UNUSED(prefix##2);
- #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
- GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
- const type prefix##3 = (pointer)->array[3]; \
- GGML_UNUSED(prefix##3);
- #define GGML_TENSOR_UNARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- #define GGML_TENSOR_BINARY_OP_LOCALS01 \
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- #ifdef __cplusplus
- extern "C" {
- #endif
- GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
- GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
- enum ggml_status {
- GGML_STATUS_ALLOC_FAILED = -2,
- GGML_STATUS_FAILED = -1,
- GGML_STATUS_SUCCESS = 0,
- GGML_STATUS_ABORTED = 1,
- };
- // get ggml_status name string
- GGML_API const char * ggml_status_to_string(enum ggml_status status);
- // ieee 754-2008 half-precision float16
- // todo: make this not an integral type
- typedef uint16_t ggml_fp16_t;
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
- GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
- // google brain half-precision bfloat16
- typedef struct { uint16_t bits; } ggml_bf16_t;
- GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
- GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
- GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
- GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
- struct ggml_object;
- struct ggml_context;
- struct ggml_cgraph;
- // NOTE: always add types at the end of the enum to keep backward compatibility
- enum ggml_type {
- GGML_TYPE_F32 = 0,
- GGML_TYPE_F16 = 1,
- GGML_TYPE_Q4_0 = 2,
- GGML_TYPE_Q4_1 = 3,
- // GGML_TYPE_Q4_2 = 4, support has been removed
- // GGML_TYPE_Q4_3 = 5, support has been removed
- GGML_TYPE_Q5_0 = 6,
- GGML_TYPE_Q5_1 = 7,
- GGML_TYPE_Q8_0 = 8,
- GGML_TYPE_Q8_1 = 9,
- GGML_TYPE_Q2_K = 10,
- GGML_TYPE_Q3_K = 11,
- GGML_TYPE_Q4_K = 12,
- GGML_TYPE_Q5_K = 13,
- GGML_TYPE_Q6_K = 14,
- GGML_TYPE_Q8_K = 15,
- GGML_TYPE_IQ2_XXS = 16,
- GGML_TYPE_IQ2_XS = 17,
- GGML_TYPE_IQ3_XXS = 18,
- GGML_TYPE_IQ1_S = 19,
- GGML_TYPE_IQ4_NL = 20,
- GGML_TYPE_IQ3_S = 21,
- GGML_TYPE_IQ2_S = 22,
- GGML_TYPE_IQ4_XS = 23,
- GGML_TYPE_I8 = 24,
- GGML_TYPE_I16 = 25,
- GGML_TYPE_I32 = 26,
- GGML_TYPE_I64 = 27,
- GGML_TYPE_F64 = 28,
- GGML_TYPE_IQ1_M = 29,
- GGML_TYPE_BF16 = 30,
- // GGML_TYPE_Q4_0_4_4 = 31, support has been removed from gguf files
- // GGML_TYPE_Q4_0_4_8 = 32,
- // GGML_TYPE_Q4_0_8_8 = 33,
- GGML_TYPE_TQ1_0 = 34,
- GGML_TYPE_TQ2_0 = 35,
- // GGML_TYPE_IQ4_NL_4_4 = 36,
- // GGML_TYPE_IQ4_NL_4_8 = 37,
- // GGML_TYPE_IQ4_NL_8_8 = 38,
- GGML_TYPE_COUNT = 39,
- };
- // precision
- enum ggml_prec {
- GGML_PREC_DEFAULT,
- GGML_PREC_F32,
- };
- enum ggml_backend_type {
- GGML_BACKEND_TYPE_CPU = 0,
- GGML_BACKEND_TYPE_GPU = 10,
- GGML_BACKEND_TYPE_GPU_SPLIT = 20,
- };
- // model file types
- enum ggml_ftype {
- GGML_FTYPE_UNKNOWN = -1,
- GGML_FTYPE_ALL_F32 = 0,
- GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
- GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
- GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
- GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
- GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
- };
- // available tensor operations:
- enum ggml_op {
- GGML_OP_NONE = 0,
- GGML_OP_DUP,
- GGML_OP_ADD,
- GGML_OP_ADD1,
- GGML_OP_ACC,
- GGML_OP_SUB,
- GGML_OP_MUL,
- GGML_OP_DIV,
- GGML_OP_SQR,
- GGML_OP_SQRT,
- GGML_OP_LOG,
- GGML_OP_SIN,
- GGML_OP_COS,
- GGML_OP_SUM,
- GGML_OP_SUM_ROWS,
- GGML_OP_MEAN,
- GGML_OP_ARGMAX,
- GGML_OP_COUNT_EQUAL,
- GGML_OP_REPEAT,
- GGML_OP_REPEAT_BACK,
- GGML_OP_CONCAT,
- GGML_OP_SILU_BACK,
- GGML_OP_NORM, // normalize
- GGML_OP_RMS_NORM,
- GGML_OP_RMS_NORM_BACK,
- GGML_OP_GROUP_NORM,
- GGML_OP_MUL_MAT,
- GGML_OP_MUL_MAT_ID,
- GGML_OP_OUT_PROD,
- GGML_OP_SCALE,
- GGML_OP_SET,
- GGML_OP_CPY,
- GGML_OP_CONT,
- GGML_OP_RESHAPE,
- GGML_OP_VIEW,
- GGML_OP_PERMUTE,
- GGML_OP_TRANSPOSE,
- GGML_OP_GET_ROWS,
- GGML_OP_GET_ROWS_BACK,
- GGML_OP_DIAG,
- GGML_OP_DIAG_MASK_INF,
- GGML_OP_DIAG_MASK_ZERO,
- GGML_OP_SOFT_MAX,
- GGML_OP_SOFT_MAX_BACK,
- GGML_OP_ROPE,
- GGML_OP_ROPE_BACK,
- GGML_OP_CLAMP,
- GGML_OP_CONV_TRANSPOSE_1D,
- GGML_OP_IM2COL,
- GGML_OP_IM2COL_BACK,
- GGML_OP_CONV_TRANSPOSE_2D,
- GGML_OP_POOL_1D,
- GGML_OP_POOL_2D,
- GGML_OP_POOL_2D_BACK,
- GGML_OP_UPSCALE, // nearest interpolate
- GGML_OP_PAD,
- GGML_OP_PAD_REFLECT_1D,
- GGML_OP_UNPAD,
- GGML_OP_ARANGE,
- GGML_OP_TIMESTEP_EMBEDDING,
- GGML_OP_ARGSORT,
- GGML_OP_LEAKY_RELU,
- GGML_OP_FLASH_ATTN_EXT,
- GGML_OP_FLASH_ATTN_BACK,
- GGML_OP_SSM_CONV,
- GGML_OP_SSM_SCAN,
- GGML_OP_WIN_PART,
- GGML_OP_WIN_UNPART,
- GGML_OP_GET_REL_POS,
- GGML_OP_ADD_REL_POS,
- GGML_OP_RWKV_WKV6,
- GGML_OP_UNARY,
- GGML_OP_MAP_UNARY,
- GGML_OP_MAP_BINARY,
- GGML_OP_MAP_CUSTOM1_F32,
- GGML_OP_MAP_CUSTOM2_F32,
- GGML_OP_MAP_CUSTOM3_F32,
- GGML_OP_MAP_CUSTOM1,
- GGML_OP_MAP_CUSTOM2,
- GGML_OP_MAP_CUSTOM3,
- GGML_OP_CROSS_ENTROPY_LOSS,
- GGML_OP_CROSS_ENTROPY_LOSS_BACK,
- GGML_OP_OPT_STEP_ADAMW,
- GGML_OP_COUNT,
- };
- enum ggml_unary_op {
- GGML_UNARY_OP_ABS,
- GGML_UNARY_OP_SGN,
- GGML_UNARY_OP_NEG,
- GGML_UNARY_OP_STEP,
- GGML_UNARY_OP_TANH,
- GGML_UNARY_OP_ELU,
- GGML_UNARY_OP_RELU,
- GGML_UNARY_OP_SIGMOID,
- GGML_UNARY_OP_GELU,
- GGML_UNARY_OP_GELU_QUICK,
- GGML_UNARY_OP_SILU,
- GGML_UNARY_OP_HARDSWISH,
- GGML_UNARY_OP_HARDSIGMOID,
- GGML_UNARY_OP_EXP,
- GGML_UNARY_OP_COUNT,
- };
- enum ggml_object_type {
- GGML_OBJECT_TYPE_TENSOR,
- GGML_OBJECT_TYPE_GRAPH,
- GGML_OBJECT_TYPE_WORK_BUFFER
- };
- enum ggml_log_level {
- GGML_LOG_LEVEL_NONE = 0,
- GGML_LOG_LEVEL_DEBUG = 1,
- GGML_LOG_LEVEL_INFO = 2,
- GGML_LOG_LEVEL_WARN = 3,
- GGML_LOG_LEVEL_ERROR = 4,
- GGML_LOG_LEVEL_CONT = 5, // continue previous log
- };
- // this tensor...
- enum ggml_tensor_flag {
- GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
- GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
- GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
- GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
- };
- struct ggml_init_params {
- // memory pool
- size_t mem_size; // bytes
- void * mem_buffer; // if NULL, memory will be allocated internally
- bool no_alloc; // don't allocate memory for the tensor data
- };
- // n-dimensional tensor
- struct ggml_tensor {
- enum ggml_type type;
- GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
- struct ggml_backend_buffer * buffer;
- int64_t ne[GGML_MAX_DIMS]; // number of elements
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
- // nb[0] = ggml_type_size(type)
- // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
- // nb[i] = nb[i-1] * ne[i-1]
- // compute data
- enum ggml_op op;
- // op params - allocated as int32_t for alignment
- int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
- int32_t flags;
- struct ggml_tensor * src[GGML_MAX_SRC];
- // source tensor and offset for views
- struct ggml_tensor * view_src;
- size_t view_offs;
- void * data;
- char name[GGML_MAX_NAME];
- void * extra; // extra things e.g. for ggml-cuda.cu
- char padding[8];
- };
- static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
- // Abort callback
- // If not NULL, called before ggml computation
- // If it returns true, the computation is aborted
- typedef bool (*ggml_abort_callback)(void * data);
- //
- // GUID
- //
- // GUID types
- typedef uint8_t ggml_guid[16];
- typedef ggml_guid * ggml_guid_t;
- GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
- // misc
- GGML_API void ggml_time_init(void); // call this once at the beginning of the program
- GGML_API int64_t ggml_time_ms(void);
- GGML_API int64_t ggml_time_us(void);
- GGML_API int64_t ggml_cycles(void);
- GGML_API int64_t ggml_cycles_per_ms(void);
- // accepts a UTF-8 path, even on Windows
- GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
- GGML_API void ggml_print_object (const struct ggml_object * obj);
- GGML_API void ggml_print_objects(const struct ggml_context * ctx);
- GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
- GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
- GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
- GGML_API int64_t ggml_blck_size(enum ggml_type type);
- GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
- GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
- GGML_DEPRECATED(
- GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
- "use ggml_row_size() instead");
- GGML_API const char * ggml_type_name(enum ggml_type type);
- GGML_API const char * ggml_op_name (enum ggml_op op);
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
- GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
- GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_quantized(enum ggml_type type);
- // TODO: temporary until model loading of ggml examples is refactored
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
- GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
- GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
- GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
- GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
- GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
- GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
- // use this to compute the memory overhead of a tensor
- GGML_API size_t ggml_tensor_overhead(void);
- GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
- // main
- GGML_API struct ggml_context * ggml_init (struct ggml_init_params params);
- GGML_API void ggml_reset(struct ggml_context * ctx);
- GGML_API void ggml_free (struct ggml_context * ctx);
- GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
- GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
- GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
- GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
- GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t *ne);
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- GGML_API void * ggml_new_buffer(struct ggml_context * ctx, size_t nbytes);
- GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
- GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
- // Context tensor enumeration and lookup
- GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
- GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
- // Converts a flat index into coordinates
- GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
- GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
- GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
- GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
- GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
- GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
- GGML_ATTRIBUTE_FORMAT(2, 3)
- GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
- // Tensor flags
- GGML_API void ggml_set_input(struct ggml_tensor * tensor);
- GGML_API void ggml_set_output(struct ggml_tensor * tensor);
- GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
- GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
- //
- // operations on tensors with backpropagation
- //
- GGML_API struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type);
- GGML_API struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // dst = a
- // view(dst, nb1, nb2, nb3, offset) += b
- // return dst
- GGML_API struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sin_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_cos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // return scalar
- GGML_API struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
- GGML_API struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // mean along rows
- GGML_API struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // argmax along rows
- GGML_API struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // count number of equal elements in a and b
- GGML_API struct ggml_tensor * ggml_count_equal(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // if a is the same shape as b, and a is not parameter, return a
- // otherwise, return a new tensor: repeat(a) to fit in b
- GGML_API struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // sums repetitions in a into shape of b
- GGML_API struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // concat a and b along dim
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_concat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int dim);
- GGML_API struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a, float negative_slope, bool inplace);
- GGML_API struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // hardswish(x) = x * relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // hardsigmoid(x) = relu6(x + 3) / 6
- GGML_API struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- GGML_API struct ggml_tensor * ggml_exp_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // normalize along rows
- GGML_API struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps);
- // group normalize along ne0*ne1*n_groups
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- GGML_API struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- float eps);
- // a - x
- // b - dy
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps);
- // A: k columns, n rows => [ne03, ne02, n, k]
- // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
- // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
- GGML_API struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // change the precision of a matrix multiplication
- // set to GGML_PREC_F32 for higher precision (useful for phi-2)
- GGML_API void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- // indirect matrix multiplication
- GGML_API struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * as,
- struct ggml_tensor * b,
- struct ggml_tensor * ids);
- // A: m columns, n rows,
- // B: p columns, n rows,
- // result is m columns, p rows
- GGML_API struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- //
- // operations on tensors without backpropagation
- //
- GGML_API struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s);
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return modified a
- GGML_API struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // b -> view(a,offset,nb1,nb2,3), return view(a)
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset); // in bytes
- // a -> b, return view(b)
- GGML_API struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- GGML_API struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type);
- // make contiguous
- GGML_API struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // make contiguous, with new shape
- GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // return view(a), b specifies the new shape
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0);
- GGML_API struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1);
- // return view(a)
- // TODO: when we start computing gradient, make a copy instead of view
- GGML_API struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2);
- GGML_API struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3);
- // offset in bytes
- GGML_API struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1, // row stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t offset);
- GGML_API struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1, // row stride in bytes
- size_t nb2, // slice stride in bytes
- size_t nb3,
- size_t offset);
- GGML_API struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3);
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
- GGML_API struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // supports 3D: a->ne[2] == b->ne[1]
- GGML_API struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // data
- struct ggml_tensor * b); // row indices
- GGML_API struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_get_rows result
- struct ggml_tensor * b, // row indices
- struct ggml_tensor * c); // data for ggml_get_rows, only used for its shape
- GGML_API struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // set elements above the diagonal to -INF
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // set elements above the diagonal to 0
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past);
- GGML_API struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a);
- // fused soft_max(a*scale + mask*(ALiBi slope))
- // mask is optional
- // max_bias = 0.0f for no ALiBi
- GGML_API struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- float max_bias);
- GGML_API struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // rotary position embedding
- // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
- // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
- //
- // b is an int32 vector with size a->ne[2], it contains the positions
- GGML_API struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode);
- // custom RoPE
- // c is freq factors (e.g. phi3-128k), (optional)
- GGML_API struct ggml_tensor * ggml_rope_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_API struct ggml_tensor * ggml_rope_multi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int sections[4],
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow),
- "use ggml_rope_ext_inplace instead");
- // compute correction dims for YaRN RoPE scaling
- GGML_API void ggml_rope_yarn_corr_dims(
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
- // rotary position embedding backward, i.e compute dx from dy
- // a - dy
- GGML_API struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // gradients of ggml_rope result
- struct ggml_tensor * b, // positions
- struct ggml_tensor * c, // freq factors
- int n_dims,
- int mode,
- int n_ctx_orig,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow);
- // clamp
- // in-place, returns view(a)
- GGML_API struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max);
- // im2col
- // converts data into a format that effectively results in a convolution when combined with matrix multiplication
- GGML_API struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D,
- enum ggml_type dst_type);
- GGML_API struct ggml_tensor * ggml_im2col_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // gradient of im2col output
- int64_t * ne, // shape of im2col input
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1, // dilation dimension 1
- bool is_2D);
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- // conv_1d with padding = half
- // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s, // stride
- int d); // dilation
- // depthwise
- // TODO: this is very likely wrong for some cases! - needs more testing
- GGML_API struct ggml_tensor * ggml_conv_1d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_1d_dw_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride
- int p0, // padding
- int d0); // dilation
- GGML_API struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- // kernel size is a->ne[0] x a->ne[1]
- // stride is equal to kernel size
- // padding is zero
- // example:
- // a: 16 16 3 768
- // b: 1024 1024 3 1
- // res: 64 64 768 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // kernel size is a->ne[0] x a->ne[1]
- // stride is 1
- // padding is half
- // example:
- // a: 3 3 256 256
- // b: 64 64 256 1
- // res: 64 64 256 1
- // used in sam
- GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b);
- // depthwise
- GGML_API struct ggml_tensor * ggml_conv_2d_dw(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // convolution kernel
- struct ggml_tensor * b, // data
- int s0, // stride dimension 0
- int s1, // stride dimension 1
- int p0, // padding dimension 0
- int p1, // padding dimension 1
- int d0, // dilation dimension 0
- int d1); // dilation dimension 1
- GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride);
- enum ggml_op_pool {
- GGML_OP_POOL_MAX,
- GGML_OP_POOL_AVG,
- GGML_OP_POOL_COUNT,
- };
- GGML_API struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0, // kernel size
- int s0, // stride
- int p0); // padding
- // the result will have 2*p0 padding for the first dimension
- // and 2*p1 padding for the second dimension
- GGML_API struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- GGML_API struct ggml_tensor * ggml_pool_2d_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * af, // "a"/input used in forward pass
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1);
- // nearest interpolate
- // multiplies ne0 and ne1 by scale factor
- // used in stable-diffusion
- GGML_API struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor);
- // nearest interpolate
- // nearest interpolate to specified dimensions
- // used in tortoise.cpp
- GGML_API struct ggml_tensor * ggml_upscale_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int ne0,
- int ne1,
- int ne2,
- int ne3);
- // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
- GGML_API struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1,
- int p2,
- int p3);
- // pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
- GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1);
- // unpad each dimension: [x, ..., x, y, ..., y] -> [x, ..., x]
- GGML_API struct ggml_tensor * ggml_unpad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0,
- int p1,
- int p2,
- int p3);
- // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
- // timesteps: [N,]
- // return: [N, dim]
- GGML_API struct ggml_tensor * ggml_timestep_embedding(
- struct ggml_context * ctx,
- struct ggml_tensor * timesteps,
- int dim,
- int max_period);
- // sort rows
- enum ggml_sort_order {
- GGML_SORT_ORDER_ASC,
- GGML_SORT_ORDER_DESC,
- };
- GGML_API struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order);
- GGML_API struct ggml_tensor * ggml_arange(
- struct ggml_context * ctx,
- float start,
- float stop,
- float step);
- // top k elements per row
- GGML_API struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k);
- #define GGML_KQ_MASK_PAD 32
- // q: [n_embd, n_batch, n_head, 1]
- // k: [n_embd, n_kv, n_head_kv, 1]
- // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
- // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
- // res: [n_embd, n_head, n_batch, 1] !! permuted !!
- GGML_API struct ggml_tensor * ggml_flash_attn_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * mask,
- float scale,
- float max_bias,
- float logit_softcap);
- GGML_API void ggml_flash_attn_ext_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec);
- GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
- const struct ggml_tensor * a);
- // TODO: needs to be adapted to ggml_flash_attn_ext
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked);
- GGML_API struct ggml_tensor * ggml_ssm_conv(
- struct ggml_context * ctx,
- struct ggml_tensor * sx,
- struct ggml_tensor * c);
- GGML_API struct ggml_tensor * ggml_ssm_scan(
- struct ggml_context * ctx,
- struct ggml_tensor * s,
- struct ggml_tensor * x,
- struct ggml_tensor * dt,
- struct ggml_tensor * A,
- struct ggml_tensor * B,
- struct ggml_tensor * C);
- // partition into non-overlapping windows with padding if needed
- // example:
- // a: 768 64 64 1
- // w: 14
- // res: 768 14 14 25
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w);
- // reverse of ggml_win_part
- // used in sam
- GGML_API struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w);
- GGML_API struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- GGML_API struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op);
- // used in sam
- GGML_API struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh);
- // used in sam
- GGML_API struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph);
- GGML_API struct ggml_tensor * ggml_rwkv_wkv6(
- struct ggml_context * ctx,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * r,
- struct ggml_tensor * tf,
- struct ggml_tensor * td,
- struct ggml_tensor * state);
- // custom operators
- typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
- typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
- typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun),
- "use ggml_map_custom1 instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_unary_op_f32_t fun),
- "use ggml_map_custom1_inplace instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun),
- "use ggml_map_custom2 instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_binary_op_f32_t fun),
- "use ggml_map_custom2_inplace instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun),
- "use ggml_map_custom1 instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun),
- "use ggml_map_custom1_inplace instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun),
- "use ggml_map_custom2 instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun),
- "use ggml_map_custom2_inplace instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun),
- "use ggml_map_custom3 instead");
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun),
- "use ggml_map_custom3_inplace instead");
- // custom operators v2
- typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
- typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
- typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
- #define GGML_N_TASKS_MAX (-1)
- // n_tasks == GGML_N_TASKS_MAX means to use max number of tasks
- GGML_API struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata);
- // loss function
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b); // labels
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a, // logits
- struct ggml_tensor * b, // labels
- struct ggml_tensor * c); // gradients of cross_entropy_loss result
- // AdamW optimizer step
- // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
- // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
- GGML_API struct ggml_tensor * ggml_opt_step_adamw(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * grad,
- struct ggml_tensor * m,
- struct ggml_tensor * v,
- struct ggml_tensor * adamw_params); // parameters such a the learning rate
- //
- // automatic differentiation
- //
- GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API void ggml_build_backward_expand(
- struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
- struct ggml_context * ctx_compute, // context for gradient computation
- struct ggml_cgraph * cgraph,
- bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
- // graph allocation in a context
- GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
- GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
- GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
- GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
- GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
- GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
- GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
- GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
- GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
- GGML_API size_t ggml_graph_overhead(void);
- GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
- GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
- GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
- GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
- GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
- // print info and performance information for the graph
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
- // dump the graph into a file using the dot format
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
- // TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
- typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
- // Set callback for all future logging events.
- // If this is not called, or NULL is supplied, everything is output on stderr.
- GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
- //
- // quantization
- //
- // - ggml_quantize_init can be called multiple times with the same type
- // it will only initialize the quantization tables for the first call or after ggml_quantize_free
- // automatically called by ggml_quantize_chunk for convenience
- //
- // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
- // call this at the end of the program to avoid memory leaks
- //
- // note: these are thread-safe
- //
- GGML_API void ggml_quantize_init(enum ggml_type type);
- GGML_API void ggml_quantize_free(void);
- // some quantization type cannot be used without an importance matrix
- GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
- // calls ggml_quantize_init internally (i.e. can allocate memory)
- GGML_API size_t ggml_quantize_chunk(
- enum ggml_type type,
- const float * src,
- void * dst,
- int64_t start,
- int64_t nrows,
- int64_t n_per_row,
- const float * imatrix);
- //
- // gguf
- //
- enum gguf_type {
- GGUF_TYPE_UINT8 = 0,
- GGUF_TYPE_INT8 = 1,
- GGUF_TYPE_UINT16 = 2,
- GGUF_TYPE_INT16 = 3,
- GGUF_TYPE_UINT32 = 4,
- GGUF_TYPE_INT32 = 5,
- GGUF_TYPE_FLOAT32 = 6,
- GGUF_TYPE_BOOL = 7,
- GGUF_TYPE_STRING = 8,
- GGUF_TYPE_ARRAY = 9,
- GGUF_TYPE_UINT64 = 10,
- GGUF_TYPE_INT64 = 11,
- GGUF_TYPE_FLOAT64 = 12,
- GGUF_TYPE_COUNT, // marks the end of the enum
- };
- struct gguf_context;
- struct gguf_init_params {
- bool no_alloc;
- // if not NULL, create a ggml_context and allocate the tensor data in it
- struct ggml_context ** ctx;
- };
- GGML_API struct gguf_context * gguf_init_empty(void);
- GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
- //GGML_API struct gguf_context * gguf_init_from_buffer(..);
- GGML_API void gguf_free(struct gguf_context * ctx);
- GGML_API const char * gguf_type_name(enum gguf_type type);
- GGML_API int gguf_get_version (const struct gguf_context * ctx);
- GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
- GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
- GGML_API void * gguf_get_data (const struct gguf_context * ctx);
- GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
- GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
- GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
- GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
- GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
- // will abort if the wrong type is used for the key
- GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
- GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
- GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
- GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
- GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
- GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
- GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
- GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
- GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
- GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
- GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
- GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
- GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
- GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
- GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
- GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
- GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
- GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
- GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
- GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
- GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
- // removes key if it exists
- GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
- // overrides existing values or adds a new one
- GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
- GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
- GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
- GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
- GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
- GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
- GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
- GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
- GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
- GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
- GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
- GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
- GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
- GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
- // set or add KV pairs from another context
- GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
- // manage tensor info
- GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
- GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
- GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
- // writing gguf files can be done in 2 ways:
- //
- // - write the entire gguf_context to a binary file in a single pass:
- //
- // gguf_write_to_file(ctx, fname);
- //
- // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
- //
- // FILE * f = fopen(fname, "wb");
- // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
- // fwrite(f, ...);
- // void * data = gguf_meta_get_meta_data(ctx);
- // fseek(f, 0, SEEK_SET);
- // fwrite(f, data, gguf_get_meta_size(ctx));
- // free(data);
- // fclose(f);
- //
- // write the entire context to a binary file
- GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
- // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
- GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
- GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
- #ifdef __cplusplus
- // restrict not standard in C++
- # if defined(__GNUC__)
- # define GGML_RESTRICT __restrict__
- # elif defined(__clang__)
- # define GGML_RESTRICT __restrict
- # elif defined(_MSC_VER)
- # define GGML_RESTRICT __restrict
- # else
- # define GGML_RESTRICT
- # endif
- #else
- # define GGML_RESTRICT restrict
- #endif
- typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
- typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
- struct ggml_type_traits {
- const char * type_name;
- int64_t blck_size;
- int64_t blck_size_interleave; // interleave elements in blocks
- size_t type_size;
- bool is_quantized;
- ggml_to_float_t to_float;
- ggml_from_float_t from_float_ref;
- };
- GGML_API const struct ggml_type_traits * ggml_get_type_traits(enum ggml_type type);
- // ggml threadpool
- // TODO: currently, only a few functions are in the base ggml API, while the rest are in the CPU backend
- // the goal should be to create an API that other backends can use move everything to the ggml base
- // scheduling priorities
- enum ggml_sched_priority {
- GGML_SCHED_PRIO_NORMAL,
- GGML_SCHED_PRIO_MEDIUM,
- GGML_SCHED_PRIO_HIGH,
- GGML_SCHED_PRIO_REALTIME
- };
- // threadpool params
- // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
- struct ggml_threadpool_params {
- bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
- int n_threads; // number of threads
- enum ggml_sched_priority prio; // thread priority
- uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
- bool strict_cpu; // strict cpu placement
- bool paused; // start in paused state
- };
- struct ggml_threadpool; // forward declaration, see ggml.c
- typedef struct ggml_threadpool * ggml_threadpool_t;
- GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
- GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
- GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
- #ifdef __cplusplus
- }
- #endif
|