123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "llama-adapter.h"
- #include "llama-model.h"
- #include <algorithm>
- #include <map>
- #include <cassert>
- #include <stdexcept>
- // vec
- struct ggml_tensor * llama_control_vector::tensor_for(int il) const {
- if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
- return nullptr;
- }
- return tensors[il];
- }
- struct ggml_tensor * llama_control_vector::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
- ggml_tensor * layer_dir = tensor_for(il);
- if (layer_dir != nullptr) {
- cur = ggml_add(ctx, cur, layer_dir);
- }
- return cur;
- }
- static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
- const auto & hparams = model.hparams;
- GGML_ASSERT(cvec.tensors.empty());
- GGML_ASSERT(cvec.ctxs.empty());
- GGML_ASSERT(cvec.bufs.empty());
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- struct ggml_init_params params = {
- /*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- cvec.ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- // make tensors
- cvec.tensors.reserve(hparams.n_layer);
- cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
- for (size_t il = 1; il < hparams.n_layer; il++) {
- ggml_backend_buffer_type_t buft = llama_model_select_buft(model, il);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
- return false;
- }
- ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
- cvec.tensors.push_back(tensor);
- }
- // allocate tensors / buffers and zero
- cvec.bufs.reserve(ctx_map.size());
- for (auto it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
- return false;
- }
- ggml_backend_buffer_clear(buf, 0);
- cvec.bufs.emplace_back(buf);
- }
- return true;
- }
- int32_t llama_control_vector_apply(
- struct llama_control_vector & cvec,
- const llama_model & model,
- const float * data,
- size_t len,
- int32_t n_embd,
- int32_t il_start,
- int32_t il_end) {
- const auto & hparams = model.hparams;
- if (data == nullptr) {
- // disable the current control vector (but leave allocated for later)
- cvec.layer_start = -1;
- cvec.layer_end = -1;
- return 0;
- }
- if (n_embd != (int) hparams.n_embd) {
- LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
- return 1;
- }
- if (cvec.tensors.empty()) {
- if (!llama_control_vector_init(cvec, model)) {
- return 1;
- }
- }
- cvec.layer_start = il_start;
- cvec.layer_end = il_end;
- for (size_t il = 1; il < hparams.n_layer; il++) {
- assert(cvec.tensors[il] != nullptr);
- const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
- if (off + n_embd <= len) {
- ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
- }
- }
- return 0;
- }
- // lora
- llama_lora_weight * llama_lora_adapter::get_weight(struct ggml_tensor * w) {
- const std::string name(w->name);
- const auto pos = ab_map.find(name);
- if (pos != ab_map.end()) {
- return &pos->second;
- }
- return nullptr;
- }
- void llama_lora_adapter_free(struct llama_lora_adapter * adapter) {
- delete adapter;
- }
- static void llama_lora_adapter_init_impl(struct llama_model & model, const char * path_lora, struct llama_lora_adapter & adapter) {
- LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
- ggml_context * ctx_init;
- struct gguf_init_params meta_gguf_params = {
- /* .no_alloc = */ true,
- /* .ctx = */ &ctx_init,
- };
- gguf_context_ptr ctx_gguf { gguf_init_from_file(path_lora, meta_gguf_params) };
- if (!ctx_gguf) {
- throw std::runtime_error("failed to load lora adapter file from " + std::string(path_lora));
- }
- ggml_context_ptr ctx { ctx_init };
- // check metadata
- {
- auto get_kv_str = [&](const std::string & key) -> std::string {
- int id = gguf_find_key(ctx_gguf.get(), key.c_str());
- return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf.get(), id));
- };
- auto get_kv_f32 = [&](const std::string & key) -> float {
- int id = gguf_find_key(ctx_gguf.get(), key.c_str());
- return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf.get(), id);
- };
- LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
- auto general_type = get_kv_str(llm_kv(LLM_KV_GENERAL_TYPE));
- if (general_type != "adapter") {
- throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
- }
- auto general_arch_str = get_kv_str(llm_kv(LLM_KV_GENERAL_ARCHITECTURE));
- auto general_arch = llm_arch_from_string(general_arch_str);
- if (general_arch != model.arch) {
- throw std::runtime_error("model arch and LoRA arch mismatch");
- }
- auto adapter_type = get_kv_str(llm_kv(LLM_KV_ADAPTER_TYPE));
- if (adapter_type != "lora") {
- throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
- }
- adapter.alpha = get_kv_f32(llm_kv(LLM_KV_ADAPTER_LORA_ALPHA));
- }
- int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
- // contexts for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- // add a new context
- struct ggml_init_params params = {
- /*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * buft_ctx = ggml_init(params);
- if (!buft_ctx) {
- return nullptr;
- }
- ctx_map[buft] = buft_ctx;
- adapter.ctxs.emplace_back(buft_ctx);
- return buft_ctx;
- };
- return it->second;
- };
- // bundle lora_a and lora_b into pairs
- std::map<std::string, llama_lora_weight> ab_map;
- auto str_endswith = [](const std::string & str, const std::string & suffix) {
- return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
- };
- for (ggml_tensor * cur = ggml_get_first_tensor(ctx.get()); cur; cur = ggml_get_next_tensor(ctx.get(), cur)) {
- std::string name(cur->name);
- if (str_endswith(name, ".lora_a")) {
- replace_all(name, ".lora_a", "");
- if (ab_map.find(name) == ab_map.end()) {
- ab_map[name] = llama_lora_weight(cur, nullptr);
- } else {
- ab_map[name].a = cur;
- }
- } else if (str_endswith(name, ".lora_b")) {
- replace_all(name, ".lora_b", "");
- if (ab_map.find(name) == ab_map.end()) {
- ab_map[name] = llama_lora_weight(nullptr, cur);
- } else {
- ab_map[name].b = cur;
- }
- } else {
- throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
- }
- }
- // add tensors
- for (auto & it : ab_map) {
- const std::string & name = it.first;
- llama_lora_weight & w = it.second;
- if (!w.a || !w.b) {
- throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
- }
- // device buft and device ctx
- auto * model_tensor = llama_model_get_tensor(model, name.c_str());
- if (!model_tensor) {
- throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
- }
- struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
- // validate tensor shape
- if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
- throw std::runtime_error("tensor '" + name + "' has incorrect shape");
- }
- if (w.a->ne[1] != w.b->ne[0]) {
- throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
- }
- // save tensor to adapter
- struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
- struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
- ggml_set_name(tensor_a, w.a->name);
- ggml_set_name(tensor_b, w.b->name);
- adapter.ab_map[name] = llama_lora_weight(tensor_a, tensor_b);
- }
- // allocate tensors / buffers and zero
- {
- adapter.ctxs.reserve(ctx_map.size());
- adapter.bufs.reserve(ctx_map.size());
- for (auto & it : ctx_map) {
- ggml_backend_buffer_type_t buft = it.first;
- ggml_context * ctx_dev = it.second;
- ggml_backend_buffer_ptr buf { ggml_backend_alloc_ctx_tensors_from_buft(ctx_dev, buft) };
- if (!buf) {
- throw std::runtime_error("failed to allocate buffer for lora adapter\n");
- }
- LLAMA_LOG_INFO("%s: %10s LoRA buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get())/1024.0/1024.0);
- adapter.bufs.emplace_back(std::move(buf));
- }
- }
- // set tensor data
- {
- llama_file gguf_file(path_lora, "rb");
- std::vector<uint8_t> read_buf;
- auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
- size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
- size_t size = ggml_nbytes(orig);
- read_buf.resize(size);
- gguf_file.seek(offs, SEEK_SET);
- gguf_file.read_raw(read_buf.data(), size);
- ggml_backend_tensor_set(dev, read_buf.data(), 0, size);
- };
- for (auto & it : adapter.ab_map) {
- auto orig = ab_map[it.first];
- auto dev = it.second;
- set_tensor(orig.a, dev.a);
- set_tensor(orig.b, dev.b);
- }
- }
- LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
- }
- struct llama_lora_adapter * llama_lora_adapter_init(struct llama_model * model, const char * path_lora) {
- struct llama_lora_adapter * adapter = new llama_lora_adapter();
- try {
- llama_lora_adapter_init_impl(*model, path_lora, *adapter);
- return adapter;
- } catch (const std::exception & err) {
- LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
- delete adapter;
- }
- return nullptr;
- }
|