123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- /**
- * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
- *
- * MIT License
- *
- * Copyright (c) 2023-2024 The ggml authors
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #pragma once
- #include "llama.h"
- #include <array>
- // bump if necessary
- #define LLAMA_MAX_LAYERS 512
- #define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
- enum llama_expert_gating_func_type {
- LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
- LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
- };
- struct llama_hparams_posnet {
- uint32_t n_embd;
- uint32_t n_layer;
- };
- struct llama_hparams_convnext {
- uint32_t n_embd;
- uint32_t n_layer;
- };
- struct llama_hparams {
- bool vocab_only;
- bool rope_finetuned;
- bool use_par_res;
- bool swin_norm;
- uint32_t n_vocab = 0;
- uint32_t n_ctx_train; // context size the model was trained on
- uint32_t n_embd;
- uint32_t n_embd_features = 0;
- uint32_t n_layer;
- uint32_t n_rot;
- uint32_t n_swa = 0; // sliding window attention (SWA)
- uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
- uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
- uint32_t n_expert = 0;
- uint32_t n_expert_used = 0;
- uint32_t n_vocab_type = 0; // for BERT-style token types
- uint32_t n_rel_attn_bkts = 0;
- // for WavTokenizer
- struct llama_hparams_posnet posnet;
- struct llama_hparams_convnext convnext;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
- std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
- std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
- std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
- uint32_t n_layer_dense_lead = 0;
- uint32_t n_lora_q = 0;
- uint32_t n_lora_kv = 0;
- uint32_t n_ff_exp = 0;
- uint32_t n_ff_shexp = 0;
- uint32_t n_expert_shared = 0;
- uint32_t n_norm_groups = 0;
- float expert_weights_scale = 0.0;
- bool expert_weights_norm = false;
- uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
- float f_norm_eps;
- float f_norm_rms_eps;
- float f_norm_group_eps;
- float f_attn_logit_softcapping = 50.0f;
- float f_final_logit_softcapping = 30.0f;
- // for RWKV
- uint32_t rescale_every_n_layers = 0;
- uint32_t time_mix_extra_dim = 0;
- uint32_t time_decay_extra_dim = 0;
- uint32_t wkv_head_size = 0;
- float rope_attn_factor = 1.0f;
- float rope_freq_base_train;
- float rope_freq_scale_train;
- uint32_t n_ctx_orig_yarn;
- float rope_yarn_log_mul;
- std::array<int, 4> rope_sections;
- // for State Space Models
- uint32_t ssm_d_conv = 0;
- uint32_t ssm_d_inner = 0;
- uint32_t ssm_d_state = 0;
- uint32_t ssm_dt_rank = 0;
- bool ssm_dt_b_c_rms = false;
- float f_clamp_kqv = 0.0f;
- float f_max_alibi_bias = 0.0f;
- float f_logit_scale = 0.0f;
- // Additional scale factors (Granite/Granite MoE)
- float f_residual_scale = 0.0f;
- float f_embedding_scale = 0.0f;
- float f_attention_scale = 0.0f;
- bool causal_attn = true;
- bool use_alibi = false;
- bool attn_soft_cap = false;
- // needed by encoder-decoder models (e.g. T5, FLAN-T5)
- // ref: https://github.com/ggerganov/llama.cpp/pull/8141
- llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
- enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
- enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
- enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
- uint32_t n_head(uint32_t il = 0) const;
- uint32_t n_head_kv(uint32_t il = 0) const;
- uint32_t n_ff(uint32_t il = 0) const;
- uint32_t n_gqa(uint32_t il = 0) const;
- // dimension of key embeddings across all k-v heads
- uint32_t n_embd_k_gqa(uint32_t il = 0) const;
- // dimension of value embeddings across all k-v heads
- uint32_t n_embd_v_gqa(uint32_t il = 0) const;
- // dimension of the rolling state embeddings
- // corresponds to Mamba's conv_states size or RWKV's token_shift states size
- uint32_t n_embd_k_s() const;
- // dimension of the recurrent state embeddings
- uint32_t n_embd_v_s() const;
- // Block skip connection
- bool n_bskcn(uint32_t n, uint32_t il) const;
- // cross attention layers
- bool cross_attention_layers(uint32_t il) const;
- };
- static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|