llama.h 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. /**
  2. * llama.cpp - commit 46e3556e01b824e52395fb050b29804b6cff2a7c - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #ifndef LLAMA_H
  27. #define LLAMA_H
  28. #include "ggml.h"
  29. #include "ggml-cpu.h"
  30. #include "ggml-backend.h"
  31. #include <stddef.h>
  32. #include <stdint.h>
  33. #include <stdio.h>
  34. #include <stdbool.h>
  35. #ifdef LLAMA_SHARED
  36. # if defined(_WIN32) && !defined(__MINGW32__)
  37. # ifdef LLAMA_BUILD
  38. # define LLAMA_API __declspec(dllexport)
  39. # else
  40. # define LLAMA_API __declspec(dllimport)
  41. # endif
  42. # else
  43. # define LLAMA_API __attribute__ ((visibility ("default")))
  44. # endif
  45. #else
  46. # define LLAMA_API
  47. #endif
  48. #ifdef __GNUC__
  49. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  50. #elif defined(_MSC_VER)
  51. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  52. #else
  53. # define DEPRECATED(func, hint) func
  54. #endif
  55. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  56. // TODO: use everywhere in the implementation
  57. #define LLAMA_TOKEN_NULL -1
  58. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  59. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  60. #define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq'
  61. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  62. #define LLAMA_SESSION_VERSION 9
  63. #define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ
  64. #define LLAMA_STATE_SEQ_VERSION 2
  65. #ifdef __cplusplus
  66. extern "C" {
  67. #endif
  68. //
  69. // C interface
  70. //
  71. // TODO: show sample usage
  72. //
  73. // struct llama_vocab; // TODO: add in the future
  74. struct llama_model;
  75. struct llama_context;
  76. struct llama_sampler;
  77. typedef int32_t llama_pos;
  78. typedef int32_t llama_token;
  79. typedef int32_t llama_seq_id;
  80. enum llama_vocab_type {
  81. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  82. LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback
  83. LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE
  84. LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece
  85. LLAMA_VOCAB_TYPE_UGM = 4, // T5 tokenizer based on Unigram
  86. LLAMA_VOCAB_TYPE_RWKV = 5, // RWKV tokenizer based on greedy tokenization
  87. };
  88. // pre-tokenization types
  89. enum llama_vocab_pre_type {
  90. LLAMA_VOCAB_PRE_TYPE_DEFAULT = 0,
  91. LLAMA_VOCAB_PRE_TYPE_LLAMA3 = 1,
  92. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM = 2,
  93. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER = 3,
  94. LLAMA_VOCAB_PRE_TYPE_FALCON = 4,
  95. LLAMA_VOCAB_PRE_TYPE_MPT = 5,
  96. LLAMA_VOCAB_PRE_TYPE_STARCODER = 6,
  97. LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
  98. LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
  99. LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
  100. LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
  101. LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
  102. LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
  103. LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
  104. LLAMA_VOCAB_PRE_TYPE_SMAUG = 14,
  105. LLAMA_VOCAB_PRE_TYPE_PORO = 15,
  106. LLAMA_VOCAB_PRE_TYPE_CHATGLM3 = 16,
  107. LLAMA_VOCAB_PRE_TYPE_CHATGLM4 = 17,
  108. LLAMA_VOCAB_PRE_TYPE_VIKING = 18,
  109. LLAMA_VOCAB_PRE_TYPE_JAIS = 19,
  110. LLAMA_VOCAB_PRE_TYPE_TEKKEN = 20,
  111. LLAMA_VOCAB_PRE_TYPE_SMOLLM = 21,
  112. LLAMA_VOCAB_PRE_TYPE_CODESHELL = 22,
  113. LLAMA_VOCAB_PRE_TYPE_BLOOM = 23,
  114. LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH = 24,
  115. LLAMA_VOCAB_PRE_TYPE_EXAONE = 25,
  116. LLAMA_VOCAB_PRE_TYPE_CHAMELEON = 26,
  117. LLAMA_VOCAB_PRE_TYPE_MINERVA = 27,
  118. LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM = 28,
  119. };
  120. enum llama_rope_type {
  121. LLAMA_ROPE_TYPE_NONE = -1,
  122. LLAMA_ROPE_TYPE_NORM = 0,
  123. LLAMA_ROPE_TYPE_NEOX = GGML_ROPE_TYPE_NEOX,
  124. LLAMA_ROPE_TYPE_MROPE = GGML_ROPE_TYPE_MROPE,
  125. LLAMA_ROPE_TYPE_VISION = GGML_ROPE_TYPE_VISION,
  126. };
  127. enum llama_token_type { //TODO: remove, required until per token attributes are available from GGUF file
  128. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  129. LLAMA_TOKEN_TYPE_NORMAL = 1,
  130. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  131. LLAMA_TOKEN_TYPE_CONTROL = 3,
  132. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  133. LLAMA_TOKEN_TYPE_UNUSED = 5,
  134. LLAMA_TOKEN_TYPE_BYTE = 6,
  135. };
  136. enum llama_token_attr {
  137. LLAMA_TOKEN_ATTR_UNDEFINED = 0,
  138. LLAMA_TOKEN_ATTR_UNKNOWN = 1 << 0,
  139. LLAMA_TOKEN_ATTR_UNUSED = 1 << 1,
  140. LLAMA_TOKEN_ATTR_NORMAL = 1 << 2,
  141. LLAMA_TOKEN_ATTR_CONTROL = 1 << 3, // SPECIAL?
  142. LLAMA_TOKEN_ATTR_USER_DEFINED = 1 << 4,
  143. LLAMA_TOKEN_ATTR_BYTE = 1 << 5,
  144. LLAMA_TOKEN_ATTR_NORMALIZED = 1 << 6,
  145. LLAMA_TOKEN_ATTR_LSTRIP = 1 << 7,
  146. LLAMA_TOKEN_ATTR_RSTRIP = 1 << 8,
  147. LLAMA_TOKEN_ATTR_SINGLE_WORD = 1 << 9,
  148. };
  149. // model file types
  150. enum llama_ftype {
  151. LLAMA_FTYPE_ALL_F32 = 0,
  152. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  153. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  154. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  155. // LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  156. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  157. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  158. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  159. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  160. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  161. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  162. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  163. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  164. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  165. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  166. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  167. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  168. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  169. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  170. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  171. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  172. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  173. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  174. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  175. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  176. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  177. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  178. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  179. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  180. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  181. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  182. LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors
  183. LLAMA_FTYPE_MOSTLY_BF16 = 32, // except 1d tensors
  184. //LLAMA_FTYPE_MOSTLY_Q4_0_4_4 = 33, // removed from gguf files, use Q4_0 and runtime repack
  185. //LLAMA_FTYPE_MOSTLY_Q4_0_4_8 = 34, // removed from gguf files, use Q4_0 and runtime repack
  186. //LLAMA_FTYPE_MOSTLY_Q4_0_8_8 = 35, // removed from gguf files, use Q4_0 and runtime repack
  187. LLAMA_FTYPE_MOSTLY_TQ1_0 = 36, // except 1d tensors
  188. LLAMA_FTYPE_MOSTLY_TQ2_0 = 37, // except 1d tensors
  189. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  190. };
  191. enum llama_rope_scaling_type {
  192. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  193. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  194. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  195. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  196. LLAMA_ROPE_SCALING_TYPE_LONGROPE = 3,
  197. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_LONGROPE,
  198. };
  199. enum llama_pooling_type {
  200. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  201. LLAMA_POOLING_TYPE_NONE = 0,
  202. LLAMA_POOLING_TYPE_MEAN = 1,
  203. LLAMA_POOLING_TYPE_CLS = 2,
  204. LLAMA_POOLING_TYPE_LAST = 3,
  205. LLAMA_POOLING_TYPE_RANK = 4, // used by reranking models to attach the classification head to the graph
  206. };
  207. enum llama_attention_type {
  208. LLAMA_ATTENTION_TYPE_UNSPECIFIED = -1,
  209. LLAMA_ATTENTION_TYPE_CAUSAL = 0,
  210. LLAMA_ATTENTION_TYPE_NON_CAUSAL = 1,
  211. };
  212. enum llama_split_mode {
  213. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  214. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  215. LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
  216. };
  217. // TODO: simplify (https://github.com/ggerganov/llama.cpp/pull/9294#pullrequestreview-2286561979)
  218. typedef struct llama_token_data {
  219. llama_token id; // token id
  220. float logit; // log-odds of the token
  221. float p; // probability of the token
  222. } llama_token_data;
  223. typedef struct llama_token_data_array {
  224. // TODO: consider SoA
  225. // NOTE: this pointer can be modified by the samplers
  226. llama_token_data * data;
  227. size_t size;
  228. int64_t selected; // this is the index in the data array (i.e. not the token id)
  229. bool sorted;
  230. } llama_token_data_array;
  231. typedef bool (*llama_progress_callback)(float progress, void * user_data);
  232. // Input data for llama_decode
  233. // A llama_batch object can contain input about one or many sequences
  234. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  235. //
  236. // - token : the token ids of the input (used when embd is NULL)
  237. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  238. // - pos : the positions of the respective token in the sequence
  239. // (if set to NULL, the token position will be tracked automatically by llama_decode)
  240. // - seq_id : the sequence to which the respective token belongs
  241. // (if set to NULL, the sequence ID will be assumed to be 0)
  242. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  243. // (if set to NULL, only the logits for last token will be returned)
  244. //
  245. typedef struct llama_batch {
  246. int32_t n_tokens;
  247. llama_token * token;
  248. float * embd;
  249. int32_t n_embd;
  250. llama_pos * pos;
  251. int32_t * n_seq_id;
  252. llama_seq_id ** seq_id;
  253. int8_t * logits; // TODO: rename this to "output"
  254. } llama_batch;
  255. enum llama_model_kv_override_type {
  256. LLAMA_KV_OVERRIDE_TYPE_INT,
  257. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  258. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  259. LLAMA_KV_OVERRIDE_TYPE_STR,
  260. };
  261. struct llama_model_kv_override {
  262. enum llama_model_kv_override_type tag;
  263. char key[128];
  264. union {
  265. int64_t val_i64;
  266. double val_f64;
  267. bool val_bool;
  268. char val_str[128];
  269. };
  270. };
  271. struct llama_model_params {
  272. // NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
  273. ggml_backend_dev_t * devices;
  274. int32_t n_gpu_layers; // number of layers to store in VRAM
  275. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  276. // the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
  277. int32_t main_gpu;
  278. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  279. const float * tensor_split;
  280. // comma separated list of RPC servers to use for offloading
  281. const char * rpc_servers;
  282. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  283. // If the provided progress_callback returns true, model loading continues.
  284. // If it returns false, model loading is immediately aborted.
  285. llama_progress_callback progress_callback;
  286. // context pointer passed to the progress callback
  287. void * progress_callback_user_data;
  288. // override key-value pairs of the model meta data
  289. const struct llama_model_kv_override * kv_overrides;
  290. // Keep the booleans together to avoid misalignment during copy-by-value.
  291. bool vocab_only; // only load the vocabulary, no weights
  292. bool use_mmap; // use mmap if possible
  293. bool use_mlock; // force system to keep model in RAM
  294. bool check_tensors; // validate model tensor data
  295. };
  296. // NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations
  297. // https://github.com/ggerganov/llama.cpp/pull/7544
  298. struct llama_context_params {
  299. uint32_t n_ctx; // text context, 0 = from model
  300. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  301. uint32_t n_ubatch; // physical maximum batch size
  302. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  303. int32_t n_threads; // number of threads to use for generation
  304. int32_t n_threads_batch; // number of threads to use for batch processing
  305. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  306. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  307. enum llama_attention_type attention_type; // attention type to use for embeddings
  308. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  309. float rope_freq_base; // RoPE base frequency, 0 = from model
  310. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  311. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  312. float yarn_attn_factor; // YaRN magnitude scaling factor
  313. float yarn_beta_fast; // YaRN low correction dim
  314. float yarn_beta_slow; // YaRN high correction dim
  315. uint32_t yarn_orig_ctx; // YaRN original context size
  316. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  317. ggml_backend_sched_eval_callback cb_eval;
  318. void * cb_eval_user_data;
  319. enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
  320. enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
  321. // Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
  322. // TODO: move at the end of the struct
  323. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  324. bool embeddings; // if true, extract embeddings (together with logits)
  325. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  326. bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
  327. bool no_perf; // whether to measure performance timings
  328. bool cross_attn; // whether to use cross attention
  329. // Abort callback
  330. // if it returns true, execution of llama_decode() will be aborted
  331. // currently works only with CPU execution
  332. ggml_abort_callback abort_callback;
  333. void * abort_callback_data;
  334. };
  335. // model quantization parameters
  336. typedef struct llama_model_quantize_params {
  337. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  338. enum llama_ftype ftype; // quantize to this llama_ftype
  339. enum ggml_type output_tensor_type; // output tensor type
  340. enum ggml_type token_embedding_type; // token embeddings tensor type
  341. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  342. bool quantize_output_tensor; // quantize output.weight
  343. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  344. bool pure; // quantize all tensors to the default type
  345. bool keep_split; // quantize to the same number of shards
  346. void * imatrix; // pointer to importance matrix data
  347. void * kv_overrides; // pointer to vector containing overrides
  348. } llama_model_quantize_params;
  349. typedef struct llama_logit_bias {
  350. llama_token token;
  351. float bias;
  352. } llama_logit_bias;
  353. typedef struct llama_sampler_chain_params {
  354. bool no_perf; // whether to measure performance timings
  355. } llama_sampler_chain_params;
  356. // used in chat template
  357. typedef struct llama_chat_message {
  358. const char * role;
  359. const char * content;
  360. } llama_chat_message;
  361. // lora adapter
  362. // TODO: rename to llama_adapter_lora
  363. struct llama_lora_adapter;
  364. // Helpers for getting default parameters
  365. // TODO: update API to start accepting pointers to params structs (https://github.com/ggerganov/llama.cpp/discussions/9172)
  366. LLAMA_API struct llama_model_params llama_model_default_params(void);
  367. LLAMA_API struct llama_context_params llama_context_default_params(void);
  368. LLAMA_API struct llama_sampler_chain_params llama_sampler_chain_default_params(void);
  369. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  370. // Initialize the llama + ggml backend
  371. // If numa is true, use NUMA optimizations
  372. // Call once at the start of the program
  373. LLAMA_API void llama_backend_init(void);
  374. //optional:
  375. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  376. // Optional: an auto threadpool gets created in ggml if not passed explicitly
  377. LLAMA_API void llama_attach_threadpool(
  378. struct llama_context * ctx,
  379. ggml_threadpool_t threadpool,
  380. ggml_threadpool_t threadpool_batch);
  381. LLAMA_API void llama_detach_threadpool(struct llama_context * ctx);
  382. // Call once at the end of the program - currently only used for MPI
  383. LLAMA_API void llama_backend_free(void);
  384. LLAMA_API struct llama_model * llama_load_model_from_file(
  385. const char * path_model,
  386. struct llama_model_params params);
  387. // TODO: rename to llama_model_free
  388. LLAMA_API void llama_free_model(struct llama_model * model);
  389. // TODO: rename to llama_init_from_model
  390. LLAMA_API struct llama_context * llama_new_context_with_model(
  391. struct llama_model * model,
  392. struct llama_context_params params);
  393. // TODO (jmorganca): this should most likely be passed in as part of a batch
  394. // and not set on the context for all batches.
  395. LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
  396. // Frees all allocated memory
  397. LLAMA_API void llama_free(struct llama_context * ctx);
  398. LLAMA_API int64_t llama_time_us(void);
  399. LLAMA_API size_t llama_max_devices(void);
  400. LLAMA_API bool llama_supports_mmap (void);
  401. LLAMA_API bool llama_supports_mlock (void);
  402. LLAMA_API bool llama_supports_gpu_offload(void);
  403. LLAMA_API bool llama_supports_rpc (void);
  404. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  405. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  406. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  407. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  408. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  409. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  410. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  411. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  412. LLAMA_API int32_t llama_n_head (const struct llama_model * model);
  413. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  414. LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
  415. LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
  416. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  417. // Get the model's RoPE frequency scaling factor
  418. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  419. // Functions to access the model's GGUF metadata scalar values
  420. // - The functions return the length of the string on success, or -1 on failure
  421. // - The output string is always null-terminated and cleared on failure
  422. // - When retrieving a string, an extra byte must be allocated to account for the null terminator
  423. // - GGUF array values are not supported by these functions
  424. // Get metadata value as a string by key name
  425. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  426. // Get the number of metadata key/value pairs
  427. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  428. // Get metadata key name by index
  429. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  430. // Get metadata value as a string by index
  431. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  432. // Get a string describing the model type
  433. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  434. // Returns the total size of all the tensors in the model in bytes
  435. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  436. // Returns the total number of parameters in the model
  437. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  438. // Returns true if the model contains an encoder that requires llama_encode() call
  439. LLAMA_API bool llama_model_has_encoder(const struct llama_model * model);
  440. // Returns true if the model contains a decoder that requires llama_decode() call
  441. LLAMA_API bool llama_model_has_decoder(const struct llama_model * model);
  442. // For encoder-decoder models, this function returns id of the token that must be provided
  443. // to the decoder to start generating output sequence. For other models, it returns -1.
  444. LLAMA_API llama_token llama_model_decoder_start_token(const struct llama_model * model);
  445. // Returns true if the model is recurrent (like Mamba, RWKV, etc.)
  446. LLAMA_API bool llama_model_is_recurrent(const struct llama_model * model);
  447. // Returns 0 on success
  448. LLAMA_API uint32_t llama_model_quantize(
  449. const char * fname_inp,
  450. const char * fname_out,
  451. const llama_model_quantize_params * params);
  452. //
  453. // Adapters
  454. //
  455. // Load a LoRA adapter from file
  456. // TODO: rename to llama_adapter_lora_init
  457. LLAMA_API struct llama_lora_adapter * llama_lora_adapter_init(
  458. struct llama_model * model,
  459. const char * path_lora);
  460. // Add a loaded LoRA adapter to given context
  461. // This will not modify model's weight
  462. // TODO: rename to llama_set_adapter_lora
  463. LLAMA_API int32_t llama_lora_adapter_set(
  464. struct llama_context * ctx,
  465. struct llama_lora_adapter * adapter,
  466. float scale);
  467. // Remove a specific LoRA adapter from given context
  468. // Return -1 if the adapter is not present in the context
  469. // TODO: rename to llama_rm_adapter_lora
  470. LLAMA_API int32_t llama_lora_adapter_remove(
  471. struct llama_context * ctx,
  472. struct llama_lora_adapter * adapter);
  473. // Remove all LoRA adapters from given context
  474. // TODO: rename to llama_clear_adapter_lora
  475. LLAMA_API void llama_lora_adapter_clear(struct llama_context * ctx);
  476. // Manually free a LoRA adapter
  477. // Note: loaded adapters will be free when the associated model is deleted
  478. // TODO: rename to llama_adapter_lora_free
  479. LLAMA_API void llama_lora_adapter_free(struct llama_lora_adapter * adapter);
  480. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  481. // the currently loaded vector.
  482. // n_embd should be the size of a single layer's control, and data should point
  483. // to an n_embd x n_layers buffer starting from layer 1.
  484. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  485. // See llama_control_vector_load in common to load a control vector.
  486. // TODO: rename to llama_adapter_cvec_apply
  487. LLAMA_API int32_t llama_control_vector_apply(
  488. struct llama_context * lctx,
  489. const float * data,
  490. size_t len,
  491. int32_t n_embd,
  492. int32_t il_start,
  493. int32_t il_end);
  494. //
  495. // KV cache
  496. //
  497. // TODO: remove llama_kv_cache_view_* API
  498. // Information associated with an individual cell in the KV cache view.
  499. struct llama_kv_cache_view_cell {
  500. // The position for this cell. Takes KV cache shifts into account.
  501. // May be negative if the cell is not populated.
  502. llama_pos pos;
  503. };
  504. // An updateable view of the KV cache.
  505. struct llama_kv_cache_view {
  506. // Number of KV cache cells. This will be the same as the context size.
  507. int32_t n_cells;
  508. // Maximum number of sequences that can exist in a cell. It's not an error
  509. // if there are more sequences in a cell than this value, however they will
  510. // not be visible in the view cells_sequences.
  511. int32_t n_seq_max;
  512. // Number of tokens in the cache. For example, if there are two populated
  513. // cells, the first with 1 sequence id in it and the second with 2 sequence
  514. // ids then you'll have 3 tokens.
  515. int32_t token_count;
  516. // Number of populated cache cells.
  517. int32_t used_cells;
  518. // Maximum contiguous empty slots in the cache.
  519. int32_t max_contiguous;
  520. // Index to the start of the max_contiguous slot range. Can be negative
  521. // when cache is full.
  522. int32_t max_contiguous_idx;
  523. // Information for an individual cell.
  524. struct llama_kv_cache_view_cell * cells;
  525. // The sequences for each cell. There will be n_seq_max items per cell.
  526. llama_seq_id * cells_sequences;
  527. };
  528. // Create an empty KV cache view. (use only for debugging purposes)
  529. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  530. // Free a KV cache view. (use only for debugging purposes)
  531. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  532. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  533. // TODO: change signature to llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_context * ctx)
  534. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  535. ///
  536. // Returns the number of tokens in the KV cache (slow, use only for debug)
  537. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  538. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  539. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  540. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  541. // Clear the KV cache - both cell info is erased and KV data is zeroed
  542. LLAMA_API void llama_kv_cache_clear(
  543. struct llama_context * ctx);
  544. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  545. // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
  546. // seq_id < 0 : match any sequence
  547. // p0 < 0 : [0, p1]
  548. // p1 < 0 : [p0, inf)
  549. LLAMA_API bool llama_kv_cache_seq_rm(
  550. struct llama_context * ctx,
  551. llama_seq_id seq_id,
  552. llama_pos p0,
  553. llama_pos p1);
  554. // Copy all tokens that belong to the specified sequence to another sequence
  555. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  556. // p0 < 0 : [0, p1]
  557. // p1 < 0 : [p0, inf)
  558. LLAMA_API void llama_kv_cache_seq_cp(
  559. struct llama_context * ctx,
  560. llama_seq_id seq_id_src,
  561. llama_seq_id seq_id_dst,
  562. llama_pos p0,
  563. llama_pos p1);
  564. // Removes all tokens that do not belong to the specified sequence
  565. LLAMA_API void llama_kv_cache_seq_keep(
  566. struct llama_context * ctx,
  567. llama_seq_id seq_id);
  568. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  569. // If the KV cache is RoPEd, the KV data is updated accordingly:
  570. // - lazily on next llama_decode()
  571. // - explicitly with llama_kv_cache_update()
  572. // p0 < 0 : [0, p1]
  573. // p1 < 0 : [p0, inf)
  574. LLAMA_API void llama_kv_cache_seq_add(
  575. struct llama_context * ctx,
  576. llama_seq_id seq_id,
  577. llama_pos p0,
  578. llama_pos p1,
  579. llama_pos delta);
  580. // Integer division of the positions by factor of `d > 1`
  581. // If the KV cache is RoPEd, the KV data is updated accordingly:
  582. // - lazily on next llama_decode()
  583. // - explicitly with llama_kv_cache_update()
  584. // p0 < 0 : [0, p1]
  585. // p1 < 0 : [p0, inf)
  586. LLAMA_API void llama_kv_cache_seq_div(
  587. struct llama_context * ctx,
  588. llama_seq_id seq_id,
  589. llama_pos p0,
  590. llama_pos p1,
  591. int d);
  592. // Returns the largest position present in the KV cache for the specified sequence
  593. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  594. struct llama_context * ctx,
  595. llama_seq_id seq_id);
  596. // TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
  597. // how to avoid this?
  598. // Defragment the KV cache
  599. // This will be applied:
  600. // - lazily on next llama_decode()
  601. // - explicitly with llama_kv_cache_update()
  602. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  603. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  604. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  605. // Check if the context supports KV cache shifting
  606. LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
  607. //
  608. // State / sessions
  609. //
  610. // Returns the *actual* size in bytes of the state
  611. // (logits, embedding and kv_cache)
  612. // Only use when saving the state, not when restoring it, otherwise the size may be too small.
  613. LLAMA_API size_t llama_state_get_size(struct llama_context * ctx);
  614. LLAMA_API DEPRECATED(size_t llama_get_state_size(struct llama_context * ctx),
  615. "use llama_state_get_size instead");
  616. // Copies the state to the specified destination address.
  617. // Destination needs to have allocated enough memory.
  618. // Returns the number of bytes copied
  619. LLAMA_API size_t llama_state_get_data(
  620. struct llama_context * ctx,
  621. uint8_t * dst,
  622. size_t size);
  623. LLAMA_API DEPRECATED(size_t llama_copy_state_data(
  624. struct llama_context * ctx,
  625. uint8_t * dst),
  626. "use llama_state_get_data instead");
  627. // Set the state reading from the specified address
  628. // Returns the number of bytes read
  629. LLAMA_API size_t llama_state_set_data(
  630. struct llama_context * ctx,
  631. const uint8_t * src,
  632. size_t size);
  633. LLAMA_API DEPRECATED(size_t llama_set_state_data(
  634. struct llama_context * ctx,
  635. const uint8_t * src),
  636. "use llama_state_set_data instead");
  637. // Save/load session file
  638. LLAMA_API bool llama_state_load_file(
  639. struct llama_context * ctx,
  640. const char * path_session,
  641. llama_token * tokens_out,
  642. size_t n_token_capacity,
  643. size_t * n_token_count_out);
  644. LLAMA_API DEPRECATED(bool llama_load_session_file(
  645. struct llama_context * ctx,
  646. const char * path_session,
  647. llama_token * tokens_out,
  648. size_t n_token_capacity,
  649. size_t * n_token_count_out),
  650. "use llama_state_load_file instead");
  651. LLAMA_API bool llama_state_save_file(
  652. struct llama_context * ctx,
  653. const char * path_session,
  654. const llama_token * tokens,
  655. size_t n_token_count);
  656. LLAMA_API DEPRECATED(bool llama_save_session_file(
  657. struct llama_context * ctx,
  658. const char * path_session,
  659. const llama_token * tokens,
  660. size_t n_token_count),
  661. "use llama_state_save_file instead");
  662. // Get the exact size needed to copy the KV cache of a single sequence
  663. LLAMA_API size_t llama_state_seq_get_size(
  664. struct llama_context * ctx,
  665. llama_seq_id seq_id);
  666. // Copy the KV cache of a single sequence into the specified buffer
  667. LLAMA_API size_t llama_state_seq_get_data(
  668. struct llama_context * ctx,
  669. uint8_t * dst,
  670. size_t size,
  671. llama_seq_id seq_id);
  672. // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence
  673. // Returns:
  674. // - Positive: Ok
  675. // - Zero: Failed to load
  676. LLAMA_API size_t llama_state_seq_set_data(
  677. struct llama_context * ctx,
  678. const uint8_t * src,
  679. size_t size,
  680. llama_seq_id dest_seq_id);
  681. LLAMA_API size_t llama_state_seq_save_file(
  682. struct llama_context * ctx,
  683. const char * filepath,
  684. llama_seq_id seq_id,
  685. const llama_token * tokens,
  686. size_t n_token_count);
  687. LLAMA_API size_t llama_state_seq_load_file(
  688. struct llama_context * ctx,
  689. const char * filepath,
  690. llama_seq_id dest_seq_id,
  691. llama_token * tokens_out,
  692. size_t n_token_capacity,
  693. size_t * n_token_count_out);
  694. //
  695. // Decoding
  696. //
  697. // Return batch for single sequence of tokens
  698. // The sequence ID will be fixed to 0
  699. // The position of the tokens will be tracked automatically by llama_decode
  700. //
  701. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  702. //
  703. LLAMA_API struct llama_batch llama_batch_get_one(
  704. llama_token * tokens,
  705. int32_t n_tokens);
  706. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  707. // Each token can be assigned up to n_seq_max sequence ids
  708. // The batch has to be freed with llama_batch_free()
  709. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  710. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  711. // The rest of the llama_batch members are allocated with size n_tokens
  712. // All members are left uninitialized
  713. LLAMA_API struct llama_batch llama_batch_init(
  714. int32_t n_tokens,
  715. int32_t embd,
  716. int32_t n_seq_max);
  717. // Frees a batch of tokens allocated with llama_batch_init()
  718. LLAMA_API void llama_batch_free(struct llama_batch batch);
  719. // Processes a batch of tokens with the ecoder part of the encoder-decoder model.
  720. // Stores the encoder output internally for later use by the decoder cross-attention layers.
  721. // 0 - success
  722. // < 0 - error. the KV cache state is restored to the state before this call
  723. LLAMA_API int32_t llama_encode(
  724. struct llama_context * ctx,
  725. struct llama_batch batch);
  726. // Positive return values does not mean a fatal error, but rather a warning.
  727. // 0 - success
  728. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  729. // < 0 - error. the KV cache state is restored to the state before this call
  730. LLAMA_API int32_t llama_decode(
  731. struct llama_context * ctx,
  732. struct llama_batch batch);
  733. // Set the number of threads used for decoding
  734. // n_threads is the number of threads used for generation (single token)
  735. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  736. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch);
  737. // Get the number of threads used for generation of a single token.
  738. LLAMA_API int32_t llama_n_threads(struct llama_context * ctx);
  739. // Get the number of threads used for prompt and batch processing (multiple token).
  740. LLAMA_API int32_t llama_n_threads_batch(struct llama_context * ctx);
  741. // Set whether the model is in embeddings mode or not
  742. // If true, embeddings will be returned but logits will not
  743. LLAMA_API void llama_set_embeddings(struct llama_context * ctx, bool embeddings);
  744. // Set whether to use causal attention or not
  745. // If set to true, the model will only attend to the past tokens
  746. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  747. // Set abort callback
  748. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  749. // Wait until all computations are finished
  750. // This is automatically done when using one of the functions below to obtain the computation results
  751. // and is not necessary to call it explicitly in most cases
  752. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  753. // Token logits obtained from the last call to llama_decode()
  754. // The logits for which llama_batch.logits[i] != 0 are stored contiguously
  755. // in the order they have appeared in the batch.
  756. // Rows: number of tokens for which llama_batch.logits[i] != 0
  757. // Cols: n_vocab
  758. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  759. // Logits for the ith token. For positive indices, Equivalent to:
  760. // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab
  761. // Negative indicies can be used to access logits in reverse order, -1 is the last logit.
  762. // returns NULL for invalid ids.
  763. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  764. // Get all output token embeddings.
  765. // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model,
  766. // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously
  767. // in the order they have appeared in the batch.
  768. // shape: [n_outputs*n_embd]
  769. // Otherwise, returns NULL.
  770. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  771. // Get the embeddings for the ith token. For positive indices, Equivalent to:
  772. // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd
  773. // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding.
  774. // shape: [n_embd] (1-dimensional)
  775. // returns NULL for invalid ids.
  776. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  777. // Get the embeddings for a sequence id
  778. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  779. // when pooling_type == LLAMA_POOLING_TYPE_RANK, returns float[1] with the rank of the sequence
  780. // otherwise: float[n_embd] (1-dimensional)
  781. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  782. //
  783. // Vocab
  784. //
  785. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  786. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  787. LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token);
  788. // Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
  789. LLAMA_API bool llama_token_is_eog(const struct llama_model * model, llama_token token);
  790. // Identify if Token Id is a control token or a render-able token
  791. LLAMA_API bool llama_token_is_control(const struct llama_model * model, llama_token token);
  792. // Special tokens
  793. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  794. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  795. LLAMA_API llama_token llama_token_eot(const struct llama_model * model); // end-of-turn
  796. LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification
  797. LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator
  798. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  799. LLAMA_API llama_token llama_token_pad(const struct llama_model * model); // padding
  800. LLAMA_API bool llama_add_bos_token(const struct llama_model * model);
  801. LLAMA_API bool llama_add_eos_token(const struct llama_model * model);
  802. // infill tokens
  803. DEPRECATED(LLAMA_API llama_token llama_token_prefix(const struct llama_model * model), "use llama_token_fim_pre instead");
  804. DEPRECATED(LLAMA_API llama_token llama_token_middle(const struct llama_model * model), "use llama_token_fim_mid instead");
  805. DEPRECATED(LLAMA_API llama_token llama_token_suffix(const struct llama_model * model), "use llama_token_fim_suf instead");
  806. LLAMA_API llama_token llama_token_fim_pre(const struct llama_model * model);
  807. LLAMA_API llama_token llama_token_fim_suf(const struct llama_model * model);
  808. LLAMA_API llama_token llama_token_fim_mid(const struct llama_model * model);
  809. LLAMA_API llama_token llama_token_fim_pad(const struct llama_model * model);
  810. LLAMA_API llama_token llama_token_fim_rep(const struct llama_model * model);
  811. LLAMA_API llama_token llama_token_fim_sep(const struct llama_model * model);
  812. //
  813. // Tokenization
  814. //
  815. // The API is thread-safe.
  816. //
  817. /// @details Convert the provided text into tokens.
  818. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  819. /// @return Returns the number of tokens on success, no more than n_tokens_max
  820. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  821. /// @param add_special Allow to add BOS and EOS tokens if model is configured to do so.
  822. /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated
  823. /// as plaintext. Does not insert a leading space.
  824. LLAMA_API int32_t llama_tokenize(
  825. const struct llama_model * model,
  826. const char * text,
  827. int32_t text_len,
  828. llama_token * tokens,
  829. int32_t n_tokens_max,
  830. bool add_special,
  831. bool parse_special);
  832. // Token Id -> Piece.
  833. // Uses the vocabulary in the provided context.
  834. // Does not write null terminator to the buffer.
  835. // User can skip up to 'lstrip' leading spaces before copying (useful when encoding/decoding multiple tokens with 'add_space_prefix')
  836. // @param special If true, special tokens are rendered in the output.
  837. LLAMA_API int32_t llama_token_to_piece(
  838. const struct llama_model * model,
  839. llama_token token,
  840. char * buf,
  841. int32_t length,
  842. int32_t lstrip,
  843. bool special);
  844. /// @details Convert the provided tokens into text (inverse of llama_tokenize()).
  845. /// @param text The char pointer must be large enough to hold the resulting text.
  846. /// @return Returns the number of chars/bytes on success, no more than text_len_max.
  847. /// @return Returns a negative number on failure - the number of chars/bytes that would have been returned.
  848. /// @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so.
  849. /// @param unparse_special If true, special tokens are rendered in the output.
  850. LLAMA_API int32_t llama_detokenize(
  851. const struct llama_model * model,
  852. const llama_token * tokens,
  853. int32_t n_tokens,
  854. char * text,
  855. int32_t text_len_max,
  856. bool remove_special,
  857. bool unparse_special);
  858. //
  859. // Chat templates
  860. //
  861. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  862. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  863. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  864. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  865. /// @param chat Pointer to a list of multiple llama_chat_message
  866. /// @param n_msg Number of llama_chat_message in this chat
  867. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  868. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  869. /// @param length The size of the allocated buffer
  870. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  871. LLAMA_API int32_t llama_chat_apply_template(
  872. const struct llama_model * model,
  873. const char * tmpl,
  874. const struct llama_chat_message * chat,
  875. size_t n_msg,
  876. bool add_ass,
  877. char * buf,
  878. int32_t length);
  879. // Get list of built-in chat templates
  880. LLAMA_API int32_t llama_chat_builtin_templates(const char ** output, size_t len);
  881. //
  882. // Sampling API
  883. //
  884. // Sample usage:
  885. //
  886. // // prepare the sampling chain at the start
  887. // auto sparams = llama_sampler_chain_default_params();
  888. //
  889. // llama_sampler * smpl = llama_sampler_chain_init(sparams);
  890. //
  891. // llama_sampler_chain_add(smpl, llama_sampler_init_top_k(50));
  892. // llama_sampler_chain_add(smpl, llama_sampler_init_top_p(0.9, 1));
  893. // llama_sampler_chain_add(smpl, llama_sampler_init_temp (0.8));
  894. //
  895. // // typically, the chain should end with a sampler such as "greedy", "dist" or "mirostat"
  896. // // this sampler will be responsible to select the actual token
  897. // llama_sampler_chain_add(smpl, llama_sampler_init_dist(seed));
  898. //
  899. // ...
  900. //
  901. // // decoding loop:
  902. // while (...) {
  903. // ...
  904. //
  905. // llama_decode(ctx, batch);
  906. //
  907. // // sample from the logits of the last token in the batch
  908. // const llama_token id = llama_sampler_sample(smpl, ctx, -1);
  909. //
  910. // // accepting the token updates the internal state of certain samplers (e.g. grammar, repetition, etc.)
  911. // llama_sampler_accept(smpl, id);
  912. // ...
  913. // }
  914. //
  915. // llama_sampler_free(smpl);
  916. //
  917. // TODO: In the future, llama_sampler will be utilized to offload the sampling to the backends (e.g. GPU).
  918. // TODO: in the future, the entire sampling API that uses llama_model should start using llama_vocab
  919. //
  920. typedef void * llama_sampler_context_t;
  921. // user code can implement the interface below in order to create custom llama_sampler
  922. struct llama_sampler_i {
  923. const char * (*name) (const struct llama_sampler * smpl); // can be NULL
  924. void (*accept)( struct llama_sampler * smpl, llama_token token); // can be NULL
  925. void (*apply) ( struct llama_sampler * smpl, llama_token_data_array * cur_p); // required
  926. void (*reset) ( struct llama_sampler * smpl); // can be NULL
  927. struct llama_sampler * (*clone) (const struct llama_sampler * smpl); // can be NULL if ctx is NULL
  928. void (*free) ( struct llama_sampler * smpl); // can be NULL if ctx is NULL
  929. // TODO: API for internal libllama usage for appending the sampling to an existing ggml_cgraph
  930. //void (*apply_ggml) (struct llama_sampler * smpl, ...);
  931. };
  932. struct llama_sampler {
  933. struct llama_sampler_i * iface;
  934. llama_sampler_context_t ctx;
  935. };
  936. // mirror of llama_sampler_i:
  937. LLAMA_API const char * llama_sampler_name (const struct llama_sampler * smpl);
  938. LLAMA_API void llama_sampler_accept( struct llama_sampler * smpl, llama_token token);
  939. LLAMA_API void llama_sampler_apply ( struct llama_sampler * smpl, llama_token_data_array * cur_p);
  940. LLAMA_API void llama_sampler_reset ( struct llama_sampler * smpl);
  941. LLAMA_API struct llama_sampler * llama_sampler_clone (const struct llama_sampler * smpl);
  942. // important: do not free if the sampler has been added to a llama_sampler_chain (via llama_sampler_chain_add)
  943. LLAMA_API void llama_sampler_free ( struct llama_sampler * smpl);
  944. // llama_sampler_chain
  945. // a type of llama_sampler that can chain multiple samplers one after another
  946. LLAMA_API struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params);
  947. // important: takes ownership of the sampler object and will free it when llama_sampler_free is called
  948. LLAMA_API void llama_sampler_chain_add( struct llama_sampler * chain, struct llama_sampler * smpl);
  949. LLAMA_API struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i);
  950. LLAMA_API int llama_sampler_chain_n (const struct llama_sampler * chain);
  951. // after removing a sampler, the chain will no longer own it, and it will not be freed when the chain is freed
  952. LLAMA_API struct llama_sampler * llama_sampler_chain_remove( struct llama_sampler * chain, int32_t i);
  953. // available samplers:
  954. LLAMA_API struct llama_sampler * llama_sampler_init_greedy(void);
  955. LLAMA_API struct llama_sampler * llama_sampler_init_dist (uint32_t seed);
  956. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  957. /// NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
  958. DEPRECATED(LLAMA_API struct llama_sampler * llama_sampler_init_softmax (void),
  959. "will be removed in the future (see https://github.com/ggerganov/llama.cpp/pull/9896#discussion_r1800920915)");
  960. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  961. LLAMA_API struct llama_sampler * llama_sampler_init_top_k (int32_t k);
  962. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  963. LLAMA_API struct llama_sampler * llama_sampler_init_top_p (float p, size_t min_keep);
  964. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  965. LLAMA_API struct llama_sampler * llama_sampler_init_min_p (float p, size_t min_keep);
  966. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  967. LLAMA_API struct llama_sampler * llama_sampler_init_typical (float p, size_t min_keep);
  968. /// #details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
  969. LLAMA_API struct llama_sampler * llama_sampler_init_temp (float t);
  970. /// @details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
  971. LLAMA_API struct llama_sampler * llama_sampler_init_temp_ext (float t, float delta, float exponent);
  972. /// @details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
  973. LLAMA_API struct llama_sampler * llama_sampler_init_xtc (float p, float t, size_t min_keep, uint32_t seed);
  974. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  975. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  976. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  977. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  978. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  979. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  980. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat(
  981. int32_t n_vocab,
  982. uint32_t seed,
  983. float tau,
  984. float eta,
  985. int32_t m);
  986. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  987. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  988. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  989. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  990. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  991. LLAMA_API struct llama_sampler * llama_sampler_init_mirostat_v2(
  992. uint32_t seed,
  993. float tau,
  994. float eta);
  995. LLAMA_API struct llama_sampler * llama_sampler_init_grammar(
  996. const struct llama_model * model,
  997. const char * grammar_str,
  998. const char * grammar_root);
  999. /// NOTE: Avoid using on the full vocabulary as searching for repeated tokens can become slow. For example, apply top-k or top-p sampling first.
  1000. LLAMA_API struct llama_sampler * llama_sampler_init_penalties(
  1001. int32_t penalty_last_n, // last n tokens to penalize (0 = disable penalty, -1 = context size)
  1002. float penalty_repeat, // 1.0 = disabled
  1003. float penalty_freq, // 0.0 = disabled
  1004. float penalty_present); // 0.0 = disabled
  1005. /// @details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
  1006. LLAMA_API struct llama_sampler * llama_sampler_init_dry(
  1007. const struct llama_model * model,
  1008. float dry_multiplier,
  1009. float dry_base,
  1010. int32_t dry_allowed_length,
  1011. int32_t dry_penalty_last_n,
  1012. const char ** seq_breakers,
  1013. size_t num_breakers);
  1014. LLAMA_API struct llama_sampler * llama_sampler_init_logit_bias(
  1015. int32_t n_vocab,
  1016. int32_t n_logit_bias,
  1017. const llama_logit_bias * logit_bias);
  1018. // this sampler is meant to be used for fill-in-the-middle infilling
  1019. // it's supposed to be used after top_k + top_p sampling
  1020. //
  1021. // 1. if the sum of the EOG probs times the number of candidates is higher than the sum of the other probs -> pick EOG
  1022. // 2. combine probs of tokens that have the same prefix
  1023. //
  1024. // example:
  1025. //
  1026. // - before:
  1027. // "hel": 0.5
  1028. // "hell": 0.2
  1029. // "hello": 0.1
  1030. // "dummy": 0.1
  1031. //
  1032. // - after:
  1033. // "hel": 0.8
  1034. // "dummy": 0.1
  1035. //
  1036. // 3. discard non-EOG tokens with low prob
  1037. // 4. if no tokens are left -> pick EOT
  1038. //
  1039. LLAMA_API struct llama_sampler * llama_sampler_init_infill(const struct llama_model * model);
  1040. // Returns the seed used by the sampler if applicable, LLAMA_DEFAULT_SEED otherwise
  1041. LLAMA_API uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl);
  1042. /// @details Sample and accept a token from the idx-th output of the last evaluation
  1043. //
  1044. // Shorthand for:
  1045. // const auto * logits = llama_get_logits_ith(ctx, idx);
  1046. // llama_token_data_array cur_p = { ... init from logits ... };
  1047. // llama_sampler_apply(smpl, &cur_p);
  1048. // auto token = cur_p.data[cur_p.selected].id;
  1049. // llama_sampler_accept(smpl, token);
  1050. // return token;
  1051. // Returns the sampled token
  1052. LLAMA_API llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx);
  1053. // TODO: extend in the future
  1054. //LLAMA_API void llama_decode_with_sampler(struct llama_context * ctx, struct llama_sampler * smpl, struct llama_batch batch, ...);
  1055. //
  1056. // Model split
  1057. //
  1058. /// @details Build a split GGUF final path for this chunk.
  1059. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  1060. // Returns the split_path length.
  1061. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  1062. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  1063. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  1064. // Returns the split_prefix length.
  1065. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  1066. // Print system information
  1067. LLAMA_API const char * llama_print_system_info(void);
  1068. // Set callback for all future logging events.
  1069. // If this is not called, or NULL is supplied, everything is output on stderr.
  1070. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  1071. //
  1072. // Performance utils
  1073. //
  1074. // NOTE: Used by llama.cpp examples, avoid using in third-party apps. Instead, do your own performance measurements.
  1075. //
  1076. struct llama_perf_context_data {
  1077. double t_start_ms;
  1078. double t_load_ms;
  1079. double t_p_eval_ms;
  1080. double t_eval_ms;
  1081. int32_t n_p_eval;
  1082. int32_t n_eval;
  1083. };
  1084. struct llama_perf_sampler_data {
  1085. double t_sample_ms;
  1086. int32_t n_sample;
  1087. };
  1088. LLAMA_API struct llama_perf_context_data llama_perf_context (const struct llama_context * ctx);
  1089. LLAMA_API void llama_perf_context_print(const struct llama_context * ctx);
  1090. LLAMA_API void llama_perf_context_reset( struct llama_context * ctx);
  1091. // NOTE: the following work only with samplers constructed via llama_sampler_chain_init
  1092. LLAMA_API struct llama_perf_sampler_data llama_perf_sampler (const struct llama_sampler * chain);
  1093. LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
  1094. LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
  1095. #ifdef __cplusplus
  1096. }
  1097. #endif
  1098. #endif // LLAMA_H