llama.go 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. package llama
  2. /*
  3. #cgo CFLAGS: -std=c11
  4. #cgo CXXFLAGS: -std=c++17
  5. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
  6. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
  7. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
  8. #cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
  9. #cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
  10. #include <stdlib.h>
  11. #include "ggml.h"
  12. #include "llama.h"
  13. #include "clip.h"
  14. #include "llava.h"
  15. #include "gguf.h"
  16. #include "mllama.h"
  17. #include "sampling_ext.h"
  18. extern bool llamaProgressCallback(float progress, void *user_data);
  19. extern void llamaLog(int level, char* text, void* user_data);
  20. */
  21. import "C"
  22. import (
  23. "context"
  24. _ "embed"
  25. "errors"
  26. "fmt"
  27. "log/slog"
  28. "os"
  29. "runtime"
  30. "runtime/cgo"
  31. "slices"
  32. "strings"
  33. "unsafe"
  34. _ "github.com/ollama/ollama/llama/llama.cpp/common"
  35. _ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
  36. _ "github.com/ollama/ollama/llama/llama.cpp/src"
  37. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  38. )
  39. func init() {
  40. C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
  41. }
  42. //export llamaLog
  43. func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
  44. // slog levels zeros INFO and are multiples of 4
  45. if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
  46. fmt.Fprint(os.Stderr, C.GoString(text))
  47. }
  48. }
  49. func BackendInit() {
  50. ggml.OnceLoad()
  51. C.llama_backend_init()
  52. }
  53. func GetModelArch(modelPath string) (string, error) {
  54. mp := C.CString(modelPath)
  55. defer C.free(unsafe.Pointer(mp))
  56. gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
  57. if gguf_ctx == nil {
  58. return "", errors.New("unable to load model file")
  59. }
  60. defer C.gguf_free(gguf_ctx)
  61. key := C.CString("general.architecture")
  62. defer C.free(unsafe.Pointer(key))
  63. arch_index := C.gguf_find_key(gguf_ctx, key)
  64. if int(arch_index) < 0 {
  65. return "", errors.New("unknown model architecture")
  66. }
  67. arch := C.gguf_get_val_str(gguf_ctx, arch_index)
  68. return C.GoString(arch), nil
  69. }
  70. type ContextParams struct {
  71. c C.struct_llama_context_params
  72. }
  73. func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
  74. params := C.llama_context_default_params()
  75. params.n_ctx = C.uint(numCtx)
  76. params.n_batch = C.uint(batchSize)
  77. params.n_seq_max = C.uint(numSeqMax)
  78. params.n_threads = C.int(threads)
  79. params.n_threads_batch = params.n_threads
  80. params.embeddings = C.bool(true)
  81. params.flash_attn = C.bool(flashAttention)
  82. params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
  83. params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
  84. return ContextParams{c: params}
  85. }
  86. // kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
  87. func kvCacheTypeFromStr(s string) C.enum_ggml_type {
  88. if s == "" {
  89. return C.GGML_TYPE_F16
  90. }
  91. switch s {
  92. case "q8_0":
  93. return C.GGML_TYPE_Q8_0
  94. case "q4_0":
  95. return C.GGML_TYPE_Q4_0
  96. default:
  97. return C.GGML_TYPE_F16
  98. }
  99. }
  100. type Context struct {
  101. c *C.struct_llama_context
  102. numThreads int
  103. }
  104. var ErrKvCacheFull = errors.New("could not find a kv cache slot")
  105. func (c *Context) Decode(batch *Batch) error {
  106. // Positive return values does not mean a fatal error, but rather a warning.
  107. // 0 - success
  108. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  109. // < 0 - error
  110. code := int(C.llama_decode(c.c, batch.c))
  111. if code < 0 {
  112. return fmt.Errorf("llama_decode failed with code %d", code)
  113. }
  114. if code > 0 {
  115. return ErrKvCacheFull
  116. }
  117. return nil
  118. }
  119. func (c *Context) Model() *Model {
  120. return &Model{c: C.llama_get_model(c.c)}
  121. }
  122. func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
  123. C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
  124. }
  125. func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
  126. return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
  127. }
  128. func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
  129. C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
  130. }
  131. func (c *Context) KvCacheClear() {
  132. C.llama_kv_cache_clear(c.c)
  133. }
  134. func (c *Context) KvCacheDefrag() {
  135. C.llama_kv_cache_defrag(c.c)
  136. }
  137. func (c *Context) KvCacheCanShift() bool {
  138. return bool(C.llama_kv_cache_can_shift(c.c))
  139. }
  140. // Get the embeddings for a sequence id
  141. func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
  142. e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
  143. if e == nil {
  144. return nil
  145. }
  146. embeddings := make([]float32, c.Model().NEmbd())
  147. _ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
  148. return embeddings
  149. }
  150. func (c *Context) GetEmbeddingsIth(i int) []float32 {
  151. e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
  152. if e == nil {
  153. return nil
  154. }
  155. embeddings := make([]float32, c.Model().NEmbd())
  156. _ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
  157. return embeddings
  158. }
  159. type ModelParams struct {
  160. NumGpuLayers int
  161. MainGpu int
  162. UseMmap bool
  163. UseMlock bool
  164. TensorSplit []float32
  165. Progress func(float32)
  166. VocabOnly bool
  167. }
  168. //export llamaProgressCallback
  169. func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
  170. handle := *(*cgo.Handle)(userData)
  171. callback := handle.Value().(func(float32))
  172. callback(float32(progress))
  173. return true
  174. }
  175. func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
  176. cparams := C.llama_model_default_params()
  177. cparams.n_gpu_layers = C.int(params.NumGpuLayers)
  178. cparams.main_gpu = C.int32_t(params.MainGpu)
  179. cparams.use_mmap = C.bool(params.UseMmap)
  180. cparams.use_mlock = C.bool(params.UseMlock)
  181. cparams.vocab_only = C.bool(params.VocabOnly)
  182. if len(params.TensorSplit) > 0 {
  183. tensorSplitData := &params.TensorSplit[0]
  184. var tensorSplitPin runtime.Pinner
  185. tensorSplitPin.Pin(tensorSplitData)
  186. defer tensorSplitPin.Unpin()
  187. cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
  188. }
  189. if params.Progress != nil {
  190. handle := cgo.NewHandle(params.Progress)
  191. defer handle.Delete()
  192. var handlePin runtime.Pinner
  193. handlePin.Pin(&handle)
  194. defer handlePin.Unpin()
  195. cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
  196. cparams.progress_callback_user_data = unsafe.Pointer(&handle)
  197. }
  198. m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
  199. if m.c == nil {
  200. return nil, fmt.Errorf("unable to load model: %s", modelPath)
  201. }
  202. return &m, nil
  203. }
  204. func LoadVocabFromFile(path string) (*Vocab, error) {
  205. mp := C.CString(path)
  206. defer C.free(unsafe.Pointer(mp))
  207. v := Vocab{c: C.llama_load_vocab_from_file(mp)}
  208. if v.c == nil {
  209. return nil, fmt.Errorf("unable to load vocab: %s", path)
  210. }
  211. return &v, nil
  212. }
  213. func FreeVocab(vocab *Vocab) {
  214. C.llama_free_vocab(vocab.c)
  215. }
  216. func FreeModel(model *Model) {
  217. C.llama_model_free(model.c)
  218. }
  219. func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
  220. c := Context{
  221. c: C.llama_init_from_model(model.c, params.c),
  222. numThreads: int(params.c.n_threads),
  223. }
  224. if c.c == nil {
  225. return nil, errors.New("unable to create llama context")
  226. }
  227. return &c, nil
  228. }
  229. func (m *Model) NumVocab() int {
  230. return int(C.llama_vocab_n_tokens(m.Vocab()))
  231. }
  232. func (m *Model) TokenIsEog(token int) bool {
  233. return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
  234. }
  235. func (m *Model) AddBOSToken() bool {
  236. return bool(C.llama_vocab_get_add_bos(m.Vocab()))
  237. }
  238. func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
  239. cLoraPath := C.CString(loraPath)
  240. defer C.free(unsafe.Pointer(cLoraPath))
  241. loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
  242. if loraAdapter == nil {
  243. return errors.New("unable to load lora")
  244. }
  245. err := -1
  246. if loraAdapter != nil {
  247. err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
  248. }
  249. if err != 0 {
  250. return errors.New("error applying lora from file")
  251. }
  252. return nil
  253. }
  254. type Vocab struct {
  255. c *C.struct_llama_vocab
  256. }
  257. func (m *Model) Vocab() *C.struct_llama_vocab {
  258. return C.llama_model_get_vocab(m.c)
  259. }
  260. type Batch struct {
  261. c C.struct_llama_batch
  262. batchSize int
  263. maxSeq int
  264. embedSize int
  265. }
  266. // Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
  267. // Batches cannot contain both types at the same time. batchSize is the maximum number of entries
  268. // that can be added per sequence
  269. func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
  270. b := Batch{
  271. c: C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
  272. batchSize: batchSize,
  273. maxSeq: maxSeq,
  274. embedSize: embedSize,
  275. }
  276. // Check to see if any of the allocations in llama_batch_init() failed
  277. nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
  278. b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
  279. slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)
  280. if nilPointer {
  281. C.llama_batch_free(b.c)
  282. return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
  283. }
  284. return &b, nil
  285. }
  286. func (b *Batch) Size() int {
  287. return b.batchSize
  288. }
  289. func (b *Batch) allocSize() int {
  290. return b.batchSize * b.maxSeq
  291. }
  292. func (b *Batch) NumTokens() int {
  293. return int(b.c.n_tokens)
  294. }
  295. func (b *Batch) IsEmbedding() bool {
  296. return b.embedSize != 0
  297. }
  298. // Add adds either a token or an image embedding to the batch depending on the type
  299. // when the batch was initialized. The other argument will be ignored. Adds to the
  300. // batch with the given position for the given sequence ids, and optionally instructs
  301. // to include logits.
  302. func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
  303. if !b.IsEmbedding() {
  304. unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
  305. } else {
  306. copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
  307. }
  308. unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
  309. unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
  310. for i, s := range seqIds {
  311. unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
  312. }
  313. if logits {
  314. unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
  315. } else {
  316. unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
  317. }
  318. b.c.n_tokens += 1
  319. }
  320. func (b *Batch) Clear() {
  321. b.c.n_tokens = 0
  322. }
  323. func (b *Batch) Free() {
  324. b.batchSize = 0
  325. C.llama_batch_free(b.c)
  326. }
  327. type Model struct {
  328. c *C.struct_llama_model
  329. }
  330. func (m *Model) TokenToPiece(token int) string {
  331. tokenLen := 12
  332. buf := make([]byte, tokenLen)
  333. tokenLen = int(C.llama_token_to_piece(
  334. m.Vocab(),
  335. C.int32_t(token),
  336. (*C.char)(unsafe.Pointer(&buf[0])),
  337. C.int32_t(tokenLen),
  338. C.int32_t(0),
  339. C.bool(true),
  340. ))
  341. if tokenLen < 0 {
  342. tokenLen = -tokenLen
  343. buf = make([]byte, tokenLen)
  344. C.llama_token_to_piece(
  345. m.Vocab(),
  346. C.int32_t(token),
  347. (*C.char)(unsafe.Pointer(&buf[0])),
  348. C.int32_t(tokenLen),
  349. C.int32_t(0),
  350. C.bool(true),
  351. )
  352. }
  353. return strings.TrimRight(string(buf), "\x00")
  354. }
  355. func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
  356. maxTokens := len(text) + 2
  357. cTokens := make([]C.llama_token, maxTokens)
  358. cText := C.CString(text)
  359. defer C.free(unsafe.Pointer(cText))
  360. result := C.llama_tokenize(
  361. m.Vocab(),
  362. cText,
  363. C.int32_t(len(text)),
  364. &cTokens[0],
  365. C.int32_t(maxTokens),
  366. C.bool(addSpecial),
  367. C.bool(parseSpecial),
  368. )
  369. // if the result is negative, reallocate and retry with the correct buffer size
  370. if result < 0 {
  371. maxTokens = int(-result)
  372. cTokens = make([]C.llama_token, maxTokens)
  373. result = C.llama_tokenize(
  374. m.Vocab(),
  375. cText,
  376. C.int32_t(len(text)),
  377. &cTokens[0],
  378. C.int32_t(maxTokens),
  379. C.bool(addSpecial),
  380. C.bool(parseSpecial),
  381. )
  382. if result < 0 {
  383. return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
  384. }
  385. }
  386. tokens := make([]int, result)
  387. for i := range result {
  388. tokens[i] = int(cTokens[i])
  389. }
  390. return tokens, nil
  391. }
  392. func (m *Model) NEmbd() int {
  393. return int(C.llama_model_n_embd(m.c))
  394. }
  395. func Quantize(infile, outfile string, ftype uint32) error {
  396. cinfile := C.CString(infile)
  397. defer C.free(unsafe.Pointer(cinfile))
  398. coutfile := C.CString(outfile)
  399. defer C.free(unsafe.Pointer(coutfile))
  400. params := C.llama_model_quantize_default_params()
  401. params.nthread = -1
  402. params.ftype = ftype
  403. if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
  404. return fmt.Errorf("llama_model_quantize: %d", rc)
  405. }
  406. return nil
  407. }
  408. // vision processing
  409. type ClipContext struct {
  410. c *C.struct_clip_ctx
  411. }
  412. func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
  413. mp := C.CString(modelPath)
  414. defer C.free(unsafe.Pointer(mp))
  415. c := C.clip_model_load(mp, 1)
  416. if c == nil {
  417. return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
  418. }
  419. projEmbedSize := int(C.clip_n_mmproj_embd(c))
  420. modelEmbedSize := llamaContext.Model().NEmbd()
  421. if projEmbedSize != modelEmbedSize {
  422. return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
  423. }
  424. return &ClipContext{c: c}, nil
  425. }
  426. func (c *ClipContext) Free() {
  427. C.clip_free(c.c)
  428. }
  429. func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
  430. l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
  431. if l == nil {
  432. return nil, errors.New("unable to make llava embedding from image")
  433. }
  434. numTokens := int(l.n_image_pos)
  435. numEmbed := llamaContext.Model().NEmbd()
  436. s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
  437. embed := make([][]float32, numTokens)
  438. rows := make([]float32, len(s))
  439. copy(rows, s)
  440. for i := range embed {
  441. embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
  442. }
  443. C.llava_image_embed_free(l)
  444. return embed, nil
  445. }
  446. type MllamaContext struct {
  447. c *C.struct_mllama_ctx
  448. }
  449. func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
  450. mp := C.CString(modelPath)
  451. defer C.free(unsafe.Pointer(mp))
  452. c := C.mllama_model_load(mp, 1)
  453. if c == nil {
  454. return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
  455. }
  456. projEmbedSize := int(C.mllama_n_embd(c))
  457. modelEmbedSize := llamaContext.Model().NEmbd()
  458. if projEmbedSize != modelEmbedSize {
  459. return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
  460. }
  461. return &MllamaContext{c: c}, nil
  462. }
  463. func (m *MllamaContext) Free() {
  464. C.mllama_free(m.c)
  465. }
  466. func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
  467. img := C.mllama_image_init()
  468. defer C.mllama_image_free(img)
  469. ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
  470. if !ok {
  471. return nil, errors.New("unable to load mllama image data")
  472. }
  473. rows := make([]float32, m.EmbedSize(llamaContext))
  474. ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
  475. if !ok {
  476. return nil, errors.New("unable to make mllama embedding from image")
  477. }
  478. embed := make([][]float32, 1)
  479. embed[0] = rows
  480. return embed, nil
  481. }
  482. func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
  483. numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
  484. numEmbed := llamaContext.Model().NEmbd()
  485. return numTokens * numEmbed
  486. }
  487. func (c *Context) SetCrossAttention(state bool) {
  488. C.llama_set_cross_attention(c.c, C.bool(state))
  489. }
  490. func (c *Context) Synchronize() {
  491. C.llama_synchronize(c.c)
  492. }
  493. // sampling
  494. // TODO: this is a temporary wrapper to allow calling C++ code from CGo
  495. type SamplingContext struct {
  496. c *C.struct_common_sampler
  497. }
  498. type SamplingParams struct {
  499. TopK int
  500. TopP float32
  501. MinP float32
  502. TypicalP float32
  503. Temp float32
  504. RepeatLastN int
  505. PenaltyRepeat float32
  506. PenaltyFreq float32
  507. PenaltyPresent float32
  508. Mirostat int
  509. MirostatTau float32
  510. MirostatEta float32
  511. PenalizeNl bool
  512. Seed uint32
  513. Grammar string
  514. }
  515. func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
  516. var cparams C.struct_common_sampler_cparams
  517. cparams.top_k = C.int32_t(params.TopK)
  518. cparams.top_p = C.float(params.TopP)
  519. cparams.min_p = C.float(params.MinP)
  520. cparams.typical_p = C.float(params.TypicalP)
  521. cparams.temp = C.float(params.Temp)
  522. cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
  523. cparams.penalty_repeat = C.float(params.PenaltyRepeat)
  524. cparams.penalty_freq = C.float(params.PenaltyFreq)
  525. cparams.penalty_present = C.float(params.PenaltyFreq)
  526. cparams.mirostat = C.int32_t(params.Mirostat)
  527. cparams.mirostat_tau = C.float(params.MirostatTau)
  528. cparams.mirostat_eta = C.float(params.MirostatEta)
  529. cparams.seed = C.uint32_t(params.Seed)
  530. grammar := C.CString(params.Grammar)
  531. defer C.free(unsafe.Pointer(grammar))
  532. cparams.grammar = grammar
  533. context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
  534. if context.c == nil {
  535. return nil, errors.New("unable to create sampling context")
  536. }
  537. runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
  538. return context, nil
  539. }
  540. func (s *SamplingContext) Reset() {
  541. C.common_sampler_creset(s.c)
  542. }
  543. func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
  544. return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
  545. }
  546. func (s *SamplingContext) Accept(id int, applyGrammar bool) {
  547. C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
  548. }
  549. // SchemaToGrammar converts the provided JSON schema to a grammar. It returns
  550. // nil if the provided schema is invalid JSON or an invalid JSON schema.
  551. func SchemaToGrammar(schema []byte) []byte {
  552. cStr := C.CString(string(schema))
  553. defer C.free(unsafe.Pointer(cStr))
  554. // Allocate buffer for grammar output with reasonable size
  555. const maxLen = 32768 // 32KB
  556. buf := make([]byte, maxLen)
  557. // Call C function to convert schema to grammar
  558. n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
  559. if n == 0 {
  560. // preserve nil
  561. return nil
  562. }
  563. return buf[:n]
  564. }
  565. type Sampler struct {
  566. c *C.struct_llama_sampler
  567. }
  568. func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
  569. cGrammar := C.CString(grammar)
  570. cRoot := C.CString("root")
  571. defer C.free(unsafe.Pointer(cGrammar))
  572. defer C.free(unsafe.Pointer(cRoot))
  573. sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}
  574. return sampler
  575. }
  576. func (s *Sampler) Accept(token int32) {
  577. C.llama_sampler_accept(s.c, C.llama_token(token))
  578. }
  579. type TokenData struct {
  580. Id int32
  581. Logit float32
  582. }
  583. func (s *Sampler) Apply(tokens []TokenData) {
  584. tds := make([]C.struct_llama_token_data, len(tokens))
  585. for i, token := range tokens {
  586. tds[i] = C.struct_llama_token_data{
  587. id: C.int32_t(token.Id),
  588. logit: C.float(token.Logit),
  589. p: C.float(0.0),
  590. }
  591. }
  592. tda := &C.llama_token_data_array{
  593. data: (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
  594. size: C.size_t(len(tokens)),
  595. selected: C.int64_t(-1),
  596. sorted: C.bool(false),
  597. }
  598. var pinner runtime.Pinner
  599. pinner.Pin(&tds[0])
  600. defer pinner.Unpin()
  601. C.llama_sampler_apply(s.c, tda)
  602. for i := range tokens {
  603. tokens[i].Logit = float32(tds[i].logit)
  604. }
  605. }