ggml.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. package ggml
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "log/slog"
  8. "slices"
  9. "strings"
  10. "github.com/ollama/ollama/fs/util/bufioutil"
  11. )
  12. type GGML struct {
  13. container
  14. model
  15. }
  16. type model interface {
  17. KV() KV
  18. Tensors() Tensors
  19. }
  20. type KV map[string]any
  21. func (kv KV) Architecture() string {
  22. return kv.String("general.architecture", "unknown")
  23. }
  24. func (kv KV) Kind() string {
  25. return kv.String("general.type", "unknown")
  26. }
  27. func (kv KV) ParameterCount() uint64 {
  28. return keyValue[uint64](kv, "general.parameter_count")
  29. }
  30. func (kv KV) FileType() fileType {
  31. if t := kv.Uint("general.file_type"); t > 0 {
  32. return fileType(t)
  33. }
  34. return fileTypeUnknown
  35. }
  36. func (kv KV) BlockCount() uint64 {
  37. return uint64(kv.Uint("block_count"))
  38. }
  39. func (kv KV) EmbeddingLength() uint64 {
  40. return uint64(kv.Uint("embedding_length"))
  41. }
  42. func (kv KV) HeadCount() uint64 {
  43. return uint64(kv.Uint("attention.head_count"))
  44. }
  45. func (kv KV) HeadCountKV() uint64 {
  46. return uint64(kv.Uint("attention.head_count_kv", 1))
  47. }
  48. func (kv KV) EmbeddingHeadCount() uint64 {
  49. if heads := kv.HeadCount(); heads > 0 {
  50. return kv.EmbeddingLength() / heads
  51. }
  52. return 0
  53. }
  54. func (kv KV) EmbeddingHeadCountK() uint64 {
  55. return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
  56. }
  57. func (kv KV) EmbeddingHeadCountV() uint64 {
  58. return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
  59. }
  60. func (kv KV) GQA() uint64 {
  61. return kv.HeadCount() / kv.HeadCountKV()
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return uint64(kv.Uint("context_length"))
  65. }
  66. func (kv KV) ChatTemplate() string {
  67. return kv.String("tokenizer.chat_template")
  68. }
  69. func (kv KV) String(key string, defaultValue ...string) string {
  70. return keyValue(kv, key, append(defaultValue, "")...)
  71. }
  72. func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
  73. return keyValue(kv, key, append(defaultValue, 0)...)
  74. }
  75. func (kv KV) Float(key string, defaultValue ...float32) float32 {
  76. return keyValue(kv, key, append(defaultValue, 0)...)
  77. }
  78. func (kv KV) Strings(key string, defaultValue ...[]string) []string {
  79. r := keyValue(kv, key, &array{})
  80. s := make([]string, r.size)
  81. for i := range r.size {
  82. s[i] = r.values[i].(string)
  83. }
  84. return s
  85. }
  86. func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
  87. r := keyValue(kv, key, &array{})
  88. s := make([]uint32, r.size)
  89. for i := range r.size {
  90. s[i] = uint32(r.values[i].(int32))
  91. }
  92. return s
  93. }
  94. func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
  95. if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
  96. key = kv.Architecture() + "." + key
  97. }
  98. if val, ok := kv[key]; ok {
  99. return val.(T)
  100. }
  101. slog.Warn("key not found", "key", key, "default", defaultValue[0])
  102. return defaultValue[0]
  103. }
  104. type Tensors struct {
  105. items []*Tensor
  106. Offset uint64
  107. }
  108. func (s Tensors) Items(prefix ...string) []*Tensor {
  109. if len(prefix) == 0 {
  110. return s.items
  111. }
  112. var items []*Tensor
  113. for _, t := range s.items {
  114. if strings.HasPrefix(t.Name, prefix[0]) {
  115. items = append(items, t)
  116. }
  117. }
  118. return items
  119. }
  120. func (ts Tensors) GroupLayers() map[string]Layer {
  121. layers := make(map[string]Layer)
  122. for _, t := range ts.items {
  123. parts := strings.Split(t.Name, ".")
  124. if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
  125. if len(parts) > index+2 {
  126. // blk and mm should have a number after them, join it
  127. parts = append(
  128. []string{strings.Join(parts[:index+2], ".")},
  129. parts[index+2:]...)
  130. }
  131. }
  132. if _, ok := layers[parts[0]]; !ok {
  133. layers[parts[0]] = make(Layer)
  134. }
  135. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  136. }
  137. return layers
  138. }
  139. type Layer map[string]*Tensor
  140. func (l Layer) Size() (size uint64) {
  141. for _, t := range l {
  142. size += t.Size()
  143. }
  144. return size
  145. }
  146. type Tensor struct {
  147. Name string `json:"name"`
  148. Kind uint32 `json:"kind"`
  149. Offset uint64 `json:"-"`
  150. // Shape is the number of elements in each dimension
  151. Shape []uint64 `json:"shape"`
  152. io.WriterTo `json:"-"`
  153. }
  154. func (t Tensor) block() (n int) {
  155. if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
  156. return -1
  157. }
  158. return
  159. }
  160. func (t Tensor) blockSize() uint64 {
  161. switch t.Kind {
  162. case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
  163. return 1
  164. case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
  165. return 32
  166. default: // All others
  167. return 256
  168. }
  169. }
  170. func (t Tensor) typeSize() uint64 {
  171. blockSize := t.blockSize()
  172. switch t.Kind {
  173. case 0: // FP32
  174. return 4
  175. case 1: // FP16
  176. return 2
  177. case 2: // Q4_0
  178. return 2 + blockSize/2
  179. case 3: // Q4_1
  180. return 2 + 2 + blockSize/2
  181. case 6: // Q5_0
  182. return 2 + 4 + blockSize/2
  183. case 7: // Q5_1
  184. return 2 + 2 + 4 + blockSize/2
  185. case 8: // Q8_0
  186. return 2 + blockSize
  187. case 9: // Q8_1
  188. return 4 + 4 + blockSize
  189. case 10: // Q2_K
  190. return blockSize/16 + blockSize/4 + 2 + 2
  191. case 11: // Q3_K
  192. return blockSize/8 + blockSize/4 + 12 + 2
  193. case 12: // Q4_K
  194. return 2 + 2 + 12 + blockSize/2
  195. case 13: // Q5_K
  196. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  197. case 14: // Q6_K
  198. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  199. case 15: // Q8_K
  200. return 2 + blockSize + 2*blockSize/16
  201. case 16: // IQ2_XXS
  202. return 2 + 2*blockSize/8
  203. case 17: // IQ2_XS
  204. return 2 + 2*blockSize/8 + blockSize/32
  205. case 18: // IQ3_XXS
  206. return 2 + blockSize/4 + blockSize/8
  207. case 19: // IQ1_S
  208. return 2 + blockSize/8 + blockSize/16
  209. case 20: // IQ4_NL
  210. return 2 + blockSize/2
  211. case 21: // IQ3_S
  212. return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
  213. case 22: // IQ2_S
  214. return 2 + blockSize/4 + blockSize/16
  215. case 23: // IQ4_XS
  216. return 2 + 2 + blockSize/2 + blockSize/64
  217. case 24: // I8
  218. return 1
  219. case 25: // I16
  220. return 2
  221. case 26: // I32
  222. return 4
  223. case 27: // I64
  224. return 8
  225. case 28: // F64
  226. return 8
  227. case 29: // IQ1_M
  228. return blockSize/8 + blockSize/16 + blockSize/32
  229. default:
  230. return 0
  231. }
  232. }
  233. func (t Tensor) parameters() uint64 {
  234. var count uint64 = 1
  235. for _, n := range t.Shape {
  236. count *= n
  237. }
  238. return count
  239. }
  240. func (t Tensor) Size() uint64 {
  241. return t.parameters() * t.typeSize() / t.blockSize()
  242. }
  243. type container interface {
  244. Name() string
  245. Decode(io.ReadSeeker) (model, error)
  246. }
  247. const (
  248. // Magic constant for `ggml` files (unversioned).
  249. FILE_MAGIC_GGML = 0x67676d6c
  250. // Magic constant for `ggml` files (versioned, ggmf).
  251. FILE_MAGIC_GGMF = 0x67676d66
  252. // Magic constant for `ggml` files (versioned, ggjt).
  253. FILE_MAGIC_GGJT = 0x67676a74
  254. // Magic constant for `ggla` files (LoRA adapter).
  255. FILE_MAGIC_GGLA = 0x67676C61
  256. // Magic constant for `gguf` files (versioned, gguf)
  257. FILE_MAGIC_GGUF_LE = 0x46554747
  258. FILE_MAGIC_GGUF_BE = 0x47475546
  259. )
  260. var ErrUnsupportedFormat = errors.New("unsupported model format")
  261. func DetectContentType(b []byte) string {
  262. switch binary.LittleEndian.Uint32(b[:4]) {
  263. case FILE_MAGIC_GGML:
  264. return "ggml"
  265. case FILE_MAGIC_GGMF:
  266. return "ggmf"
  267. case FILE_MAGIC_GGJT:
  268. return "ggjt"
  269. case FILE_MAGIC_GGLA:
  270. return "ggla"
  271. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  272. return "gguf"
  273. default:
  274. return ""
  275. }
  276. }
  277. // Decode decodes a GGML model from the given reader.
  278. //
  279. // It collects array values for arrays with a size less than or equal to
  280. // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
  281. // the maxArraySize is negative, all arrays are collected.
  282. func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
  283. if maxArraySize == 0 {
  284. maxArraySize = 1024
  285. }
  286. rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
  287. var magic uint32
  288. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  289. return nil, 0, err
  290. }
  291. var c container
  292. switch magic {
  293. case FILE_MAGIC_GGUF_LE:
  294. c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
  295. case FILE_MAGIC_GGUF_BE:
  296. c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
  297. default:
  298. return nil, 0, errors.New("invalid file magic")
  299. }
  300. model, err := c.Decode(rs)
  301. if err != nil {
  302. return nil, 0, err
  303. }
  304. offset, err := rs.Seek(0, io.SeekCurrent)
  305. if err != nil {
  306. return nil, 0, err
  307. }
  308. // final model type
  309. return &GGML{
  310. container: c,
  311. model: model,
  312. }, offset, nil
  313. }
  314. func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
  315. embedding := f.KV().EmbeddingLength()
  316. heads := f.KV().HeadCount()
  317. headsKV := f.KV().HeadCountKV()
  318. vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
  319. embeddingHeads := f.KV().EmbeddingHeadCount()
  320. embeddingHeadsK := f.KV().EmbeddingHeadCountK()
  321. embeddingHeadsV := f.KV().EmbeddingHeadCountV()
  322. layers := f.Tensors().GroupLayers()
  323. bytesPerElement := kvCacheBytesPerElement(kvCacheType)
  324. kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
  325. switch f.KV().Architecture() {
  326. case "llama":
  327. fullOffload = max(
  328. 4*batch*(1+4*embedding+context*(1+heads)),
  329. 4*batch*(embedding+vocab),
  330. )
  331. partialOffload = 4 * batch * embedding
  332. partialOffload += max(
  333. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
  334. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  335. )
  336. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  337. // mixtral 8x22b
  338. ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
  339. partialOffload = max(
  340. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
  341. 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
  342. )
  343. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  344. // mixtral 8x7b
  345. ffnGateWeight1 := ffnGateWeight.Shape[1]
  346. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  347. partialOffload = max(
  348. 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  349. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  350. )
  351. }
  352. case "mllama":
  353. var visionTokens, tiles uint64 = 1601, 4
  354. if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
  355. kv = headsKV *
  356. (embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
  357. (2* // sizeof(float16)
  358. (f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
  359. context +
  360. 4* // sizeof(float32)
  361. uint64(crossAttentionLayers.size)* // num cross attention layers
  362. visionTokens*
  363. tiles)
  364. }
  365. fullOffload = max(
  366. 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
  367. // vocab graph
  368. 4*batch*(embedding+vocab),
  369. )
  370. var ropeFreqsCount uint64
  371. if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
  372. if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
  373. ropeFreqsCount = ropeFreqsWeights.parameters()
  374. }
  375. }
  376. partialOffload = max(
  377. 4*(batch*
  378. (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
  379. ropeFreqsCount+
  380. embeddingHeadsK*context*headsKV),
  381. // vocab graph
  382. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  383. )
  384. case "gemma", "gemma2":
  385. fullOffload = max(
  386. 4*batch*(embedding+vocab),
  387. 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
  388. )
  389. partialOffload = max(
  390. 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
  391. 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
  392. 4*embeddingHeadsK*context*8+
  393. embedding*embeddingHeadsK*heads*9/16,
  394. )
  395. case "command-r":
  396. fullOffload = max(
  397. 4*batch*(embedding+vocab),
  398. 4*batch*(2+4*embedding+context*(1+heads)),
  399. )
  400. partialOffload = max(
  401. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  402. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  403. )
  404. case "qwen2":
  405. fullOffload = max(
  406. 4*batch*(embedding+vocab),
  407. 4*batch*(1+2*embedding+context+context*heads),
  408. )
  409. partialOffload = max(
  410. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  411. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  412. )
  413. case "phi2":
  414. fullOffload = max(
  415. 4*batch*(embedding+vocab),
  416. 4*batch*(1+4*embedding+context+context*heads),
  417. )
  418. partialOffload = max(
  419. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  420. 4*batch*(2+3*embedding+context+context*heads),
  421. )
  422. case "stablelm":
  423. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  424. partialOffload = max(
  425. 4*batch*(vocab+2*embedding),
  426. fullOffload,
  427. )
  428. case "deepseek2":
  429. fullOffload = max(
  430. 4*batch*(3*embedding+vocab),
  431. 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
  432. )
  433. partialOffload = max(
  434. 4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
  435. 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
  436. )
  437. case "chatglm":
  438. fullOffload = 4 * batch * (embedding + vocab)
  439. partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
  440. if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
  441. fullOffload = max(
  442. fullOffload,
  443. 4*batch*(2+
  444. 2*embedding+
  445. context+
  446. context*heads+
  447. embeddingHeadsK*heads+
  448. qkvBias.Shape[0]),
  449. )
  450. partialOffload = max(
  451. partialOffload,
  452. 4*batch*(1+
  453. 2*embedding+
  454. embeddingHeadsK*heads+
  455. context+
  456. context*heads)+
  457. 4*embeddingHeadsK*context+
  458. 4*context*embeddingHeadsK+
  459. 4*qkvBias.Shape[0],
  460. )
  461. }
  462. }
  463. return
  464. }
  465. // SupportsKVCacheType checks if the requested cache type is supported
  466. func (f GGML) SupportsKVCacheType(cacheType string) bool {
  467. return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
  468. }
  469. // SupportsFlashAttention checks if the model supports flash attention
  470. func (f GGML) SupportsFlashAttention() bool {
  471. _, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
  472. if isEmbedding {
  473. return false
  474. }
  475. // Check head counts match and are non-zero
  476. headCountK := f.KV().EmbeddingHeadCountK()
  477. headCountV := f.KV().EmbeddingHeadCountV()
  478. return headCountK != 0 && headCountV != 0 && headCountK == headCountV
  479. }
  480. // kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
  481. func kvCacheBytesPerElement(cacheType string) float64 {
  482. switch cacheType {
  483. case "q8_0":
  484. return 1 // 1/2 of fp16
  485. case "q4_0":
  486. return 0.5 // 1/4 of fp16
  487. default:
  488. return 2 // f16 (default)
  489. }
  490. }